APPLICATION FOR VOLUNTARY CLEAN-UP

Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

> Prepared for **MVS Development, LLC** 5300 DTC Parkway, Ste 270 Greenwood Village, CO 80111

Prepared by Engineering Solutions & Design, Inc. 9393 W. 110th Street, Ste 500 Overland Park, KS 66210 (800) 298-1851

VERSION 2 December 10, 2018

FIGURE 2

Engineering Solutions & Design, Inc.

SOLID WASTE PLANNING, DESIGN AND CONSTRUCTION SERVICES

Two Park Square 6565 Americas Pkwy NE, Ste 200 Albuquerque, NM 87110

T: (800) 298-1851 www.esdworks.com 51 Corporate Woods 9393 W. 110th Street, Ste 500 Overland Park, KS 66210

December 10, 2018

Mr. Fonda Apostolopoulos, Project Manager Voluntary Clean-Up Program Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South, Building B-2 Denver, CO 80246

> RE: Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property – Colorado Springs, Colorado Version 2 dated December 10, 2018

Dear Mr. Apostolopoulos:

On behalf of MVS Development, LLC, I am submitting the referenced document. We appreciate the opportunity to submit this Voluntary Clean-Up Application and your consideration of our request. Improvements are planned for the larger parcel of land at the project site. Significant improvements are planned to address the existing abandoned landfill, which will be of benefit to the citizens of Colorado Springs. As requested, a copy of this application is being submitted to the City of Colorado Springs.

Should you have any questions regarding this matter, please do not hesitate to contact me at: (800) 298-1851 Ext. 1.

Sincerely, OLUTIONS & DESIGN, INC. ENGINEERING Jack Chappelle,

VOLUNTARY CLEAN-UP AND REDEVELOPMENT ACT CHECKLIST AND INFORMATION COMPARISON TABLE

This table provides a checklist of information that may be included in a Voluntary Clean-up Program application. Although not all information requirements apply to all sites, the applicant should review this list carefully and include in the application any information that is relevant to the property in question. The table should be submitted in the application, with the page numbers in the application where this information can be found inserted into the last column. This is not an application requirement, but it does greatly assist the reviewer.

This table may also be used to compare the information normally contained in Phase I and Phase II Environmental Audits, with the requirements of the Voluntary Clean-up Program application. Since these audits are commonly performed, the table will assist owners in determining any <u>additional</u> information that may be needed, if you have already performed a Phase I or Phase II audit.

DIRECTIONS FOR COMPARISON TABLE INTERPRETATION

The table that follows is organized like the one below.

P I P II VC General Information Page

The first three columns provide the comparison between the information requirements of Phase I (P1) and Phase II (P II) Environmental Audits and the Voluntary Clean-up Program application (VC). in each column you will either see a blank space, a zero (0), a plus sign (+) or a minus sign (-). These can be interpreted as follows:

- + means requirements are more detailed than other documents
- means requirements are less detailed than other documents
- 0 means requirements are similar to other documents

A blank means that the requirement does not exist for that document

So, for example, if you saw a (+) in the VC column, it means that there are additional information requirements for the Voluntary Clean-up Program application in comparison to the audit reports for that item. If there was a (0) in the VC column, then the information contained in the Phase I or Phase II audit is adequate for the Voluntary Clean-up Program application.

The fourth column provides the checklist of information items required in the Voluntary Clean-up Program application.

The fifth column provides a place for you to insert the page number from the Voluntary Clean-up Program application that pertains to this informational item. If the applicant fills this portion out and returns the table with the application, it greatly assists the reviewer in finding information within the application.

VOLUNTARY CLEAN-UP, ASTM PHASE I, ASTM PHASE II COMPARISON

ΡI	P11	VC	1 GENERAL INFORMATION	Page
0	0	0	Name and address of owner	1-1
0	0	0	Contact person and phone number	1-1
0	0	0	Location of property	1-1
-	+	+	Type and source of contamination	1-1
		+.	Voluntary Clean-up (VC) or No Action Determination (NAD)	1-1
0		0	Current Land Use	1-1
		+	Proposed Land Use. Proposed future land use is not covered in a Phase I or II	1-1
			assessment. A voluntary clean-up approval is contingent upon this item.	
ΡI	P11	YC	II. PROGRAM INCLUSION	Page
-		+	Is the applicant the owner of the property for the submitted VC or NAD? In a Phase I assessment, the owner is not always the party preparing the assessment. The Voluntary Clean-up Program requires owner/designated representative to complete the submittal.	1-1
-		+	Is the property submitted for the VC or NAD the subject of corrective action under orders or agreements issued pursuant to provisions of Part 3 of Article 15 of this Title or the federal RCRA 1976 as amended? Although Phase I assessments review state records for RCRA corrective actions, the Voluntary Clean-up Program requires details of a corrective action for an eligibility determination.	NO
-		+	Is the property submitted for the VC or NAD subject to an order issued by or an agreement with the Water Quality Control Division pursuant to Part 6 of Article 8 of this Tide? Although Phase I assessments review state records, detail is not discussed. If Water Quality has issued a permit, the applicant is ineligible.	NO
-		+	Is the property submitted for the VC or NAD a facility that has or should have a permit or interim status pursuant to Part 3 of Article 15 of this Title for treatment, storage or disposal of hazardous waste? Although Phase I assessments review state records, detail is not discussed. For the Voluntary Clean-up Program, details of permits or interim status are necessary for an eligibility determination. Based on the site specifics of the permitted facility, the applicant may qualify for the program.	NO
-		+	Is the property submitted for the VC or NAD subject to the provisions of Part 5 of Article 20 of Title 8 (Underground Storage Tanks) CRS or of Article 18 of this Title (RCRA)? Although Phase I assessments review state records, detail is not discussed. For the Voluntary Clean-up Program details of Underground Storage Tank or RCRA requirements are necessary to make an evaluation. In some cases (e.g., tanks were removed prior to 12/22/88), the applicant may be eligible for the program.	NO
-		+	Is the property submitte4 for the VC or NAD listed or proposed for listing on the National Priorities List of Superfund sites established under the federal act (CERCLA)? Although Phase I assessments review state records, detail is not discussed. For the Voluntary Clean-up Program, details of CERCLA action are necessary to make an evaluation. In some cases, the applicant may not be eligible for the program.	NO

PT	PH	YC	III. ENVIRONMENTAL ASSESSMENT	Page
0	0	0	Qualified environmental professionals must submit environmental assessments. The applicant must submit documentation, in the form of a statement of qualifications or resume.	3-1
0	0	0	The applicant should provide the address and legal description of the site and a map of appropriate scale identifying the location and size of the property.	1-1 1-5
0		0	The applicant should describe the operational history of the property in detail, including the most current use of the property.	1-4
0		0	A description of all business/activities that occupy or occupied the site as far back as record/knowledge allows.	1-4
-		+	A brief description of all operations that may have resulted in the release of hazardous substances or petroleum products at the site, both past and present, including the dates activities occurred at the property and dates during which the contaminants were released into the environment. Although Phase I & II assessments may reveal the release of hazardous substances or petroleum products, the exact dates and quantities may not be discussed. For the Voluntary Clean-up Program, the dates of activities, releases, etc., are necessary for an evaluation of eligibility.	1-4
-		+	A list of all site-specific notifications made as a result of any management activities of hazardous substances conducted at the site, including any and all Environmental Protection Agency ID numbers obtained for management of hazardous substances at the site from either the state or the Environmental Protection Agency. The Phase I assessment will reveal whether a facility has an Environmental Protection Agency ID number, but will not list the notifications made as a result of management activities of hazardous substances. This information is necessary for a Voluntary Clean-up Program evaluation.	NA
0		0	A list of all notifications to county emergency response personnel for the storage of reportable quantities of hazardous substances required under Emergency Planning and Community Right-to-Know statutes.	NA
0		0	A list of all notifications made to state and/or federal agencies, such as reporting of spills and/or accidental releases, including notifications to the State Oil Inspection Section (015) required under 8-20-506 and 507 and 25- 18-104 CRS 1989 as amended and 6 CCR 1007-5 subpart 280.50 Part 3 of the OIS regulations, etc.	NA
-	-	+	A list of all known hazardous substances used at the site with volume estimates and discussion of relative toxicities. A Phase I & II assessment does not require such detail, however, the hazardous substances used, volumes and toxicities are important for a VC in the overall evaluation of risk and sampling efforts.	NA
-		+	A list of all wastes generated by current activities conducted at the site and manifests for shipment of hazardous wastes off site. A Phase I & II assessment does not require such detail, however, the manifest information is important for a VC evaluation, as in the above item.	NA
		+	A list of all permits obtained from state or federal agencies required as a result of activities conducted at the site. A listing of all permits is beyond a Phase I or II assessment. These are important for the Voluntary Clean-up Program so the Department can evaluate what potential sources may be at the site.	NA
0		0	A brief description of the current land uses zoning and zoning restrictions of all areas contiguous to the site.	1-3

PT	PII	VC	III. ENVIRONMENTAL ASSESSMENT	Page
		•	The applicant shall describe the physical characteristics of the site, including a	
			map to scale, and an accompanying narrative showing and describing the	
			following, utilizing historic knowledge as well as current data:	
)	0	0	• Topography	1-5
)	-	0	• All surface water bodies and waste water discharge points	NA
)	-	0	Ground water monitoring and supply wells	3-8
)	-	0	Facility process units and loading docks	NA
)		0	Chemical and/or fuel transfer and pumping stations	NA
)		0	Railroad tracks and rail car loading areas	NA
0.		0	Spill collection sumps and/or drainage collection areas	NA
)		0	Wastewater treatment units	NA
0		0	• Surface and storm water runoff retention ponds and discharge points	1-5
)		0	Building drainage or wastewater discharge points	NA
)		0	All above or below ground storage tanks	NA
)		0	Underground or above ground piping	NA
)		0	Air emission control scrubber units	NA
)		0	Water cooling systems or refrigeration units	NA
)		0	Sewer lines	NA
)		0	French drain system	NA
)		0	Water recovery sumps and building foundations	NA
)		0	• Surface impoundments	NA
)		0	• Waste storage and/or disposal areas/pits, landfills	3-3
)		0	Chemical or product storage areas	NA
)		0	• Leach fields	NA
)		0	• Dry wells or waste disposal sumps	NA
•		-	If ground water contamination exists or the release has the potential to impact ground water, the applicant should provide the following information for areas within a one-half mile radius of the site:	
	0	0	• The state engineers office listing of all wells within one-half mile radius of the site, together with a map to scale showing the locations of these wells.	3-5
	0	0	 Documentation of due diligence in verifying the presence or absence of unregistered wells supplying ground water for domestic use, when the potential for such wells is deemed likely as in older residential neighborhoods, or in rural areas. 	3-5
	0	0	• A statement about each well within the half-mile radius of the site, stating whether the well is used as a water supply well or ground water monitoring well.	3-5
	0	0	• Lithologic logs for all on-site wells; copies of field log notes may be appropriate:	NA
	0	0	• Well construction diagrams for all on-site wells showing screened interval, casing type and construction details including gravel pack, interval, bentonite seal thickness and cemented interval.	NA

ΡI	P TI	VC	III ENVIRONMENTAL ASSESSMENT	Page
	0	0	• Description of the current and proposed use of on-site ground water in sufficient detail to evaluate human health and environmental risk pathways. In addition, the applicant will provide a discussion of any state and/or local laws that restrict the use of onsite ground water.	3-14
			The applicant should provide information concerning the nature and extent of any contamination and releases of hazardous substances or petroleum products that have occurred at the site, including but not limited to:	
	-	+	 Identification of the chemical nature and extent, both onsite and offsite, of contamination that has been released into soil, ground water or surface water at the property, and/or releases of substances from each of the source areas identified, including estimated volumes and concentrations of substances discharged at each area, discharge point, or leakage point as per Section 25.1 6.308(2) (b). Although Phase II assessments identify the nature of contamination, the extent is not always fully defined. For Voluntary Clean-up Program purposes, the source, nature, extent and estimated volumes of the release are important in the overall evaluation of risk and eligibility. 	3-11
	0	0	 A map to scale showing the depth to ground water across the site, - direction and rate of ground water movement across the site using a minimum of three measuring points. 	3-10
	0	0	• A discussion of all hydraulic tests performed at the site to characterize the hydrogeologic properties of any aquifers onsite and in the area.	App. E- G
	0	0	• All reports and/or correspondence, which detail site soil, ground water and/or surface water conditions at the site, including analytical laboratory reports for all samples and analyses.	App. B-G
	0	0	 A discussion of how all environmental samples were collected, including rationale involved in sampling locations, parameters and methodology, a description of sampling locations, sampling methodology and analytical methodology and information on well construction details and lithologic logs. All sample analyses performed and presented as part of the environmental assessment should be appropriate and sufficient to fully characterize all constituents of all contamination that may have impacted soil, air, surface water and/or ground water on the property. The applicant - should use Environmental Protection Agency approved analytical methods when characterizing the soil, air, surface water and/or ground water. 	App. B-G
ΡI	P 11	VC		Page
	-	+	The applicant should provide a description of any applicable standards/guidance (federal, state, or other) establishing acceptable concentrations of constituents in soils, surface water, or ground water, for the proposed land use. Although a Phase II assessment evaluates applicable regulations for the current land use, it does not cover the proposed land use that may be different (e.g., the current land use is industrial and the proposed land use is residential, which likely has more conservative levels for contaminant concentrations).	SEC 3

ΡI	P 11		IV APPLICABLE STANDARDS/RISK DETERMINATION	Page
	-	+	The applicant should provide a description of the human and environmental exposure to contamination at the site based on the property's current use and any future use proposed by the property owner, including:	
	0	0	• A table or list for site contaminants indicating which media are contaminated and the estimated vertical and areal extent of contamination in each medium.	NA
	-	+	• A table or list of site contaminants, indicating the maximum concentrations of each contaminant detected onsite in the area where contaminant was discharged to the environment, and/or where the worst effects of the discharge are believed to exist. A Phase II assessment will evaluate the extent of site contaminants, not the maximum point or worst effects. The Voluntary Clean-up Program requests this item so that an understanding of the source and nature of the contaminants can be made as it relates to risk.	SEC 4
	-	+	• A table or list for site contaminants indicating whether the contaminant has a promulgated state standard, the promulgated standard and the medium the standard applies to. A Phase II assessment will not necessarily compare the site contaminants with state standards. This is important to evaluate whether the remedy will meet risk-based clean-up objectives.	SEC 4
	-	+	• A description and list of potential human and/or environmental exposure pathways pertinent to the present use of the property. A risk determination is not usually completed as part of a Phase II assessment; the VC will use risk as part of the overall evaluation.	NA
		+	• A description and list of potential human and/or environmental exposure pathways pertinent to the future use of the property. (A risk determination is not usually completed as part of a Phase II assessment; the Voluntary Clean-up Program will use risk as noted above. Phase II assessments also do not evaluate future use of the property.)	SEC 4
	-	+	 A list and map defining all source areas, areas of contamination or contaminant discharge areas. Phase II assessments do not always show source areas. The Voluntary Clean-up Program requires that these areas be defined to indicate the proximity of contaminant with respect to receptors and sampling efforts. 	SEC 3
	-	+	• A discussion of contaminant nobilities, including estimates of contaminants to be transported by wind, volatilization, or dissolution in water. For those contaminants that are determined to be mobile and have. the potential to migrate and contaminate the underlying ground water resources, the applicant should also evaluate the leach ability/mobility of the contaminants. This evaluation should consider, but not be limited to the following: leachability/mobility of the contaminant migration to ground water, including but not limited to grain size, fractures and carbon content; and depth to ground water. This evaluation, and any supporting documentation, should be included in the plan submitted. A Phase II assessment usually does not include a risk determination. However, the Voluntary Clean-up Program will evaluate the risk involved with the proposed clean-up in order to evaluate the application.	SEC 4

ΡI	P II	VC	IV APPLICABLE STANDARDS/RISK DETERMINATION	Page
		+	The applicant should then provide, using the information contained in the	
			application, a risk-based analysis of all exposure pathways, which details how	
			the proposed remediation will obtain acceptable risk levels. A Phase II	SEC 3
			assessment usually does not include a risk analysis, however, the Voluntary	SEC 4
			Clean-up Program requires this analysis to show that the remediation proposed	
			will attain an acceptable risk or break pathways.	
		+	The Voluntary Clean-up Program includes remediation whereas a Phase I or II	
			assessment does not. Usually remediation is considered a Phase III assessment.	
			The following are the requirements for the clean-up proposal.	
		+	• A detailed description of the remediation alternative, or alternatives	
			selected, which will be used to remove or stabilize contamination released	SEC 4
			into the environment or threatened to be released into the environment	
		+	• A map identifying areas to be remediated, the area where the remediation system	
			will be located if it differs from the contaminated areas, the locations of	
			confirmation samples, the locations of monitoring wells, areas where	NA
			contaminated media will temporarily be stores/staged and areas where	
			contamination will not be remediated.	
		+	Remediation system design diagrams showing how the system will be	
			constructed in the field.	NA
		+	• A remediation system operation and maintenance plan that describes, at a	
			minimum, how the system will be operated to ensure that it functions as	
			designed without interruptions and a sampling program that will be used to	NA
			monitor its effectiveness in achieving the desired goal.	
		+	• The plan should describe the sampling program that will be used to verify	
			that treatment of the contaminated media has resulted in attainment of the	NA
			proposed clean-up goals.	
		+	• The plan should include a schedule of implementation	SEC 4
		+	The clean-up completion report is necessary to demonstrate that the	
			remediation was completed according to the application. Again, since	
			remediation is involved, the report is beyond the scope of a Phase I or II	
			assessment. The following items should be included in the completion report.	
		+	• A final list of all site contaminants, along with the remaining	
			concentrations, and any deviations from the original plan.	SEC 4
		+	• A final list defining which media are contaminated and the	
		-	estimated vertical and areal extent of contamination to each	SEC 3
			medium.	5200
		+	• A final list and map defining all source areas, areas of	SEC 3
		•	contamination or contaminant discharge areas.	SLC C
			Soil Contamination: Remediation by Excavation Only:	
		+	 One confirmation sample per 500 ft² as measured at the base on the excavation OR 	
		⁺	two confirmation sample, whichever method results in the collection of the most	SEC 3
			samples.	SEC 3

ΡI	P II	VC	IV APPLICABLE STANDARDS/RISK DETERMINATION	Page
		+	• One composite sample from each wall of the excavation. In excavations of	
			an irregular shape, one composite sample for every 100 lineal feet of wall.	
			For excavations grater than 5000 square feet, preparation of a grid for	SEC 4
			randomization of sampling.	
		+	• Explanation of the sampling method in the narrative as well as any	
			modifications to 1 and 2 above used to better characterize the remedial	SEC 4
			efforts.	
		+	• If contamination is to be left in place, an additional sample should be	
			collected from the area of the worst contamination, as verified or with a	SEC 4
			field-sampling device.	
		+	Depth of samples collected	SEC 3
		±	Provision of waste disposal manifests	NA
L			In-Situ Soil Remediation	
		+	• Completion of a minimum of two soil borings, with at least one completed	
			in the area identified in the site assessment as the area of highest	
			contamination. For larger areas of contamination, one bores per 10,000	NA
			square feet of plume area.	
		+	• Completion of the borings should employ a field-screening device and	
			borings should be logged.	NA
		+	• Soil sample submitted for analysis from each boring would be the sample	
			with the highest field screening or one located at the ground water interface	NA
			for each boring.	
		+	Ground Water Remediation	
		+	• Field testing should include aquifer and contaminant characteristics such as	
			gradient, partition coefficients, original contaminant levels, etc.	NA
		+	• At each regular monitoring event, a map showing ground water	
			flow direction, depth to ground water and sampling locations	NA
		+	Tabular presentation of data collected	NA
		+	Summary of Voluntary Clean-up Program participation	SEC 4
		+	Summary of field activities, remedial activities, any deviations from original	
			plans	SEC 4
		+	Pertinent figures and drawings of remedial system	NA
		+	Conclusions made after remedial activities are completed.	NA

MVS Development, LLC (Owner) owns two parcels of land directly south of the intersection of Centennial Boulevard and Van Buren Street in Colorado Springs, Colorado. Parcel 7401200009 is located east of the Centennial Boulevard right-of-way and is 9.09 acres in size; and, Parcel 7401200008 is located west of the Centennial Boulevard right-of-way and is 29.53 acres in size. Approximately 17.9 acres of the 29.53-acre property is underlain by an abandoned landfill. In order to recapture as much of this 17.9 acres as possible for development, a Voluntary Clean-Up Plan (VCUP) has been developed for submittal to the Colorado Department of Public Health and Environment (CDPHE).

The VCUP for this project site includes a variety of activities that determine the present conditions at the property along with approaches to address these conditions. Essentially, the property will be reconstituted from a site with little promise to a development that provides additional housing for the City of Colorado Springs and returns to usefulness a significant piece of property in the center of the city.

The Owner and its consultants have performed extensive subgrade investigations in order to develop a detailed work procedure for relocating and consolidating the existing trash. The purpose of this project is to relocate the existing solid waste, consolidate the waste into a designated four- to five-acre area within the property, and conduct grading operations across the entire site.

With the approval of this VCUP application, a property with limited value can be redefined as an essential part of the core of the City of Colorado Springs. The project offers the return of 17.9 acres of land to useful function while eliminating a potential environmental hazard in the future.

TABLE OF CONTENTS

CHE	CKLIS	Г					
EXE	CUTIVI	E SUMM	IARY				
LIST	OF FI	GURES		iii			
LIST OF TABLES							
1.0	GENE	RAL IN	FORMATION	1-1			
	1.1	INTRO	DUCTION	1-1			
	1.2	GENE	RAL SITE INFORMATION	1-1			
	1.3	PROJE	CT BACKGROUND	1-4			
2.0	PRO	GRAM I	NCLUSION	2-1			
3.0	ENV	IRONME	ENTAL ASSESSMENT	3-1			
	3.1	QUALI	FICATIONS OF PROFESSIONALS	3-1			
	3.2	PHASE	I AND PHASE II FINDINGS	3-2			
	3.3	PHYSI	CAL CHARACTERISTICS OF THE SITE	3-6			
	3.4	GROU	NDWATER INFORMATION	3-8			
		3.4.1	Groundwater Monitoring Wells Installed in 2006	3-11			
		3.4.2	Groundwater Monitoring Wells Installed in 2018	3-14			
	3.5	HYDRO	DLOGIC PROPERTIES	3-16			
		3.5.1	Subsurface Investigation Completed in July and August 2005	3-16			
		3.5.2	Subsurface Investigation Completed in November 2005	3-19			
		3.5.3	Subsurface Investigation Completed in November 2006 and January 2007	3-22			
		3.5.4	Subsurface Investigation Completed in August 2018	3-24			

TABLE OF CONTENTS (continued)

	3.6	LANDF	ILL GAS	3-27
		3.6.1	Landfill Gas Assessment Completed in July 2005	3-27
		3.6.2	Landfill Gas Assessment Completed in February 2006	3-29
		3.6.3	Landfill Gas Assessment Completed in July 2018	3-30
		3.6.4	Landfill Gas Computer Modeling	3-30
			3.6.4.1 First LandGEM Computer Model Run	3-31
			3.6.4.2 Second LandGEM Computer Model Run	3-32
			3.6.4.3 Third LandGEM Computer Model Run	3-33
4.0	APPL	ICABLE	STANDARDS/RISK DETERMINATION	4-1
	4.1	ESTIM	ATED EXTENT OF CONTAMINATION	4-1
	4.2	EXPOS	URE PATHWAYS AND MITIGATION	4-1
	4.3	REMED	DIAL ACTION PLAN	4-1
	4.4	LONG-	TERM MONITORING	4-4
APPEI	NDIX	A	Personnel Qualifications	
APPEI	NDIX	В	Site Investigation 1986	
APPEI	NDIX	С	Soil Investigation August 2005	
APPEI	NDIX	D	Soil Boring Investigation November 2005	
APPEI	NDIX	E	Groundwater Sampling and Methane Monitoring Report April 2006	
APPEI	NDIX	F	Subsurface Investigation for Mesa Valley Springs January 2007	
APPEI	NDIX	G	Assessment Report - Mesa Valley Landfill Investigation 2018	
APPEI	NDIX	н	Landfill Gas Generation Analysis	
APPEI	NDIX	I	Drawings	

TABLE OF CONTENTS (continued)

- APPENDIX J Final Cover Analysis
- APPENDIX K Soil Sampling Program
- APPENDIX L Materials Management Plan
- APPENDIX M Response to Discovery of Asbestos Plan
- APPENDIX N Erosion Protection Program
- APPENDIX O Stormwater Detention Pond

LIST OF FIGURES

FIGURE 1.1	LOCATION MAP	1-2
FIGURE 1.2	ZONING MAP SHOWING PROJECT PROPERTY	1-3
FIGURE 1.3	SITE MAP WITH PROPERTY BOUNDARIES	1-5
FIGURE 3.1	PROJECT SITE AND ABANDONED LANDFILL LIMITS	3-3
FIGURE 3.2	TOPOGRAPHIC MAP OF PROJECT SITE	3-7
FIGURE 3.3	GROUNDWATER MONITORING WELL LOCATIONS	3-9
FIGURE 3.4	GROUNDWATER DEPTHS AND FLOW DIRECTION	3-10
FIGURE 3.5	LOCATION OF BORINGS DRILLED IN JULY 2005	3-17
FIGURE 3.6	LOCATION OF BORINGS DRILLED IN NOVEMBER 2005	3-20
FIGURE 3.7	LOCATION OF BORINGS DRILLED IN AUGUST 2018	3-26
FIGURE 3.8	RESULTS OF FIRST LANDGEM COMPUTER MODEL RUN	3-31
FIGURE 3.9	RESULTS OF SECOND LANDGEM COMPUTER MODEL RUN	3-32
FIGURE 3.10	RESULTS OF THIRD LANDGEM COMPUTER MODEL RUN	3-33
FIGURE 4.1	EXTENT OF ABANDONED LANDFILL ON PROJECT SITE	4-2

LIST OF TABLES

TABLE 3.1	ACTIVE GROUNDWATER WELLS LOCATED WITHIN ONE-HALF MILE OF PROJECT SITE	3-5
TABLE 3.2	LOCATION OF GROUNDWATER WELLS INSTALLED IN 2018	3-8
TABLE 3.3	METALS DETECTED IN GROUNDWATER MONITORING WELLS INSTALLED IN 2006	3-12
TABLE 3.4	CONSTITUENTS DETECTED IN GROUNDWATER MONITORING WELLS INSTALLED IN 2006	3-13
TABLE 3.5	METALS DETECTED IN GROUNDWATER MONITORING WELLS INSTALLED IN 2018	3-15
TABLE 3.6	STATIC WATER LEVEL AND CONSTITUENTS FOUND IN BORINGS DRILLED IN JULY 2005	3-18
TABLE 3.7	STATIC WATER LEVEL AND CONSTITUENTS FOUND IN BORINGS DRILLED IN NOVEMBER 2005	3-21
TABLE 3.8	PERMEABILITY TESTING RESULTS	3-23
TABLE 3.9	DATA FOR AND CONSTITUENTS FOUND IN BORINGS DRILLED IN AUGUST 2018	3-24
TABLE 3.10	SUMMARY OF JULY 2005 GAS MONITORING	3-28
TABLE 3.11	SUMMARY OF FEBRUARY 2006 GAS MONITORING	3-29
TABLE 4.1	ESTIMATED QUANTITIES OF MATERIALS	4-4

1.1 INTRODUCTION

MVS Development, LLC (MVS) purchased property within the limits of Colorado Springs, Colorado, to develop as a residential community (see location map provided in Figure 1.1). A portion of this property – approximately 17.9 acres – is underlain by an old abandoned landfill. To allow for the optimal development of this property and to limit the impact of this landfill on future homeowners, MVS desires to consolidate the landfill into a smaller area and properly close it. This will significantly reduce any impact the landfill may have on surrounding properties and the environment.

1.2 GENERAL SITE INFORMATION

Size of Property:	38.62 Acres on 2 Parcels
Current Owner of Property:	MVS Development, LLC
Owners Representative:	Ted Waterman
How Many Homes Will be Built:	376 Apartments in 7 Buildings on Parcel No. 7401200008
How Many Jobs Will be Created:	Not Applicable
Parcel Number with Lat and Long:	Parcel No. 7401200008 (29.53 acres) 38°51'598"N, 104°50'399"W
	Parcel No. 7401200009 (9.09 acres) 38°51'59.5"N, 104°50'27.8"W
Address (include zip code and county):	Southwest Corner of Van Buren Street and Centennial Boulevard, El Paso County Colorado Springs, Colorado 80907 Section 1, Range 67 West, Township 14 South
Contact Person (with telephone and email):	Ted Waterman * (505) 553-4218 waterman@watermaninc.net
Type of Contamination:	Municipal Solid Waste and Construction Debris
Current Land Use:	Vacant Land
Proposed Land Use and Zoning:	Planned Unit Development (see Figure 1.2)

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

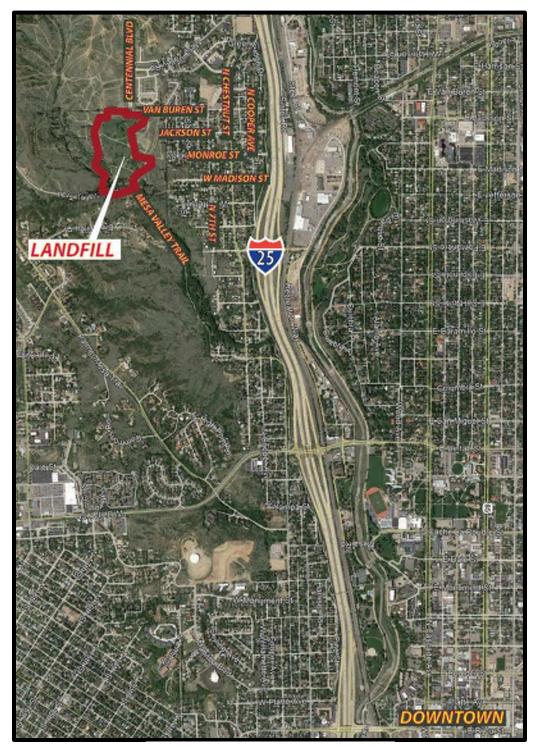
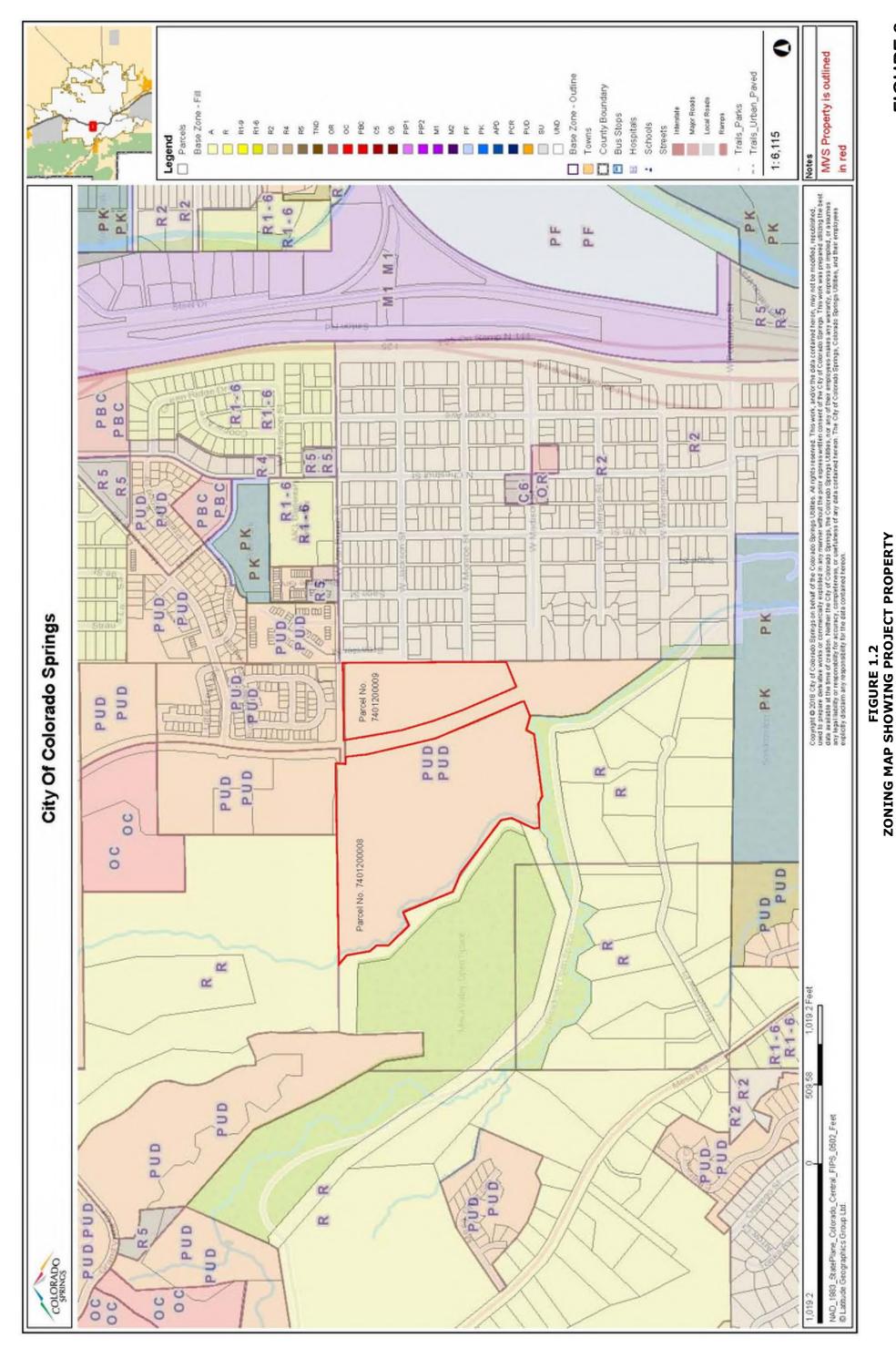



FIGURE 1.1 LOCATION MAP

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

FIGURE 2

1.3 PROJECT BACKGROUND

This project is located in Section 1, Range 67 West, Township 14 South, within the limits of Colorado Springs, Colorado (see site map with property boundaries provided in Figure 1.3). Two parcels totaling 38.62 acres comprise the property owned by MVS Development, LLC. Parcel 7401200009 is located east of the Centennial Boulevard right-of-way and is 9.09 acres in size; and, Parcel 7401200008 is located west of the Centennial Boulevard right-of-way and is 29.53 acres in size.

Approximately 17.9 acres of the 29.53-acre property (Parcel 7401200008) is underlain by an abandoned landfill. This landfill area is located in the middle to eastern portion of this property; and, it appears waste was placed within a large gully or stream that ran north-to-south through the property. The natural terrain of the area slopes to the south, southeast.

Numerous investigations have been performed at the site, with the first detailed investigation occurring in 1986. These investigations have included various assessments of the landfill and have included a number of soil borings into the landfill.

Aerial photographs of the site together with information from these investigations indicate that the landfill was active from the 1950's to at least 1966. Soil borings taken in 1986 and 2005 indicate the landfill follows the general course of the gully described above. The depth of solid waste appears to vary from less than 5 feet to over 40 feet. Cover over the solid waste also varies, with soil cover on portions of the landfill being less than 1 foot to more than 25 feet. The greatest depth of cover appears to be in the southern portion of the landfill.

Based upon a review of Colorado Department of Health and Environment (CDPHE) records, the landfill was not registered or permitted by the state or county. Further, from the types of materials found in the test pits and soil borings taken at the site, the landfill contains both municipal and construction wastes. The test pits, soil borings, and surface conditions indicate that the solid waste was not compacted or uniformly placed.

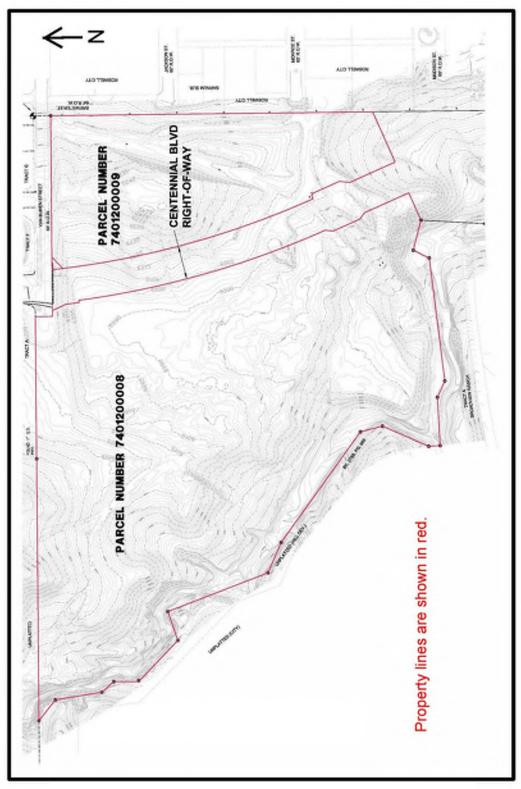


FIGURE 1.3 SITE MAP WITH PROPERTY BOUNDARIES

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

Engineering Solutions & Design, Inc. Page 1-5

2.0 PROGRAM INCLUSION

The following criteria must be met for the project property to be eligible for CDPHE's Voluntary Cleanup Program (VCUP). An answer of "no" to Question 1 or "yes" to any of Questions 2 through 6 would disqualify the project property from the program.

- Is the applicant the owner or owner's designated representative of the property?
 YES
- Is the property listed or proposed for listing on the National Priorities List of Superfund sites established under the Federal Act (CERCLA)?
 NO
- Is the property the subject of corrective action under orders or agreement issued pursuant to provisions of Part 3 of Article 15 of this Title or the Federal Resource Conservation and Recovery Act (RCRA) of 1976, as amended?
 NO
- Is the property subject to an order issued by or an agreement (including permits) with the Water Quality Control Division pursuant to Part 6 of Article 8 of this Title?
 NO
- Is the property a facility that has or should have a permit or interim status pursuant to Part 3 of Article 15 of this Title (RCRA Subtitle C) for treatment, storage, or disposal of hazardous waste?
 NO
- Is the property subject to the provisions of Colorado Revised Statutes, Part 5 of Article 20 of Title 8 (Underground Storage Tanks)?
 NO

Based on these responses, the project property meets the VCUP criteria and the project should move forward.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

3.0 ENVIRONMENTAL ASSESSMENT

3.1 QUALIFICATIONS OF PROFESSIONALS

Many individual environmental professionals have contributed to the investigative studies conducted at the project site. Engineering Solutions & Design, Inc. (ES&D) has been working with the property owner since 2005. During this period, ES&D has worked with Kleinfelder, Inc. (Kleinfelder) – directing efforts to delineate areas of waste at the project site, obtain soil and subsurface information, and gather groundwater and methane gas monitoring information. General overviews for ES&D and Kleinfelder follow. Personnel qualifications can be found in Appendix A.

Engineering Solutions & Design, Inc., (ES&D) was founded in 1995 to specifically address solid waste issues facing public and private entities. ES&D provides planning, design and construction oversight services for clients throughout the Midwest and Southwest United States. ES&D is headquartered in Albuquerque, New Mexico and operates offices in Colorado, Kansas and Missouri and their body of work includes:

- Preparing solid waste management plans and feasibility studies.
- Assessing landfills, transfer stations, material recovery facilities, and solid waste systems.
- Siting solid waste facilities.
- Conducting waste characterization, recycling, and waste reduction studies.
- Preparing landfill and transfer station permit applications.
- Designing innovative solid waste facilities landfills, transfer stations, MRFs.
- Conducting rate studies and conducting cost analyses.
- Providing environmental compliance services.

In 1961, Jim Kleinfelder founded Stockton Testing and Controls in Stockton, California to test construction materials. Today, Kleinfelder, Inc. employs more than 2,000 individuals in 56 offices located throughout the United States and another 6 international offices. Kleinfelder is headquartered in San Diego, California and operates four offices in Colorado – Colorado Springs, Denver, Golden, and Pueblo. Kleinfelder's major service areas encompass:

- Architecture & Design
- Construction Materials Engineering & Testing
- Design Engineering
- Environmental Sciences & Engineering
- Facility & Operations Compliance
- Geotechnical Engineering

- Project Management
- Strategic Planning
- Risk Management
- Sustainability
- Water Science & Engineering

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

3.2 PHASE I AND PHASE II FINDINGS

The project site encompasses two vacant parcels of land totaling 38.62 acres, located south of Van Buren Street in El Paso County, Colorado Springs, Colorado. One of these parcels (9.09 acres in size) is east of the Centennial Boulevard right-of-way. The other larger parcel (29.53 acres in size) is west of the Centennial Boulevard right-of-way. Previous investigations identified an abandoned landfill located in the center of the project site (see Figure 3.1), with all but a small amount of the waste located on the larger parcel of land.

The first detailed investigation at the project site was performed in 1986. Additional investigations were conducted in 2005, 2006, 2007, and most recently in 2018. However, formal Phase I and II assessments were not conducted. These investigations include:

- 1. "Landfill Site Assessment", Lincoln Devore, Inc., August 12, 1986 (see Appendix B)
- "Delineation and Evaluation of Existing Landfill", Kleinfelder, Inc., August 26, 2005 (see Appendix C)
- 3. "Soil Boring Investigation", Kleinfelder, Inc., November 30, 2005 (see Appendix D)
- 4. "Groundwater Sampling & Methane Gas Monitoring", Kleinfelder, Inc., April 3, 2006 (see Appendix E)
- 5. "Subsurface Investigation", Kleinfelder, Inc., January 17, 2007 (see Appendix F)
- 6. "Assessment Report", Kleinfelder, Inc. August 23, 2018 (see Appendix G)

Previous studies indicate that the landfill was active from the 1950's to at least 1966. Soil borings taken in 1986 and 2005 indicate the landfill follows the general course of a gully that bisects the project site from north to south. The depth of solid waste appears to vary from less than five feet to over 40 feet. Cover over the solid waste also varies, with soil cover on portions of the landfill being less than one foot to more than 25 feet. The greatest depth of cover appears to be in the southern portion of the landfill.

According to the Colorado Department of Public Health and Environment, the landfill was not registered or permitted by the state or county. Based on the types of materials found in the test pits and soil borings taken at the site, the landfill contains both municipal waste and construction debris. In addition, the test pits, soil borings, and surface conditions indicate that the waste was not compacted or uniformly placed.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

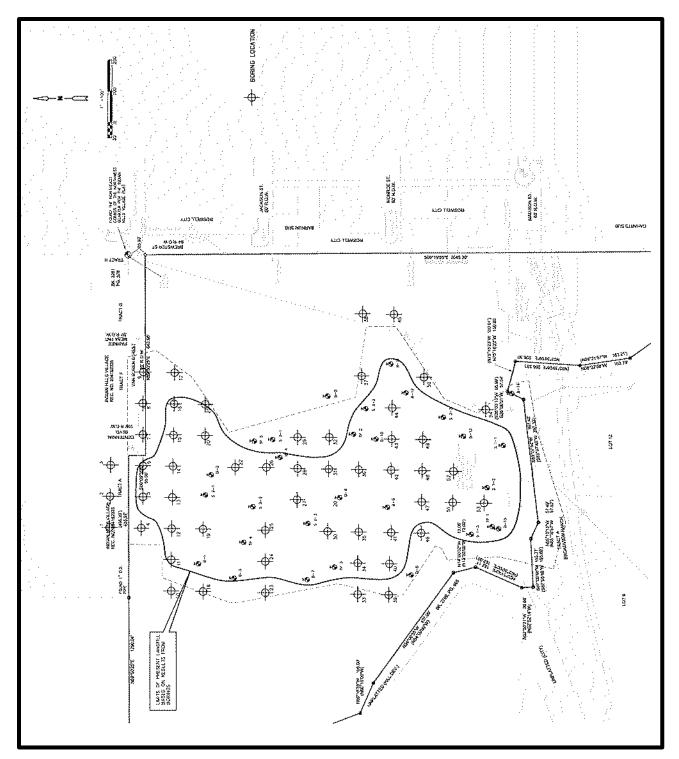


FIGURE 3.1 PROJECT SITE AND ABANDONED LANDFILL LIMITS

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

Readings taken in 2005 and 2006 found that landfill gas was detected in 11 of the 19 temporary wells installed at the project site. According to lab analyses, concentrations of methane gas ranging from 43% to slightly more than 58% existed in three of these wells. Seven methane gas wells were installed at the project site in 2018. Analytical results indicate methane concentrations of 82.4% by volume in one well and 0.399% by volume in another well. There was no detection of methane in the other wells.

Landfill gas is occurring due to the lack of a proper final cover, infiltration of surface and groundwater into the solid waste, and poor consolidation of the solid waste. Because the soils utilized to cover the landfill and the variance in the depth of the soil cover over the waste, the generation of landfill gas may be sustained for several years if the site remains in its present condition.

Groundwater depths vary throughout the project site (from 11 feet to over 40 feet) and appear to be related to drainage in the area. In addition, the relatively high bedrock in the area, which varies in depth from 11 feet to about 60 feet, can impact groundwater depths. The occurrence of groundwater appears to mirror the existing gully channel through the landfill.

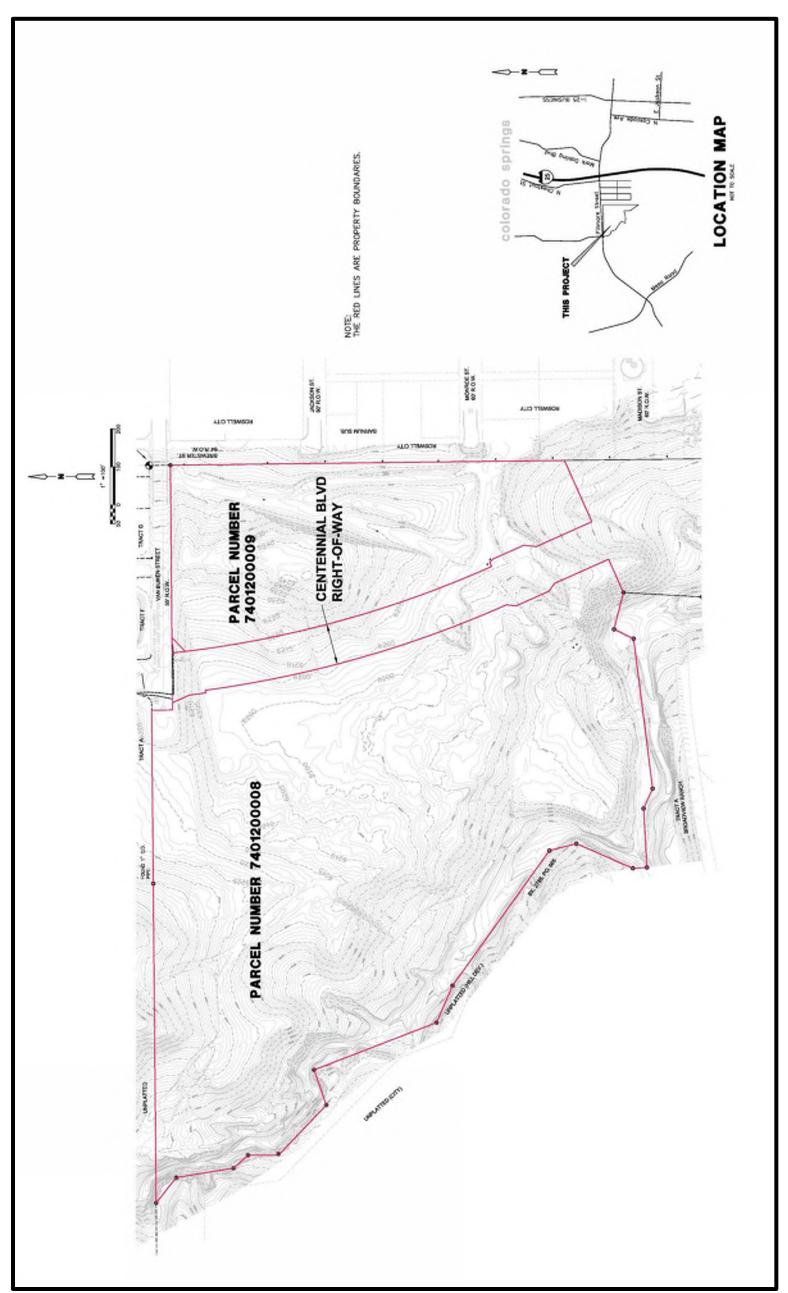
Active groundwater wells are located in the section of land that incorporates the project site, as well as, sections to the north, northwest, and east (see Table 3.1). It is important to note that all residential, commercial, and industrial units within city limits must be connected to the city's water supply system.

Soils at the site include silty sand and clayey materials that vary in consistency based on the amount of sand mixed with the clay. The clay material appears to be at the base of the landfill area, and the soil borings indicate that the solid waste material is mixed with the silty sands which were utilized to cover the landfill. Solid waste in the landfill area appears to consist of glass, metals, newspaper, plastics, rubber, woods, and some construction and demolition debris.

Permit No.	Use	Issue Date	Well Depth	Well Level	Range – Township – Section	Location
8326	Domestic	Unknown	43	28	26W - 13S - 31	SW 1/4 of SW 1/4
11153	Domestic	06-11-1962	53		66W - 14S - 6	SW 1/4 of NW 1/4
19249	Domestic	04-15-1964	300	38	67W - 14S - 2	SW 1/4 of NE 1/4
19428	Domestic	01-22-1965	65	Dry	67W - 13S - 36	NW 1/4 of SE 1/4
20145	Domestic	06-08-1971	55		67W - 14S - 1	NE ¼ of NE ¼
30712	Domestic	05-06-1967	50	18	67W - 13S - 18	SE ¼ of SE ¼
38369	Domestic	01-11-1971			66W - 13S - 31	NW 1/4 of SW 1/4
41654	Domestic	01-08-1971	50	15	67W - 13S - 36	NE ¼ of SE ¼
53794	Monitoring				67W - 13S - 36	SE 1/4 of NE 1/4
118838	Domestic	11-17-1982	123	18	67W - 14S - 1	SE ¼ of SE ¼
17-WLB	Unknown		37	14.5	67W - 14S - 2	SW 1/4 of SW 1/4
NOTE: Listed we	NOTE: Listed wells are located within an "Unnamed" Aquifer	n "Unnamed" Aquife		: Colorado Divisi	Source: Colorado Division of Water Resources; Online Data Search; November 2018	rch; November 2018

TABLE 3.1 ACTIVE GROUNDWATER WELLS LOCATED WITHIN ONE-HALF MILE OF PROJECT SITE

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill


3.3 PHYSICAL CHARACTERISTICS OF THE SITE

The project site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary of the larger parcel, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the project site and the surrounding area slopes to the south towards an intermittent stream that borders the larger parcel of property. The larger parcel of property (located west of the Centennial Boulevard right-of-way) is irregular and dominated by a prominent ridge in the northeast, a valley in the central portion, and a system of ridges in the northwest. Figure 3.2 presents a topographic map of the project site.

Soil borings and test pits were excavated in 1986, 2005, and 2018. These soil borings and test pits indicate the landfill follows the general course of a gully that bisects the larger property from north to south. The depth of solid waste appears to vary from less than five feet to more than 40 feet. Cover over the solid waste also varies, with soil cover on portions of the landfill being less than one foot to more than 25 feet. The greatest depth of cover appears to be in the southern portion of the landfill.

3.4 GROUNDWATER INFORMATION

Since 1983, numerous studies and investigations have been conducted at the project site, with the first comprehensive study being conducted in 1986. A total of 20 groundwater wells were completed as a part of these investigations. Three monitoring wells were installed in 2018 to provide on-going access to groundwater at the project site. These wells were located so that one well was upgradient and two wells were down gradient. The location of each of these groundwater monitoring wells is provided in Table 3.2; and, Figure 3.3 provides this information graphically.

Groundwater depths vary across the site from 11 feet to over 40 feet and are affected by the shallow bedrock that underlies the site; and, it appears that groundwater mirrors the existing stream or gully channel through the existing landfill, flowing to the south, southeast. Figure 3.4 presents the measured depth to groundwater and groundwater flow direction at the project site.

Groundwater quality is impacted by the native soils and the existing, abandoned landfill that covers a significant portion of the site. Laboratory analyses of groundwater at this site indicate there are four confirmed regulatory exceedances of analytes – Antimony, Iron, Lead, and Thallium.

Well Number	Northing	Easting
GW-1	377857.67	188152.81
GW-5	376978.31	188111.21
GW-6	376955.23	188386.43

TABLE 3.2LOCATION OF GROUNDWATER WELLS INSTALLED IN 2018

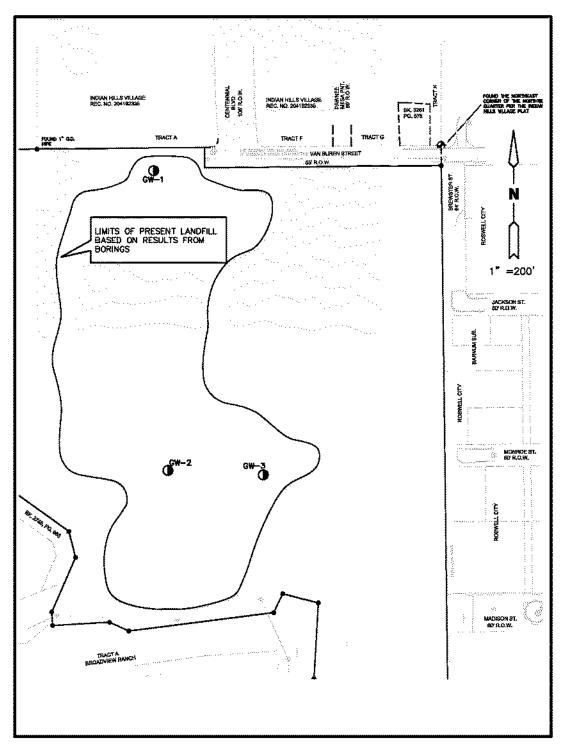


FIGURE 3.3 GROUNDWATER MONITORING WELL LOCATIONS

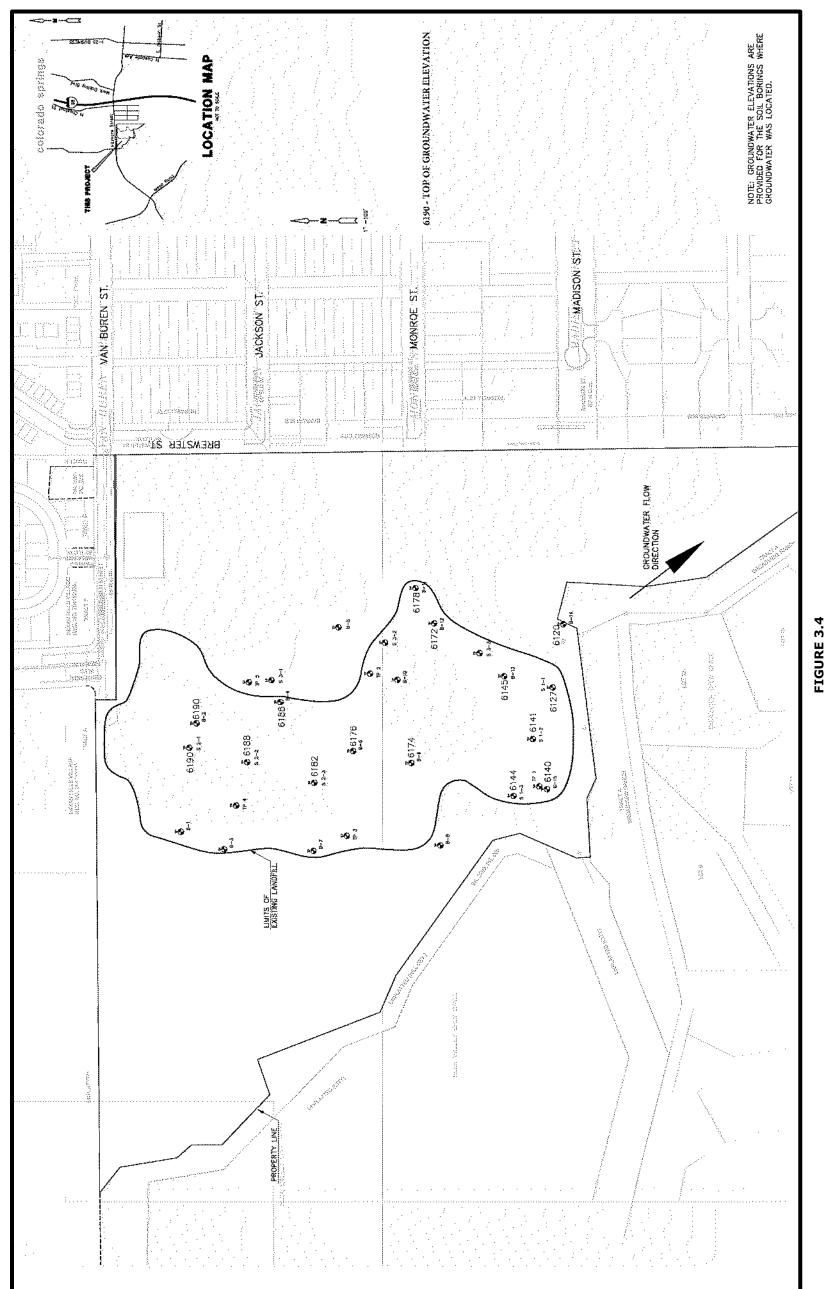


FIGURE 3.4 GROUNDWATER DEPTHS AND FLOW DIRECTION

3.4.1 Groundwater Monitoring Wells Installed in 2006

On February 22, 2006, Kleinfelder, Inc. installed two groundwater monitoring wells at the project site. The groundwater monitoring wells were drilled to an approximate depth of 30 feet. These groundwater wells were constructed using factory cleaned 2-inch diameter, PVC well casing with 20 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2- to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

One groundwater sample from each of the two monitoring wells was submitted via Federal Express to ACZ Laboratories in Steamboat Springs, Colorado for chemical analysis. The samples were analyzed for cations/anions and 47 volatile organics as listed in Appendix IA and IB of the *Regulations Pertaining to Solid Waste Disposal Sites and Facilities* set forth by the Colorado Department of Public Health and Environment. Laboratory analysis of the groundwater samples were performed using appropriate methods described in the EPA Publication SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* Table 3.3 summarizes the metals analysis of the groundwater wells, while Table 3.4 summaries the wet chemistry and volatile organics results (see Appendix E for the complete report).

Laboratory analysis indicated that groundwater quality has been impacted by historic activity at the project site based on the limited data collected. For the analyses listed above, there were four confirmed regulatory exceedances of analytes that indicate an environmental concern – Antimony, Iron, Lead and Thallium all exceeded the regulatory standards for groundwater.

TABLE 3.3 METALS DETECTED GROUNDWATER MONITORING WELLS INSTALLED IN 2006

Parameter	Units ⁽¹⁾	2006-GW1	2006-GW2	MCL ⁽²⁾	PQL ⁽³⁾
Antimony	mg/L	0.08	BDL		
Arsenic	mg/L	0.0215	0.0071	0.005	0.003
Barium	mg/L	0.963	0.056	2	0.01
Beryllium	mg/L	BDL*	BDL*		
Cadmium	mg/L	BDL*	BDL*		
Calcium dissolved	mg/L	145	338		10
Chromium dissolved	mg/L	0.05	0.01	0.01	0.05
Cobalt	mg/L	0.03	0.02		0.05
Copper	mg/L	0.05	BDL		
Iron	mg/L	0.64	BDL	0.3**	0.5
Lead	mg/L	0.14	BDL		
Magnesium dissolved	mg/L	106	593		10
Manganese dissolved	mg/L	0.40	1.45	0.05**	0.3
Nickel	mg/L	0.03	0.03	0.1	0.05
Potassium dissolved	mg/L	53.1	21		10
Selenium	mg/L	BDL*	BDL*		
Silver	mg/L	BDL*	BDL*		
Sodium dissolved	mg/L	408	3380		10
Thallium	mg/L	0.0009	0.0003 0.0002		0.0005
Vanadium	mg/L	0.083	0.013		0.03
Zinc	mg/L	0.34	0.04		0.05

(1) mg/L = Milligrams Per Liter

(2) MCL = Maximum Contaminant Level

(3) PQL = Practical Quantification Limit

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill * Below Detectable Level

** Secondary (Non-Enforceable) Regulations

Mesa Valley Springs Property

Colorado Springs, Colorado

TABLE 3.4CONSTITUENTS DETECTED GROUNDWATERMONITORING WELLS INSTALLED IN 2006

Parameter	Units ⁽¹⁾	2006-GW1	2006-GW2 MCL ⁽²⁾		PQL ⁽³⁾
Alkalinity Bicarbonate	mg/L	1510	1310		20
Total Alkalinity	mg/L	1510	1310		20
Total Organic Carbon	mg/L	105	47		30
Cation-Anion Balance	%	-9.6	1.7		
Sum of Anions	meq/L	42.8	208		0.5
Sum of Cations	meq/L	35.3	215		0.5
Chloride	mg/L	270	480	250*	50
Conductivity	umhos/cm	3600	15700		10
Hardness	mg/L	7980	3280		7
Nitrate	mg/L	0.49	0.10	10	0.1
pН	units	7.6	7.8	6.5-8.5*	0.1
Filterable Residue	mg/L	2170	15400		20
Sodium Absorption		6.36	26.00		0.15
Sulfate	mg/L	240	8030	250*	300
TDS	mg/L	2130	13600	500*	50
TDS (ratio)		1.02	1.13		
cis-1,2-Dichloroethene	ug/L	17.5	29 .8	5	1
Trichloroethene	uq/L	8.1	12	2000	1

(1) mg/L = Milligrams Per Liter
 meq/L = Milliequivalents Per Liter
 umhos/cm = Micromhos Per Centimeter
 ug/L = Micrograms Per Liter

(2) MCL = Maximum Contaminant Level

(3) PQL = Practical Quantification Limit

* Secondary (Non-Enforceable) Regulations

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

FIGURE 2

3.4.2 Groundwater Monitoring Wells Installed in 2018

Three groundwater monitoring wells were constructed in July 2018 (see Figure 3.3 for well locations) using factory cleaned 2-inch diameter, PVC well casing with 20 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC pipe was surrounded with 10/20 silica sand. A 2- to 3-foot bentonite annular seal was placed at the top of the filter pack. Grout was placed atop the bentonite annular seal to the ground surface.

Approximately one week following drilling, the depth to groundwater was measured (see Figure 3.4 for depth to groundwater and flow direction) and groundwater samples collected. Three casing volumes were removed from each well and general water quality parameters (e.g., temperature, pH, and electrical conductivity) were collected and documented. A groundwater sample was collected from each well and sent to ACZ Laboratories, Inc. in Steamboat Springs, Colorado under standard chain of custody procedures. Table 3.5 summarizes the metals analysis of the groundwater wells (see Appendix G for the complete report).

TABLE 3.5 **METALS DETECTED GROUNDWATER MONITORING WELLS INSTALLED IN 2018**

Parameter	Units ⁽¹⁾	2018-GW1	2018-GW2	2018-GW3	MCL ⁽²⁾	PQL ⁽³⁾
Antimony	mg/L	0.011	0.016	0.006		
Arsenic	mg/L	0.0480	0.494	0.238	0.005	0.003
Barium	mg/L	0.60	9.20	2.43	2	0.01
Beryllium	mg/L	0.0014	0.0421	0.0141		
Cadmium	mg/L	0.004	0.064	0.009		
Calcium dissolved	mg/L	39.5	304	239		10
Chromium dissolved	mg/L		1.16	0.36	0.01	0.05
Cobalt	mg/L		0.45	0.20		0.05
Copper	mg/L	0.08	2.09	0.34		
Iron	mg/L	63.2	1300	339	0.3*	0.5
Lead	mg/L	0.257	4.98	0.354		
Magnesium dissolved	mg/L	485	258	547		10
Manganese dissolved	mg/L	0.05	1.05	0.32	0.05*	0.3
Nickel	mg/L	0.07	1.05	0.31	0.1	0.05
Potassium dissolved	mg/L	57	32	35		10
Selenium	mg/L	0.017	0.035	0.018		
Silver	mg/L					
Sodium dissolved	mg/L	4090	2570	4490		10
Thallium	mg/L		0.010	0.004	0.0002	0.0005
Vanadium	mg/L	0.11	1.95	0.74		0.03
Zinc	mg/L	0.75	18.7	1.44		0.05

(1) mg/L = Milligrams Per Liter

* Secondary (Non-Enforceable) Regulations

(2) MCL = Maximum Contaminant Level(3) PQL = Practical Quantification Limit

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

3.5 HYDROLOGIC PROPERTIES

The project site is underlain by sandy claystone and Pierre Shale. A relatively thin layer of top soil (typically one- to two-feet thick) at the surface covers the sandy claystone. Field sampling indicates that the sandy claystone has a moisture content of 26.2% and a permeability of 4.3×10^{-8} cm/sec. The underlying Pierre Shale, based on field sampling, has a moisture content of 21.3% and a permeability of 2.2×10^{-7} cm/sec. These results indicate that the existing topsoil and sandy claystone have the potential to be used as liner and final cover material for the consolidated landfill.

3.5.1 Subsurface Investigation Completed in July and August 2005

On July 14 and July 15, 2005, Kleinfelder mobilized to the project site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to drill 15 subsurface borings to delineate the approximate boundary and size of the landfill and to evaluate what type of wastes were placed in the landfill. All borings were drilled through the landfill material to bedrock. Samples were collected at regular intervals and observed in the field to determine if the soil material was native, soil fill, or landfill. Kleinfelder returned to the site within 24 hours of drilling to measure the static water level in each boring. Figure 3.5 shows the location of the borings drilled in July 2005. Table 3.6 summarizes the static water levels for each boring and lists the constituents found in these borings.

Waste encountered in the subsurface investigation indicated that the drainage and valley, in the central portion of the larger parcel of land comprising the project site, was filled with waste. The maximum thickness of this waste, based on our subsurface investigation, is estimated to be about 40 feet. The borings indicate that the surface soil cover ranges from about ground surface to 20 feet in thickness. Soil was also found layered and mixed within the solid waste landfill layer.

Waste materials observed in the landfill included solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. The types of wastes encountered in the soil are also documented in more detail in the boring logs (see Appendix C).

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

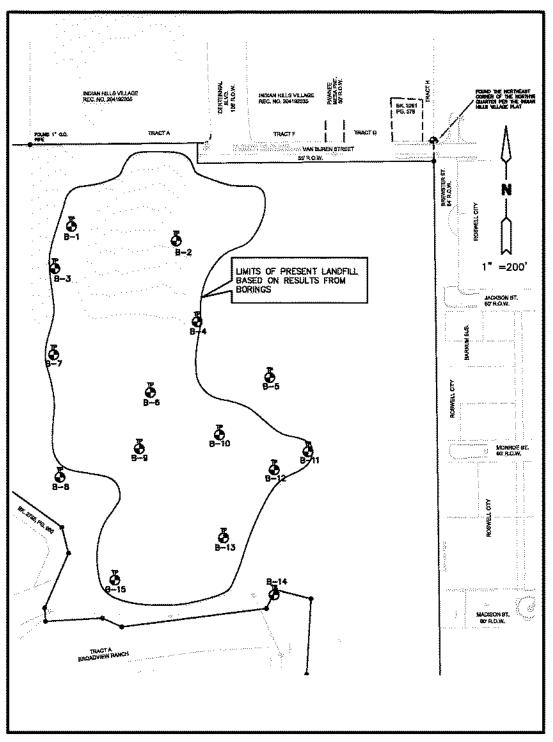


FIGURE 3.5 LOCATION OF BORINGS DRILLED IN JULY 2005

Mesa Valley Springs Property Colorado Springs, Colorado

TABLE 3.6 STATIC WATER LEVEL AND CONSTITUENTS FOUND IN BORINGS DRILLED IN JULY 2005

Boring	Static Water Level ⁽¹⁾ (ft below grade)	Top Depth of Solid Waste Zone (ft below grade)	Bottom Depth of Solid Waste Zone (ft below grade)	Total Depth of Boring (feet)	Type of Wastes Observed
B-1	Dry ⁽²⁾	0	7	30.0	Rubber, Glass, Metal Paper, Wire, Cloth
B-2	11.0	0	28	50.0	Glass, Plastic
B-3	Dry ⁽²⁾	0	11	30.0	Rubber, Plastic, Glass, Galvanized Wire
B-4	18.4	0	31	45.0	Plastic, Wood
B-5	Dry ⁽²⁾	0	0	20.5	No Waste
B-6	18.9	4	40	60.0	Glass, Wood, Plastic
B-7	Dry ⁽²⁾	0	21	25.0	Glass, Plastic, Galvanized Wire, Rubber
B-8	Dry ⁽²⁾	0	0	30.0	No Waste
B-9	15.3	8	41	50.0	Plastic, Wood, Glass
B-10	Dry ⁽²⁾	3	20	40.0	Plastic, Galvanized Wire, Paper, Rubber
B-11	19.5	20	23	23.0	Rubber, Galvanized Wire, Canvas
B-12	19.3	8	29	30.0	Aluminum, Paper, Cardboard
B-13	20.8	0	18	31.0	Newspaper, Wood
B-14	10.2	0	0	21.0	No Waste
B-15	31.7	16	41	41.0	Glass, Paper, Wood

(1) Water levels shown were measured 6 days after drilling.

(2) Dry: No free groundwater was encountered during or immediately after drilling activities.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

The project site is underlain by bedrock of Pierre Shale. This formation consists of dark gray to brown, clay shale with a few interbedded fine-grained sandstone and limestone beds. Pierre Shale is typically dense to hard where unweathered, thin-bedded expansive and rich in sulfates. The depth to bedrock ranged from 11 feet at the northwest corner of the larger parcel of land to 57 feet in the central portion of this parcel.

On August 1, 2005, Kleinfelder mobilized to the project site with a John Deere 310G 4X4 #12 Backhoe to excavate exploratory test pits. All five test-pits were excavated to approximately 15 feet below existing grade. Significant amounts of debris were observed in four of the five exploratory test pits. The waste generally included wood, plastic, paper, cardboard, rubber, glass, aluminum, and metal. The thickness of the debris was greater than the total depth excavated of 15 feet in four of the five test pits.

The first exploratory test pit was located at the southern end of the existing landfill. The test pit was excavated to approximately 15 feet. No waste was observed within the test pit to the total depth investigated. The material observed in the test pit consisted of a sandy lean clay with gravel and cobbles. However, debris was encountered at approximately 16 feet in the borehole drilled within close proximity to this test pit.

3.5.2 Subsurface Investigation Completed in November 2005

On November 22 and November 23, 2005, Kleinfelder mobilized to the project site with a trackmounted drilling rig equipped with 4-inch continuous flight augers to drill nine subsurface borings to delineate the depth of solid wastes and to evaluate what type of wastes were present.

All borings were drilled beyond the bottom of the landfill extending to a depth of at least three feet below the bottom of the landfill. Landfill depths are indicated on the individual boring logs, which are included in Appendix D. Samples of the subsurface materials were collected at 5-foot intervals and observed in the field to record the type of solid waste present (e.g. wood, paper or paper products, concrete, metal, lumber, or asphalt). Waste material observed in the landfill included solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. Kleinfelder returned to the site on November 28, 2005 to measure the static water level in each boring.

Nine subsurface borings were drilled to delineate the depth of solid wastes and to evaluate what type of wastes were present within the landfill. Borings 1 through 3 of Set 1 were located along the southern boundary of the larger parcel of property on the project site. Borings 1 through 3 of Set 2 were in the northern portion of this parcel; and, Borings 1 through 3 of Set 3 were located in the central portion. A map that shows the locations of these nine borings is presented in Figure 3.6; while Table 3.7 summarizes the static water levels for each boring and lists the constituents found in these borings.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

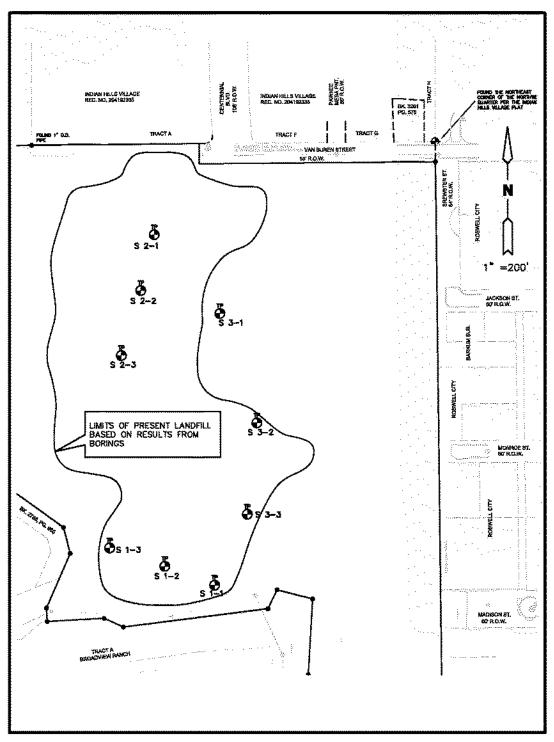


FIGURE 3.6 LOCATION OF BORINGS DRILLED IN NOVEMBER 2005

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

TABLE 3.7STATIC WATER LEVEL AND CONSTITUENTS FOUNDIN BORINGS DRILLED IN NOVEMBER 2005

Boring	Static Water Level ⁽¹⁾ (ft below grade)	Top Depth of Solid Waste Zone (ft below grade)	Bottom Depth of Solid Waste Zone (ft below grade)	Type of Wastes Observed	Approximate Elevation (ground surface)	Northing/Easting (based on hand- held GPS)
S1-1	24.5	21	29	Wood, glass, brick	6173′	1,376,182.713/ 3,187,162,646
S1-2	26.4	25	47	Glass, wood, asphalt, plastic, Styrofoam	6190′	1,376,242.324/ 3,187,011.93.5
S1-3	27.6	20	32	Paper, plastic, metal, glass, wood	6187′	1,376,271.587/ 3,186,861.445
S2-1	12.9	0	17	Glass, plastic, metal, concrete, brick, wood	6217′	1,377,152.672/ 3,186,989.535
S2-2	14.7	0	20	Glass, plastic, wood, metal	6214′	1,377,000.586/ 3,186,943.180
S2-3	20.6	3	20	Plastic, wood, galvanized wire	6216′	1,376,838.383/ 3,186,896.896
S3-1	16.5	No Waste ⁽³⁾	No Waste ⁽³⁾	No waste	6202′	1,376,911.084/ 3,187,157.375
S3-2	Dry ⁽²⁾	2	9.5	Wood, glass	6214′	1,376,648.805/ 3,187,262.094
S3-3	Dry ⁽²⁾	2	7.5	Glass, wood plastic	6192′	1,376,395.670/ 3,187,232.289

(1) Water levels shown were measured 6 days after drilling.

(2) Dry: No free groundwater was encountered during or immediately after drilling activities.

(3) No solid wastes were encountered during drilling or sampling activities.

3.5.3 Subsurface Investigation Completed in November 2006 and January 2007

Kleinfelder completed subsurface field investigations in November 2006 and January 2007. The first phase (Phase I) was performed on November 30, 2006; and, the second phase (Phase II) was performed on January 3 and 4, 2007 (see Appendix F for the complete report).

Prior to drilling, the geology of the site was evaluated by reviewing geologic maps, including the Geologic Map of the Colorado Springs Quadrangle, El Paso County, Colorado (Carroll & Crawford, 2000). Mapping indicates the soils underlying the project site consist of colluvial materials, comprised of gravelly to silty sand. Pierre Shale deposited during the Upper Cretaceous was encountered.

The subsurface profile encountered in these borings generally consisted of a thin layer of topsoil overlying weathered claystone overlying Pierre Shale Bedrock, as described in more detail below:

Weathered Claystone: The top of the weathered claystone was encountered below the thin layer of topsoil, between approximately one and two feet below existing ground surface. The weathered claystone bedrock was generally sandy, light brown to brown, slightly moist, and medium hard to hard consistency. Ferric staining and fracturing were also encountered in this zone.

Pierre Shale Bedrock: The top of the bedrock (Pierre Shale Formation) was encountered below the weathered claystone or topsoil at depths between approximately one and 20 feet below the ground surface and extended to the maximum boring depths. The Pierre Shale Formation in this location consists of a sandy claystone. The bedrock encountered was very hard, dry to slightly moist, fissile, and dark gray in color.

Phase I included drilling six exploratory borings at various locations throughout the project site. Borings were advanced to depths ranging from approximately 20 to 35 feet below the existing ground surface using a truck-mounted CME-55 drill rig equipped with a 3-inch outside-diameter, continuousflight, solid-stem auger.

Phase II included drilling four borings and involved down-hole pressure meter testing to obtain permeability values of in-place soil/bedrock units. Table 3.8 presents the results of this testing. Borings were advanced to 20 to 35 feet below the existing ground surface using a track-mounted CME-55 drill rig equipped with both a mud-rotary bit and a continuous-flight, solid-stem auger. Drive samples were taken with a standard split-spoon sampler and a modified California sampler. The number of blows of a 140-pound hammer falling 30 inches were recorded for each drive sample.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

TABLE 3.8PERMEABILITY TESTING RESULTS

Soil Type & Test Conditions	Location & Depth (feet)	Dry Density (pcf) & Moisture Content (%) of Processed Samples	Percent Passing No. 200 and Plasticity Index (PI)	Permeability (cm/sec)
Sandy Claystone- Downhole/In Situ	B-2 @ 15-21'			Head Pressure 30 psi = 1.18×10^{-6} Head pressure 25 psi = 3.83×10^{-7}
Sandy Claystone- Processed	B-1 & B-5 Combined @ 10'	96.2 pcf @ 26.2%	-200 = 64.7% PI = 32	4.3 x 10 ⁻⁸
Pierre Shale- Downhole/In Situ	B-2 @ 21-30'			Formation did not take any water to accuracy of test method
Pierre Shale- Processed	B-1, B-8, & B-9 Combined @ 20'	101.9 pcf @ 21.3%	-200 = 81% PI = 35	2.2 x 10 ⁻⁷

3.5.4 Subsurface Investigation Completed in August 2018

Kleinfelder's 2018 field exploration program was performed using track-mounted and all-terrain drilling rigs equipped with 4-inch solid continuous flight augers. Samples were collected at regular intervals using standard penetration test (SPT) samplers. Table 3.9 summarizes data from this investigation and lists the constituents found in the borings drilled for this investigation; Figure 3.7 shows the locations of these borings (see Appendix G for the complete report).

TABLE 3.9
DATA FOR AND CONSTITUENTS FOUND IN
BORINGS DRILLED IN AUGUST 2018

Boring	Boring Depth	Top Depth of Solid Waste Zone (ft below grade)	Bottom Depth of Solid Waste Zone (ft below grade)	Type of Wastes Observed	Approximate Elevation (ground surface)	Northing/Easting (based on hand- held GPS)
B-16	41.5	20	35	Wood, Glass	6166′	376,689.6740 188,058.3470
B-17	45.5	20	28	Glass, Plastic, Wood	6166′	376,712.0340/ 188,104.6560
B-18	46.5	25	30	Wire, Wood Chips, Glass, Paper, Brick	6167′	376,739.1400/ 188,142.3570
B-19	46.5	20	45	Glass, Wood, Wood Chips, Plastic, Glass	6167′	376,766.6990/ 188,185.1310
B-20	26.5	15	36	Wood, Brick Fragments	6157′	376,744.5500/ 188,250.7800
B-21	16.5	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6189′	376,862.1810/ 188,430.6100
B-22	11.0	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6197′	376,846.6740 188,572.9990
В-23	21.5	5	14	Metal	6203'	377,495.1590/ 188,294.1460
B-24	11.5	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6240'	377,450.0180/ 188,537.1260

TABLE 3.9 DATA AND CONSTITUENTS FOUND IN BORINGS DRILLED IN AUGUST 2018 (continued)

Boring	Boring Depth	Top Depth of Solid Waste Zone (ft below grade)	Bottom Depth of Solid Waste Zone (ft below grade)	Type of Wastes Observed	Approximate Elevation (ground surface)	Northing/Easting (based on hand- held GPS)
B-25	21.5	10	17	Glass, Wood, Wood	6204′	377,421.6940/ 188,309.8590
B-26	11.5	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6203′	377.348.9550/ 188,328.7920
B-27	21.5	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6218′	377,304.3950/ 188,518.6980
B-28	11.5	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6202′	377,276.9690/ 188,349.6840
B-29	11.5	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6202′	377,204.6910/ 188,372.6080
В-30	21.0	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6221′	377,607.4690/ 187,805.0570
B-31	36.0	No Waste ⁽¹⁾	No Waste ⁽¹⁾	No Waste	6216′	377,444.0160/ 187,795.9900
B-32	30.0	5	30	Glass	6212′	377,295.2400/ 187,797.0820

(1) No solid wastes were encountered during drilling or sampling activities.

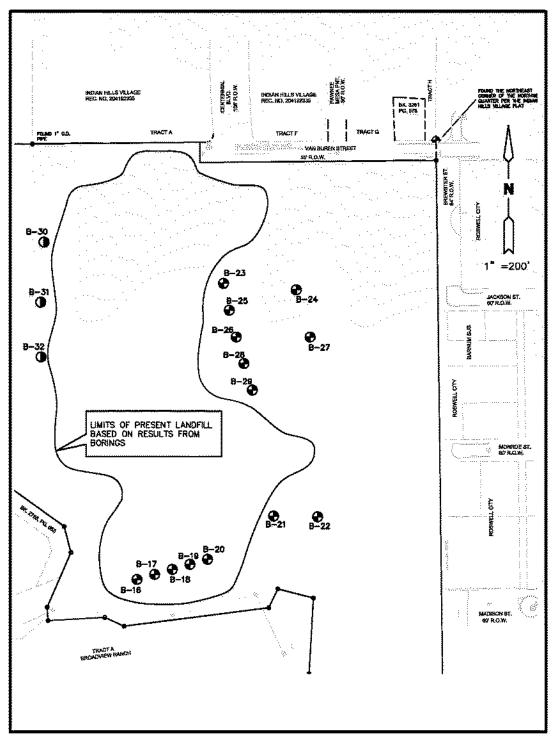


FIGURE 3.7 LOCATION OF BORINGS DRILLED IN AUGUST 2018

Mesa Valley Springs Property Colorado Springs, Colorado

3.6 LANDFILL GAS

The methane gas generation results from the decomposition of organic materials deposited in the landfill. Organics decomposition is most frequently through anaerobic digestion. The rate of gas generation as well as the period of time gas will be generated is dependent upon a number of factors, including the:

- Amount of liquid entering the landfill;
- Quantity of organics;
- Daily cover characteristics; and
- Final cover characteristics.

The production of methane gas is a problem linked to abandoned landfills. The production of methane can vary from point to point in a landfill. Methane gas is explosive in concentrations between 5% and 15% by volume of air. Concentrations greater than 15% may be flammable and methane is also toxic. Methane is lighter than air and tends to migrate vertically through the landfill to the surface.

Landfill gas has been and may continue to be generated at the project site. The materials covering the waste are comprised of local soils that vary in depth from less than one foot to over five feet. There are numerous cracks and gouges in the cover materials that allow for liquids to enter the landfill. Because the landfill was not operated by anyone, but rather was a local dumping area, if any daily cover was placed at the landfill it was placed infrequently and haphazardly.

Landfill gas testing was performed at the project site in July 2005, February 2006, and again in July 2018. In addition, the LandGEM computer model was utilized to determine the amount of gas that would possibly be generated as well as the time period over which the landfill would generate this gas.

3.6.1 Landfill Gas Assessment Completed in July 2005

On July 14 and July 15, 2005, Kleinfelder mobilized to the project site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to install 15 methane gas monitoring wells within the existing landfill and around the landfill area perimeter. Boring logs and monitoring well installation records (including depth and materials used) for each methane well, MW-1 through MW-15, are included in Appendix C.

Methane wells were constructed using factory cleaned 1-inch diameter, PVC well casing with 10 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2- to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

On July 19 and July 20, 2005, Kleinfelder performed gas monitoring at the 15 methane gas wells installed at the project site. The gas in each well was analyzed using a GasTech Portable Gas Monitor. The meter is designed to measure concentrations of methane (CH_4), hydrogen sulfide (H_2S), and oxygen (O_2). Table 3.10 summarizes the gases detected in these methane wells.

Maniharing		July 19	, 2005		July 20, 2005				
Monitoring Location	CH₄	CH₄	H ₂ S	02	CH₄	CH₄	H ₂ S	02	
	(%LEL)	(%Gas)	(ppm)	(%)	(%LEL)	(%GAS)	(ppm)	(%)	
MW-1	0.0	0.0	0.0	20.9	0.0	0.0	0.0	20.7	
MW-2	28.0	2.0	0.0	9.3	29.0	2.0	0.0	4.8	
MW-3	0.0	0.0	0.0	20.7	0.0	0.0	0.0	20.9	
MW-4	100.0	62.0	2.0	0.0	100.0	60.0	2.0	0.0	
MW-5	0.0	0.0	0.0	20.4	0.0	0.0	0.0	20.4	
MW-6	28.0	2.0	0.0	13.3	23.0	2.0	0.0	15.4	
MW-7	0.0	0.0	0.0	20.9	0.0	0.0	0.0	20.8	
MW-8	0.0	0.0	0.0	20.3	0.0	0.0	0.0	20.9	
MW-9	1.0	0.0	0.0	20.2	0.0	0.0	0.0	18.7	
MW-10	100.0	53.0	1.0	0.0	100.0	45.0	2.0	0.0	
MW-11	63.0	6.0	0.0	7.8	75.0	7.0	0.0	0.0	
MW-12	100.0	22.0	0.0	6.6	100.0	18.0	0.0	6.3	
MW-13	28.0	2.0	0.0	11.4	23.0	2.0	0.0	12.6	
MW-14	0.0	0.0	0.0	18.3	0.0	0.0	0.0	18.9	
MW-15	100.0	49.0	0.0	0.0	100.0	50.0	1.0	0.0	

TABLE 3.10SUMMARY OF JULY 2005 GAS MONITORING

NOTES: CH_4 (% LEL) = Methane % of the lower explosive limit (LEL)

 CH_4 (% Gas) = % Methane Gas, by volume

 H_2S = Hydrogen Sulfide parts per million, by volume

O₂ = Oxygen %, by volume

In the three monitoring wells that had the highest concentrations of methane gas (MW-4, MW-10, and MW-15), an air sample was collected and sent to an accredited laboratory to confirm the presence and level of methane gas. According to the laboratory analysis, high concentrations of methane gas existed in each of these three wells: MW-4 had 58.33% methane gas; MW-10 consisted of 43.38% methane gas; and MW-15 had 48.77% methane gas.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

3.6.2 Landfill Gas Assessment Completed in February 2006

On February 22, 2006, Kleinfelder mobilized to the project site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to install four methane gas monitoring wells outside the existing landfill perimeter. Monitoring well installation records (including depth and materials used) for each methane well are included in Appendix E.

Methane wells were constructed using factory cleaned 1-inch diameter, PVC well casing with 10 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2- to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

On February 27 and 28, 2006, Kleinfelder performed gas monitoring at the four methane gas wells installed at the project site. The gas in each well was analyzed using a GasTech Portable Gas Monitor. The meter is designed to measure concentrations of methane (CH_4), hydrogen sulfide (H_2S), and oxygen (O_2). From this monitoring, Kleinfelder concluded no measurable methane concentrations were found within the four monitoring wells and methane gas is not migrating beyond the perimeter of the landfill. Table 3.11 summarizes the gases detected in these methane wells.

Monitoring	February 27, 2006				February 28, 2006			
Monitoring Location	CH₄ (%LEL)	CH₄ (%Gas)	H₂S (ppm)	O₂ (%)	CH₄ (%LEL)	CH₄ (%GAS)	H₂S (ppm)	02 (%)
MW-1	0.0	0.0	3.0	20.2	0.0	0.0	0.0	20.1
MW-2	0.0	0.0	0.0	20.1	0.0	0.0	0.0	19.7
MW-3	1.0	0.0	0.0	17.2	2.0	0.0	0.0	13.3
MW-4	1.0	0.0	0.0	20.4	0.0	0.0	0.0	20.6

TABLE 3.11SUMMARY OF FEBRUARY 2006 GAS MONITORING

NOTES: CH_4 (% LEL) = Methane % of the lower explosive limit (LEL)

 CH_4 (% Gas) = % Methane Gas, by volume

 H_2S = Hydrogen Sulfide parts per million, by volume

 $O_2 = Oxygen \%$, by volume

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

3.6.3 Landfill Gas Assessment Completed in July 2018

In July 2018, Kleinfelder mobilized to the project site with a track-mounted and all-terrain drilling rig equipped with 4-inch continuous flight augers to drill 17 borings and three groundwater monitoring wells. At seven boring locations, temporary 1-inch PVC wells were installed in the 4-inch diameter boreholes at a depth of 15 feet for landfill gas monitoring. Boring logs and monitoring well installation records (including depth and materials used) are included in Appendix G.

The methane wells were constructed with ten feet of 0.010-inch slotted screen and sufficient riser to reach approximately two feet above the ground surface to allow for future sampling. The slotted screen was surrounded with 10/20 silica sand to two feet above the screen. Bentonite was placed in the annular seal from the top of the filter pack to the ground surface.

On July 25, 2018, Kleinfelder collected measurement of methane (CH₄), hydrogen sulfide (H₂S), and oxygen (O₂) using a 4-gas monitor at the seven methane wells installed at the project site. Methane and depressed oxygen levels were detected in two wells; therefore, air samples were collected from these wells and submitted to an accredited laboratory for methane analysis.

The samples were analyzed for methane according to modified EPA Method 3C (simple injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). Analytical results indicate methane concentrations of 82.4%, by volume, in one well; and, a second well had a methane concentration of 0.399%, by volume. There was no detection of methane in the other five wells.

3.6.4 Landfill Gas Computer Modeling

The potential for landfill gas generation exists at the project site. Consequently, the LandGEM computer model was utilized to determine the amount of landfill gas that would possibly be generated as well as the time period over which the landfill would generate this gas. This computer model was selected for use because it allows for maximum flexibility when determining the characteristics of the landfill and its waste components.

The LandGEM model is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

The model was run three times to identify various characteristics of the landfill. The first run was based on the climate that occurs at the landfill site. The Methane Generation Rate and the Potential Methane Generation Capacity were selected based on a dry climate. For the second run the Methane Generation Rate and the Potential Methane Generation Capacity were selected based on a wetter climate. This wetter climate was selected given the bottom of the landfill was a creek bed and that a significant portion of the waste was likely in contact with water during various times of the year. The final computer model run was a composite of the first two runs. This composite allowed for a slightly higher Methane Generation Rate and lower Potential Methane Generation Capacity. The results of all three runs are provided in Appendix H. Based on the computer model runs, it appears the landfill will be generating some landfill gas for at least the next 25 to 70 years.

3.6.4.1 First LandGEM Computer Model Run

The chart in Figure 3.8 provides the results of the first computer model run. As can be seen, the landfill gas generation peaked in 1970 and has decreased significantly. Based on the model results the landfill is estimated to be generating 198,500 cubic meters of methane a year and 1,588 cubic meters of Non-Methane Organic Compounds (NMOC).

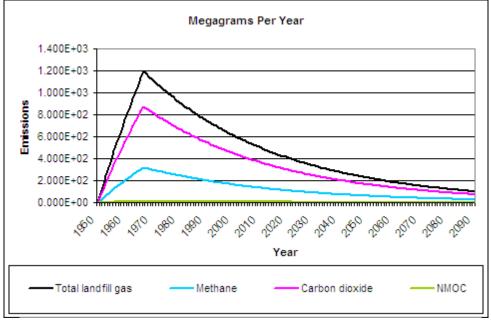


FIGURE 3.8 RESULTS OF FIRST LANDGEM COMPUTER MODEL RUN

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

3.6.4.2 <u>Second LandGEM Computer Model Run</u>

This second computer model run reflects a much wetter environment which may have happened with this landfill given that the landfill bottom was an active creek bed. The chart in Figure 3.9 presents the results of this model run. In this run, the landfill gas generation peaked in the late 1950's and sustained that peak until the mid 1960's. This extended peak results in a larger amount of gas being generated over a short period of time. With the extended peak, the fall-off of the amount of landfill gas generated is abrupt and quite significant.

For methane, the peak period ended in 1967 with an annual estimated generation rate of 970,000 cubic meters of landfill gas. By 2011 it is estimated the landfill is generating 0.00000004079 cubic meters of gas annually. The amount of NMOC generated in 2011 is estimated to be 0.000000003263 cubic meters per year. This model run indicates that a minimal amount of gas is being generated and likely little gas is being discharged from the landfill.

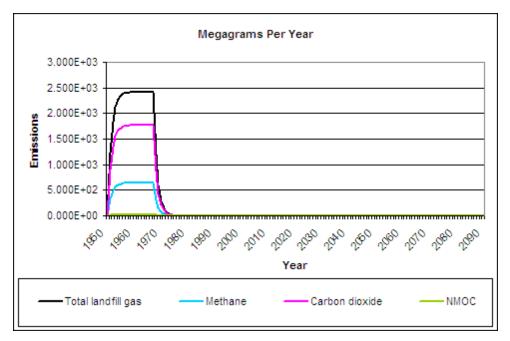


FIGURE 3.9 RESULTS OF SECOND LANDGEM COMPUATER MODEL RUN

3.6.4.3 Third LandGEM Computer Model Run

As indicated previously, it is unlikely that either of the first two computer model runs accurately reflect the actual conditions within the landfill. That is why the third computer model run combines elements of the two previous runs (see chart in Figure 3.10). The peak of landfill gas generation occurs in or about 1970, similar to the first computer model run, and the amount of gas generated decreases more rapidly, similar to the second computer model run.

For methane, the peak period ended in 1968 with an annual generation of 952,300 cubic meters of landfill gas. By 2018 the landfill is estimated to be generating 75,500 cubic meters of gas annually.

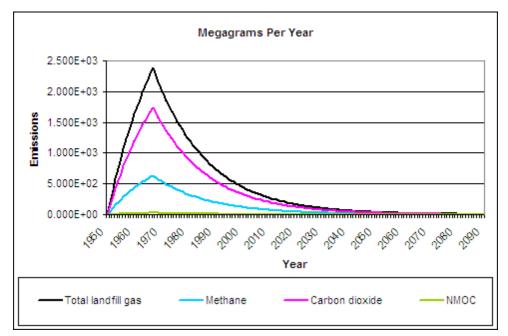


FIGURE 3.10 RESULTS OF THIRD COMPUTER MODEL RUN

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

4.1 ESTIMATED EXTENT OF CONTAMINATION

The project site consists of two parcels of land. The larger parcel is 29.53 acres in size and at this time, it is approximated that 17.9 acres of this property is underlain by an abandoned landfill. Waste material observed in the landfill includes solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. Data from soil borings excavated at the site indicate the depth of solid waste varies from less than five feet to over 40 feet. Cover over the solid waste also varies, with soil cover on portions of the landfill being less than one foot to more than 25 feet. The greatest depth of cover appears to be in the southern portion of the landfill. Figure 4.1 delineates the extent of the existing, abandoned landfill on the project property.

4.2 EXPOSURE PATHWAYS AND MITIGATION

As described in previous chapters of this document, the contaminated soils and solid waste currently underlaying the project site will be consolidated into a lined landfill and a final cover will be designed to address erosion issues as well as burrowing animals. Once the solid waste and contaminated soils are consolidated within the landfill, the risk of contamination from the landfill will be minimalized. Any landfill gas that is generated will be collected through vertical gas wells and sent to an on-site flare system. The only known exposure pathways to the soil or groundwater are through the groundwater monitoring wells at the site, which have been installed as directed by Colorado Department of Health and Environment and designed to protect the groundwater from contamination.

4.3 REMEDIAL ACTION PLAN

The centerpiece of the remediation plan is the consolidation of the landfill to provide a more environmentally-secure site that also allows for reclamation of a portion of the landfill. Based on site investigations, solid waste deposited in the landfill consists of a large amount of wood, paper, plastics, metals, and some construction and demolition debris. Because no CDPHE records exist regarding this landfill, it is suspected that the site was utilized as an open-dump site with limited or no supervision. Further, it is also likely that little, if any, effort was made to compact the waste. Given these circumstances, it is probable a number of voids exist within the landfill. In addition, because the site was not properly operated, it is expected that a large amount of the fill at the site was soil from other construction sites. Because of the amount of soil found in the various borings taken at the site, it is anticipated that a significant portion of the landfill is comprised of soil.

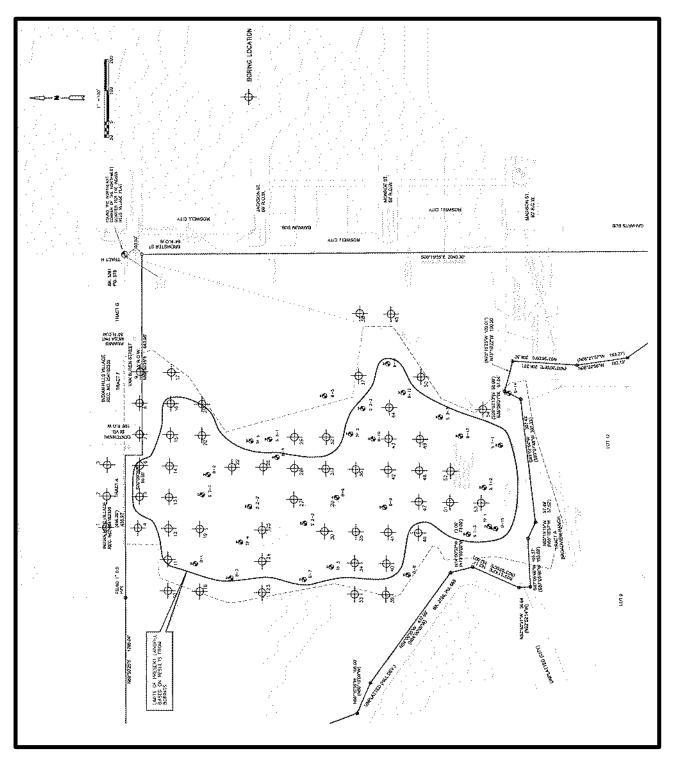


FIGURE 4.1 EXTENT OF ABANDONED LANDFILL ON PROJECT SITE

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

The age, types of waste, and varying depths of the solid waste in the abandoned landfill make it a prime candidate for consolidation. The consolidation process will involve exposing and excavating the existing solid waste, relocating the waste, and consolidating the waste into a much smaller and more secure landfill cell. The drawings provided in Appendix I provide a 15-step process for the consolidation and closure of the landfill. Consolidation will keep the landfill footprint within the limits of the existing landfill and over the deepest portions of the existing landfill. Solid waste in the shallower portions of the existing landfill will be relocated to the new consolidated landfill area and the area of consolidation will be recompacted to increase available air space.

The final cover for the consolidated landfill will meet the requirements of the CDPHE Solid and Hazardous Waste Commission/Hazardous Materials and Waste Management Division, "Regulations Pertaining to Solid Waste Disposal Sites and Facilities, Part B, Section 3, Subsection 3.5, Closure Requirements." The final cover will be designed to address the control of surface water run-off, water infiltration, and landfill gas generation. The final cover's vegetation will be designed to blend into the proposed development. An analysis of final covers and which are most applicable for the consolidated landfill area is provided in Appendix J.

In those areas of the existing landfill where solid waste will be excavated, the excavation will continue until clean soil has been reached. Procedures to be followed in sampling the soil to determine if the soil is clean is provided in the Soil Sampling Program found in Appendix K.

If it is found that the source of water within the landfill is the result of water following the old gully channel, a clay barrier will be installed between the solid waste and the channel to control water flowing freely into the consolidated landfill. This barrier, in conjunction with the compaction and consolidation of the solid waste, will reduce the introduction of water into the landfill.

Throughout the relocation process the materials excavated will be monitored to determine if any of the materials are potentially harmful or hazardous. A Materials Management Plan has been developed for this project and can be found in Appendix L. In addition, a Response to Discovery of Asbestos Plan has been developed and can be found in Appendix M.

Efforts to address future erosion problems associated with the consolidated landfill are described in the Erosion Protection Program located in Appendix N. This program describes the approach that will be followed to control erosion of the site once the final cover is installed.

Table 4.1 provides the estimated quantities of material to be relocated and consolidated as a part of this project. These quantities are based upon available data and may vary based on the actual amount of material discovered during the consolidation process. The final design of the landfill consolidation will include systems to control groundwater infiltration from the gully channel, landfill gas migration, and surface water infiltration. These systems will be designed to function as simplistically as possible and with as little mechanical operation as possible. By establishing these systems and consolidating the landfill, the potential risk to the environment is substantially reduced.

Application for Voluntary Clean-Up Remediation of Existing Abandoned Landfill

TABLE 4.1 ESTIMATED QUANTITIES OF MATERIALS

Existing Landfill Size	17.9 Acres
Consolidated Landfill Size	3.6 Acres
Area Reclaimed	14.3 Acres
Amount of Solid Waste Relocated	190,000 Cubic Yards
Amount of Solid Waste Compacted in Place	175,000 Cubic Yards
Minimum Amount of Soil Backfill Required	185,000 Cubic Yards

In addition to relocating and consolidating the existing solid waste, the southern-most portion of the abandoned landfill area will be developed into a stormwater detention pond for the site as well as for the new Centennial Boulevard. Appendix O provides information on the proposed approach to develop the stormwater detention pond.

It is anticipated that work at the project site will commence as soon as possible after acceptance of this application. Engineering work will begin as soon as the application is submitted. The anticipated length of time for completion of the remediation work is 180 to 210 days. MVS Development, LLC estimates the cost to remediate the project site is \$1,474,449.10

4.4 LONG-TERM MONITORING

Long-term monitoring and environmental testing will focus on the consolidated landfill area. These inspections and testing will include:

- Groundwater sampling (three monitoring wells)
- Air sampling (landfill gas system and surface testing)
- Landfill final cover inspection

Groundwater sampling involves collecting water samples from the three groundwater monitoring wells located on the project site and testing for a suite of potential contaminants as presented in the CDPHE's "Suggested Sampling Protocol for Groundwater Monitoring Wells." Quarterly sampling and testing will be undertaken during the first year after the landfill has been consolidated. Results from this first year of monitoring will be evaluated and presented to CDPHE. Dependent upon the first year's results, reducing the number of annual monitoring events, adjusting the sampling procedures, and reducing or modifying the number of constituents sampled for during each sampling event may be considered.

Each groundwater sampling event at this project site will encompass collecting water samples from each of the three groundwater monitoring wells, laboratory testing of each sample, preparing an analysis of the results of the testing, and submitting a report to CDPHE. All sampling and testing will be conducted by field technicians trained to properly sample groundwater. The estimated cost for these activities is \$5,000.00 per event.

Landfills are subject to the Air Quality Control Commission's Regulations 1, 2, 3, 7, and 9. These regulations address fugitive dust, odors, incineration, and exploration and production waste. The amount of waste placed in the consolidated landfill will be monitored and it is unlikely that the size of the landfill will exceed the Title V federal air quality regulations standards. Although the landfill does not meet a number of levels of waste or types of waste addressed in the Title V regulations, the landfill may be subject to general air emissions reporting and permitting requirements.

Quarterly air quality sampling and testing will be undertaken during the first year after the landfill has been consolidated. Results from this first year of monitoring will be evaluated and presented to CDPHE. Dependent upon the first year's results, a request may be submitted to CDPHE to consider the landfill in post-closure care and the level of reporting and testing minimized.

Each sampling event will involve collecting air samples from the landfill gas wells installed on top of the landfill. The gas from each well will be captured in a separate canister and delivered to a registered laboratory approved by CDPHE for analysis. The results of the analysis will be submitted to CDPHE. All sampling and testing will be conducted by field technicians trained to properly sample landfill gas systems. The estimated cost for these activities is \$6,500.00 per event.

The landfill cover will be inspected annually by a Professional Engineer registered and licensed in Colorado experienced with solid waste landfills and landfill cover systems. The results of each inspection will be submitted to the CDPHE for review and acceptance. The inspection will include a traverse of the cover as established by the engineer and will include; (1) observing the final cover vegetation; (2) checking for indications of borrowing animals; (3) assessing any rivulets or other erosion; and (4) evaluating the overall condition of the final cover. The engineer shall take photographs and generate drawings or sketches, as needed, to provide a clear indication of the condition of the final cover. The estimated cost for this annual inspection is \$3,000.00.

Appendix A Personnel Qualifications

Jack P. Chappelle, P.E.

EDUCATION

Bachelor of Science, Civil Engineering – University of Kansas, 1978 Master of Business Administration – University of New Mexico, 1989

PROFESSIONAL REGISTRATIONS

Registered Professional Engineer

Kansas #13086; Nebraska #E-11844; Colorado #19749; Missouri #PE-2017018587; New Mexico #10065; Arizona #28001; Ohio #PE-68398

PROFESSIONAL WORK HISTORY

1995 – Present Engineering Solutions & Design, Inc.

1980 – 1995 Camp Dresser & McKee, Inc. (CDM)

1978 – 1980 City of Wichita, Kansas President and Senior Solid Waste Engineer

Principal and Senior Solid Waste Engineer

Construction Engineer

QUALIFICATIONS SUMMARY

Mr. Chappelle possesses more than 39 years of domestic and international engineering experience. He has managed a wide variety of projects of varying size and complexity during his career, directing the efforts of project teams varying in size from as small as two or three professionals to teams of more than 75 professionals. Mr. Chappelle's broad-based experience encompasses involvement in more than 50 large-scale civil engineering projects that range from planning and feasibility studies, financial analyses, value engineering and design to construction services and operation and maintenance efforts.

Mr. Chappelle's technical project experience includes the planning, implementation, design, and construction oversight for environmental projects in New Mexico, California, Arizona, Washington, Kansas, Texas, Nebraska, Ohio, Missouri, and Cairo, Egypt. Highlights of Mr. Chappelle's technical and management expertise include:

- Project Manager/Technical Director for the Siting of Landfills in Central Kansas and North Central New Mexico: These projects involved identifying and investigating potential sites that would be suitable for a landfill facility. Utilizing existing information and mapping, a number of sites within each project area were eliminated. A list of criteria to evaluate the remaining sites was established which considered regulatory requirements and unique characteristics of the sites. For example, sites were eliminated if certain activities or historical areas would be adversely affected by the development of a landfill. More than 70% of the sites were eliminated in this process. The remaining sites in each project area were then visited. During these site visits, a site walkdown was conducted, the site was photographed, grab samples of soil and foliage were collected, landmarks were identified, surface water and groundwater indications were noted, and the distance to nearby residences and transportation routes were ascertained. This process eliminated most of the remaining sites and three or four potential sites in each project area were identified for further assessment and non-destruct field testing.
 - **Project Manager/Technical Director for the pre-design, permitting, final design and construction of the more than 20 solid waste landfills in New Mexico, Arizona, Colorado, Kansas, Texas, and Washington.** These projects included the preparation of preliminary designs for each landfill site; preparation and regulatory approval of the landfill permits; the final design of all aspects of the landfill site, including access road and on-site roads, water supply systems, storm water structures, erosion control devices, wind barriers, scale houses, maintenance facilities, and administration buildings. Mr. Chappelle was responsible for directing all design and construction oversight efforts on behalf of the owner for each facility. Important aspects of each facility's construction included monitoring dust control measures, maintaining a positive cash flow, and integrating the owner's needs with requirements of the solid waste regulators.

Project Manager/Technical Director for a Solid Waste Value Engineering Project for the New Mexico Environment Department: This project included the evaluation of funding proposals for solid waste systems from three separate entities in the Eastern Plains area of New Mexico. Based upon the data available, a conceptual solid waste management plan was developed for this seven-county area that addressed the efficient and cost-effective transport, transfer and final disposal of the solid waste.

- **Project Manager/Technical Director for landfill evaluations and site assessments for solid waste facilities in Kansas, New Mexico, and California.** Landfill evaluations included assessing present operations and site conditions, potential landfill life, and the development of recommendations and design requirements to improve the facilities' operation and longevity. Site assessments considered both surface and subsurface conditions and also evaluated the impact of surrounding properties. The result of the assessments was recognition of site potentials and how to address any site deficiencies. These evaluations and assessments were presented in formal reports to the client.
- **Project Manager/Technical Director for the analyses of existing landfills and the development of landfill closure/post-closure plans and designs for public and private clients in Kansas and New Mexico.** These projects included meetings and discussions with state regulators to identify criteria that would satisfy the environmental regulations at a reasonable cost to the owner. Further, parts of these various projects included design and construction to reroute an arroyo around an existing landfill; state approval for groundwater monitoring exemption; and the design of gas monitoring plans.
- Project Manager/Technical Director for more than 50 solid waste management plans for clients in Texas, Kansas, Arizona, and New Mexico. These planning efforts involved data coordination and collection, data analysis, development and utilization of computer models, recognition of present and future study area problems, identification of recommendations, and public education and awareness of the plan and its intentions. A key to the success of these solid waste management plans was the facilitation of planning meetings with the various government entities and concern groups. This facilitation (through both meetings and forms of direct communication, such as newsletters) resulted in early and continual positive involvement of those most impacted by the study. The final product of each project was a detailed planning document that is functional and useable to the study area.
- Construction Manager for 12 construction projects totaling over \$160 million in construction costs and a \$100 million rehabilitation project in Cairo, Egypt. These projects included the construction of waste and wastewater facilities. The projects encompassed coordinating the efforts of Egyptian and expatriate engineers, interaction and coordination with Egyptian government officials, interaction and coordination of Egyptian and American contractors, and interaction with USAID officials.

SELECTED PAPERS AND PRESENTATIONS

Mr. Chappelle has published and presented numerous technical papers to local, regional, national and international audiences on a variety of solid waste issues. The following list includes selected technical papers and presentations Mr. Chappelle has published and presented.

A Case Study: The Beneficial Use of Liquids for Waste Decomposition and Gas Generation presented at the Solid Waste Association of North America's annual conference in Washington, DC.

New Mexico's Solid Waste Infrastructure Assessment Process and Grade presented at the American Society of Civil Engineer's spring conference in Albuquerque, New Mexico.

Development of Computer Program to Monitor Landfill Air Space Usage and Estimation of Need for Next Cell presented at the Arid Climate Symposium in Albuquerque, New Mexico.

The Development and Operation of a Materials Recovery Facility for McKinley Fiber Company, Albuquerque, New Mexico presented at the Solid Waste Association of North America's Annual Waste Reduction, Recycling and Composting Symposium in Tempe, Arizona.

Discussion of Midwest Success Stories - Solid Waste Management Plan for North Central Regional Planning Commission (Kansas) presented in Hays and Wichita, Kansas to state, county, and municipal officials.

Impact of Regionalization on Small Communities presented at the Solid Waste Association of North America's Annual Solid Waste Exposition in San Jose, California.

Comparison of Recycling Efforts in Selected Communities presented at the Solid Waste Association of North America's 8th Annual Southwestern Regional Solid Waste Symposium in Oklahoma City, Oklahoma.

Characterization of Waste Stream in the State of Nebraska presented at the Solid Waste Association of North America's Nebraska state conference in Omaha, Nebraska.

Impact of New Solid Waste Regulations on Small Communities presented at the Waste Tech Conference in Toronto, Canada.

Appendix B Site Investigation 1986

LANDFILL SITE SECTION 36, TWP. 13S. R67W OF THE 6TH P.M. VAN BUREN AND CENTENNIAL EL PASO COUNTY, COLORADO

PREPARED FOR

Mr. A. C. Nicholson, Architect 2993 Broadmoor Valley Road Suite 200 Colorado Springs, CO 80915

PREPARED BY

Lincoln DeVore, Inc. 1000 West Fillmore Street Colorado Springs, Colorado 80907

TABLE OF CONTENTS

FIGURE 2

INTRODUCTION	1
PROJECT DESCRIPTION	1
PROJECT SCOPE	1
SCOPE	1
SITE DESCRIPTION	2
FINDINGS	2
GENERAL	2
FILL MATERIAL AND BEDROCK	-3
GROUNDWATER	4
DEPTH OF FILL	4
LIMITATIONS	5

APPENDIX

Boring Site Location Plan Boring Location Plan Geologic Map and Boring Location Plan Boring Logs

August 12, 1986

Mr. A. C. Nicholson, Architect 2993 Broadmoor Valley Road Suite 200 Colorado Springs, CO 80915

RE: Landfill Site, Section 36, Twp. 135., R67W of the 6th P.M., near Van Buren and Centennial.

Dear Mr. Nicholson:

At your request, Lincoln DeVore has drilled six test borings on the site of an existing landfill, covered and abandoned, on the east flank of the Mesa, Colorado Springs, Colorado. The site of the fill is centered approximately 2000' west of Sage Street between Madison Street and Mesa Valley Road in northwestern Colorado Springs. This site lies along the route of Centennial Blvd. as proposed.

Project Scope

The purpose of this explanation was to drill exploration borings generally along the west and south edges of the fill. The results of these borings were then to be added to the results of previous borings in the fill to obtain an approximate depth of fill pattern. The previously drilled borings did not cover the west and south sides of the fill. Types of materials found in the fill were also to be reported.

<u>Scope</u>

The scope of our geotechnical exploration consisted of a surface reconnaissance, a geophoto study, subsurface exploration, laboratory testing, analysis of field and laboratory data, and a review of geologic literature.

For the purposes of this study, the depth of uncontrolled fill was the only site factor to be determined at various points. No further work was intended or ordered. Therefore, few samples of the materials found were taken and no laboratory work was completed other than laboratory examination of the material to verify field classification. Landfill Site - Van Buren & Centennial August 12, 1986 Page -2-

Site Description

The existing, abandoned landfill lies over a large gulley which existed in the side of the Mesa prior to placing the fill. The surface of the landifll is rough, but is reasonably level eastwest except for the grades constructed for drainage purposes. This fill lies between two ridges east and west of the fill, which connect to the north of the fill, near Mesa Valley Road, extended. The fill is bounded on the south by an unnammed intermittent stream which discharges into Monument Creek near Caramillo St. This stream was displaced slightly by the fill, but a channel still exists and is open to carry the intermittant flow across the toe of the fill.

Field Exploration

The field exploration was performed on August 1, 1986 and consisted of a site reconnaissance by our geotechnical personnel and the drilling of 6 exploration borings over the fill. The locations of these borings were marked by others and the borings were drilled as staked except for No. 5. This boring was moved <u>+</u> 90 feet southeast due to poor access of the marked pont. Boring locations are shown on the attached location plan.

The borings were drilled to depths varying from 15' to 30' and all borings were bottomed in the Pierre Shale formation. All exporation borings were drilled using a CME 45 drill and 4 inch solid stem auger. Samples were taken rarely, but both the modified California sampler and Shelby tubes were used. Logs describing the subsurface soils found are presented in the attached figures.

The lines defining the change between soil types or rock materials on the boring logs and soil profiles are determined by interpolation and are therefore approximations. The transition between soil types may be abrupt or may be gradual.

Findings:

<u>General</u>

Previous exploration borings were drilled on this landfill by Lincoln DeVore and the approximate fill depths found have been used in this report to supplement the information found by these recent borings. Previous borings were drilled in 1968, 1976, 1983 and 1985. Those borings pertinent to the site were located on the topographic map and the depth to the bottom of the fill was recorded. In addition to the six exploration borings drilled Landfill Site - Van Buren & Centennial August 12, 1986 Page -3-

for this report, the logs for 10 previously drilled borings were used to estimate the depth of fill material on the site.

The site area is largely undeveloped and appears not to have been changed or disturbed appreciably since the landfill was covered over. Topographically the site slopes to the south, draining into an unnamed, intermittant stream. The oversite flow tends to be concentrated in shallow swales due to the roughness of the surface. At least two areas on the surface of the fill are depressed, allowing the ponding of some rain water. Erosion has cut into the fill at the sourtheast corner, leaving a depressed area over the old stream bed caused by removal of the landfill soil and debris. If lack of maintenance continues, erosion will increase by head cutting.

Fill Material and Bedrock

The fill material in the landfill is predominately a lean, silty, slightly sandy clay. It appears to have originated from the weathering of the native local Pierre Shale and has been mixed with some sandy soils. This mixing either is the result of natural colluvial action in the borrow area or is the result of mixing soils during the fill process. This fill material is generally soft, moist to wet and generally of medium plasticity. In place density is low, indicating that it was not properly compacted when placed.

The types of debris found within the clay matrix consisted of various kinds of household waste for the most part. Glass, metal, plastics and tile were all found together with some pieces of furniture and wood. The debris contained quite a bit of paper and other rapidly degrading organic material also, although none was found which could be recognized. The amount of decomposed organics in layers indicates this. Except in borings 5 and 6, no evidence of garbage or gas producing material was found. In these two borings however, the emission of detrimental gases should be expected. Testing for gas was outside the scope of work so that no tests were conducted. The amount of organics and the odor indicate that gases will be produced in this area, No definately toxic material could be identified however. visually, but tests should be performed prior to removing the fill or constructing buildings on the fill to definitely verify the presence or absence of such material.

Pierre Shale bedrock was encountered in the bottom of all exploratory borings. The top foot to two feet of this bedrock was found to be weathered and consists of a medium to high plastic, stiff to very stiff clay. Below this weathered layer the bedrock is hard to very hard and is dry. Due to its plastic FIGURE 2 Landfill Site - Van Buren & Centennial August 12, 1986 Page -4-

properties and low moisture content, the Pierre Shale should be considered to be expansive. Other than the thin weathered zone, no liner was found at the bottom of the landfill.

Groundwater

Groundwater was found in exploration borings 1 and 6. The other borings encountered wet fill immediately above the claystone, but no free water level was established. Since the landfill occupies an old filled gully, it appears that seepage moves down the surface of the claystone until it reaches a stabilized level near the center (deepest portion) of the old gully. At this point, it collects, forming a water surface. The level of this water surface is primarily dependent on the speed it can exit from the fill into the intermittent stream south of the fill.

The presence of groundwater in borings 1 and 6 thus indicates that these points are near the deepest part of the filled gully. Comparison with topographics taken before 1964 (USGS) verify this. No direct comparison of topography can be made due to scaling problems and the normal innaccuracies of air photos, but careful measurements indicate that the lowest line of the old gully follows a meandering line from a point about 80' east of boring 1 to a point about 100' east of boring 6. This lowest line is not straight, but appears to be west of previous borings 2 and 6 and between previous borings 3 and 5.

The level of this groundwater is shown on the boring logs for the date of measurement, August 1, 1986. This water level will vary depending on outside environmental influences and may vary as much as 5 to 6 feet from the measured elevation. Maintenance work on the eroded area of the fill at the southeast corner could also change the water level considerably.

Depth of Fill

The depth of the landfill material, as identified in the six borings drilled, ranges from 7 feet to 26 feet. The average depth of the fill found in these 6 borings is thus 14.9 feet. This is misleading, however, since the site was once a relatively "V" shaped gully. Combining all exploratory borings drilled in the landfill and excluding those drilled outside its limits, the depth of fill was found to range from 4 feet (PTB#7) to 40 feet (PTB#2). Simple averaging of the 17 borings shows an average depth of 18.3' actually measured in borings.

The sides of the unfilled gully were relatively steep prior to placing the landfill. As a result, the depth of fill is such that the borders of the landfill cannot be encroached upon very

Landfill Site - Van Buren & Centennial August 12, 1986 Page -5-

far before the fill exceeds 8' depth - or basement elevation. In most cases, edge encroachment is restricted to 50' or less. One exception to this appears to be in the north portion of the landfill, near Van Buren Street extended. In this area, encroachment exceeding 100' is possible around the endges of the landfill.

A very generalized topographic map has been prepared to show our best estimate of subsurface contours. Since these have been drawn on the basis of 17 exploratory borings and measured sections from a 1947 topography of the site, these subsurface contours cannot be fully accurate and should not be interpreted as such. They will serve to give a general indication of landfill depth, however, and can be used for preliminary estimating purposes.

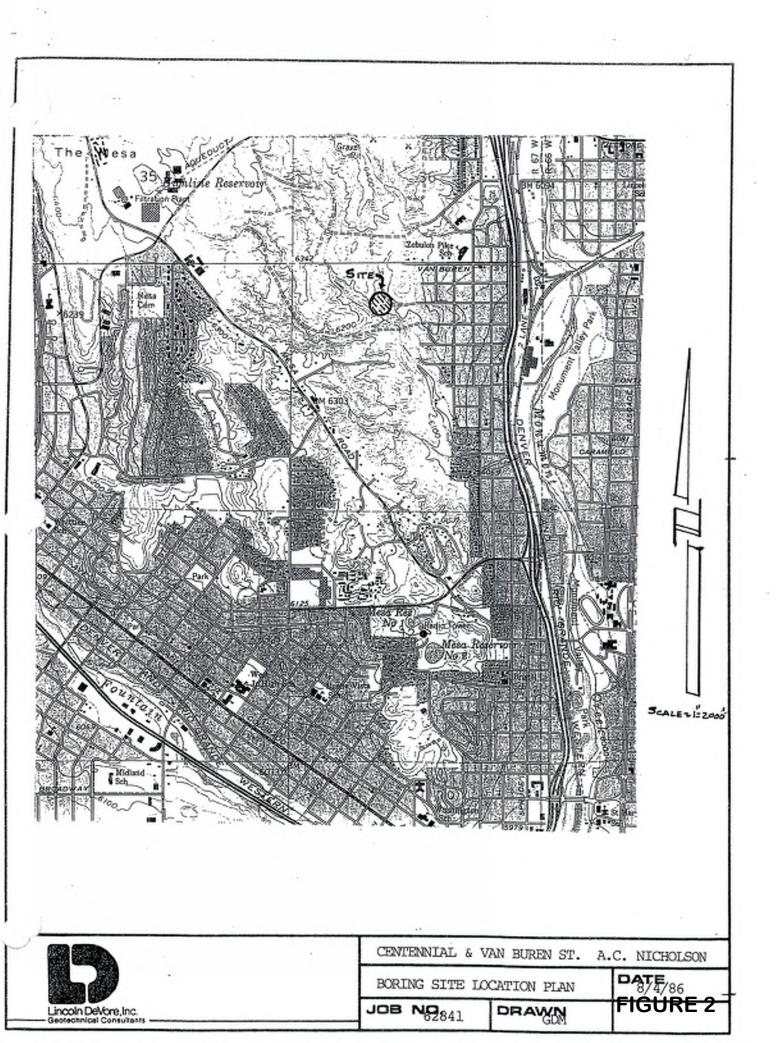
The topography shown on the attached approximate depth of fill sketch was produced by aerial photographic methods. In working with this topography, it was noted that the elevations given did not match the USGS elevations by between 25' and 30'. This is about the difference between the USGS mean sea level datum and the old City of Colorado Springs datum. It may well be that this topography was based on the city datum. If so, modern topography will not match the elevations shown, but the slopes and general shape of the topography would be valid. Caution should be used in transferring the elevation data on this sketch to any map of the area. A full topographic survey, based on USGS datum should be completed prior to using the area for any possible construction.

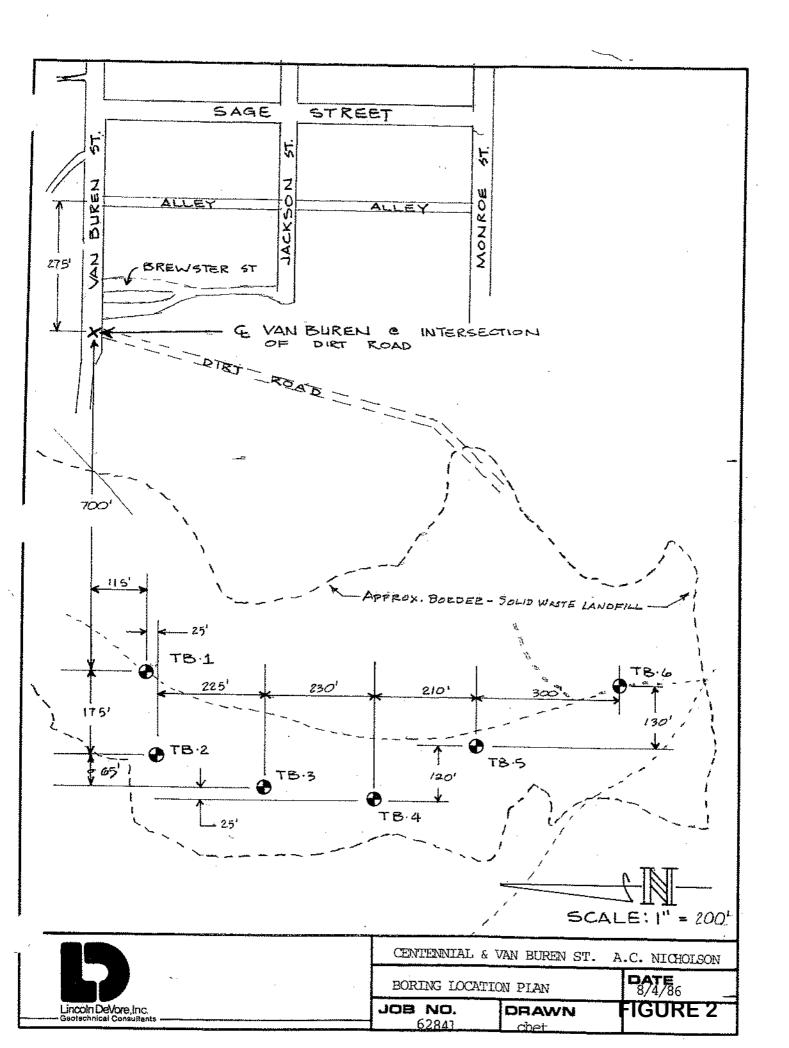
Limitations

The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in acceptable or appropriate standards may occur or may result from legislation or the broadening of engineering knowledge. Accordingly, the findings of this report may be invalid, wholly or partially by changes outside of our control. Therefore, this report is subject to review and should not be relied upon after a period of 3 years.

Lincoln DeVore makes no warranty, either expressed or implied, as to the findings, recommendations, specifications or professional advice, except that they were prepared in accordance with generally accepted professional engineering practice in the field of geotechnical engineering.

If you have any questions after reviewing this letter report, please do not hesitate to contact the undersigned engineer. This FIGURE 2


Landfill Site - Van Buren & Centennial August 12, 1986 Page -6-


opportunity to be of professional service is sincerely appreciated.

Respectfully submitted,

LINCOLN-DeVORE, INC By: George D. Moir Profession Reviewed by: Ro j Pro iec Ineer

GDM/wp LD Job No. 62841

	[r T						 7
			BORING NO. 1		CE N	PCF	<u> </u>	
	5	ш	ELEVATION:		PENETRATION RESISTANCE	N-SITU DENSITY [PCF	MOISTURE CONTENT [74]	
DEPTH	SYMBOL	SAMPL			NET SIS	IN-SITU DENSIT	UTSIC INT	
ā	S	S S	DESCRIPTION		PE RE	N B	N O O	
-	\bigwedge							
-		ĬĹ						
5'	$\langle \rangle$							
-	\sum							
	$\left \right\rangle$	╎┝		_				
	$\left \right\rangle$		FILL, CL, clay, silty, medium plast	- icity, contains				
10'	$\left \right\rangle$	╞	debris of plastic, ceramics, some m carbonaceous material, soft, moist	etal. contains				
	$\left \right\rangle$	-						
	$\langle \rangle$	-				***		_
15 <u></u>	$\langle \cdot \rangle$		∇					
	\backslash	-						
	$\langle \cdot \rangle$	-		. –				
	2	-	•••••					
20'	8	F	PIERRE FORMATION, CL/CH, clay with s minor sands, hard to very hard, iron	n staining,				
	20/	-	& sulphate deposits, grey to black,	moist to wet				
-	<u>م</u> رو م	, –						
25 <u>'</u>		-						
		F	TOTAL DEPTH OF BORING: 25'	. –				
		\vdash	GROUND WATER AT 15' AT TIME OF BORIN	√G –				
30-		E						
-		-						
				—				
-		F						
-		┢						
-						· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	
			LO	G OF SUBSURFA	CE E	XPLO	RATION	
			N COLORADO: COLORADO SPRINGS, CENT	'ENNIAL & VAN BU NICHOLSON	REN	475	3/4/86	
h / e	NGINE	ERS	GLENWOOD SPRINGS				R/F/92	-

		-						,		-
F	=			BORING NO. 2		N N N N N N N N N N N N N N N N N N N	Ĩ	Ş		
DEPTH (FT		ļu	ц	ELEVATION:		AN			URE	
	SYMBOL	CAMDI	1 1 2	······································		IET I	IN-SITU	2	IST NTE	
DE	SYI	V U	A	DESCRIPTION		PENETRATION RESISTANCE	N.		MOISTURE CONTENT [7]	
	$\overline{\mathbf{X}}$	$\overline{\mathbf{A}}$	-	······································						1
· ·	\downarrow \backslash		$\left \right $		-					
				FILL, CL, clay, silty, with some medium plasticity, soft, moist,	sand layers,					
5-		Y		of plastics & household type tra	sh, organic layers					
-										
	$\left \right\rangle$		-	****						
-	1				-					
10-	1/		F	PIERRE FORMATION, CL/CH, clay, w minor sands, hard to very hard, l	brown, slightly -		}			
- 1	10	1	-	weathered, iron staining & sulpha	ate deposits, moist					
-			Ļ							_
15-	<u> </u>	4	\vdash		4					
			Ľ		**					
	1		-	TOTAL DEPTH OF BORING: 15'	·					
]		┝	NO GROUND WATER ENCOUNTERED DURIN	NG DRILLING		÷			
20										
	ł		╞		-					
			Ľ		. –					
25 ∽	-		ŀ				ĺ			
			-		· · -					
							ļ			
					-					
30										
			L							
			┡		-					
			Ĺ							
	L									
t 1	LINC	2	1 >	GOLORADO: COLORADO SPRINGS,	LOG OF SUBSURFA		XPL	OR	ATIO	N
	Dev	OF	₹E	GRAND JUNCTION , PUEBLO ,	CENTENNIAL & VAN BU A.C. NICHOLSON		ATE	8/4	/86	
	ENGINE GEOLO	E E 611	R	GLENWOOD SPRINGS	JOB NO. 62481	1			R ^a F¹∕	86

		r	1			· · · · ·					
Ē				BORING NO. 3		PENETRATION RESISTANCE		DENSITY IPCF	ш	(2.)	
DEPTH IFT	Б	ш		LEVATION:		TAN	.	2	MOISTURE	ENT	
EPT	SYMBOL	SAMPL				INE I	IN-SITU	IS I	OIS	LN	
	S	S	 	DESCRIPTION		PE RE	Ż	ä	ž	Ŭ	
-	\land		-		-						
-			-								
5			-		-						
	$] \setminus$		- -	and the second	· • • • • • • • • • • • • • • • • • • •						
-	\land			FILL, CL, clay, silty, with some medium plasticity, soft, moist,	contains debris of						
	\land		_	glass, metal, tile & pipe, organ	nic layers.						
10-			-		-						
-	\square						ļ				
·	200										
15	°/		•								
`	20			PIERRE FORMATION, CL/CH, silty,	with minor sand						
_	as	1		layers, high plasticity, hard to weathered near formational surfa	very hard, wes, iron staining,						
20 -	2	1		sulphate deposits, grey to black	, moist						
			-		-						
			- - ,	TOTAL DEPTH OF BORING: 20'							
				NO GROUND #WATER ENCOUNTERED DUF	RING DRILLING						
25			-								
			_								
			-								
-			•								
			-								
-											
			-								
ľ	·	<u> </u>					•			J	
					LOG OF SUBSURF	CE E	EXPL	OR	ATI	ON	
				COLORADO: COLORADO SPRINGS, GRAND JUNCTION, PUEBLO,	CENTENNIAL & VAN BU A.C. NICHOLSON	REN	DATE				
in 🖉 (ENGINE GEOLOG	ER	S -	GLENWOOD SPRINGS	JOB NO. 62481		RAI	ED.		1.68	5

.

H [FT]	5	ш		BORING NO.:4		PENETRATION RESISTANCE	n	DENSITY [PCF]	URE ENT [%]	
DEPTH (FT	SYMBOL	SAMPL		DESCRIPTION		PENET RESIS	IN-SITU	DENSI.	MOISTURE CONTENT [7.]	
	l'il			FILL, CL, clay, silty, with some medium plasticity, soft, moist, c debris of glass, metal, etc, layers	contains household-					
10'	e e e e e e e e e e e e e e e e e e e		- 1	PIERRE FORMATION, (TOP 2' WEATHERE silty, with some sandy,areas, hig hard to very hard, iron staining, grey to black, moist,	h plasticity,	·		21 21		-
15 - - - 20 -				NOTAL DEPTH OF BORING: 15' NO GROUND WATER ENCOUNTERED DURIN	G DRILLING					
25 L			-							
			- -							
					LOG OF SUBSURFA		EXP	LOF	ATIO	N
D	LINCO DOVO Engine Seolog)R εR	E s	GRAND JUNCTION, PUEBLO, A.	ENTENNIAL & VAN BUF .C. NICHOLSON OB NO. 62481				4/86 8/1/	86-

			· · · · · · · · · · · · · · · · · · ·	F			
		BORING NO. 5		NO HO		5 	·
DEPTH [FT SYMBOL		ELEVATION:		PENETRATION RESISTANCE	IN-SITU	MOISTURE CONTENT 1%	
DEPTH SYMBOL	SAMPLI		······································	IET SIST	LIS		
DE	SA	DESCRIPTION		PEN	N		
			······································				-
. 5'-			-				
		FILL, CL, clay, silty, with som medium plasticity, firm to soft	e sandy layers,				
		distinct odor, contains debris	of wood, glass,	•			
		bricks, and household trash, or	ganic _				
			-				
15-							
		becomes moderately stiff at 15.	5' (Still Landfill)				
\rightarrow							
20 - 9 -		PIERRE FORMATION, (TOP 2' WEATHE					
		minor sands & silts; moderate to	o high plasticity,				
Tal		iron stained, sulphate deposits grey to black, moist	, hard to very hard.				
- 20							
254			-				
		TOTAL DEPTH OF BORING: 25'	· · · ·				
	-	NO GROUND WATER ENCOUNTERED DUR	ING DRILLING				
30							
•							
		·····	LOG OF SUBSURFA		EXPLO	ORATIO	N
		GRAND JUNCTION, PUEBLO,	CENTENNIAL & VAN BUI A.C. NICHOLSON	REN	DATE	8/4/86	
GEOLOG	ERS -	GLENWOOD SPRINGS	JOB NO. 62481				8 6

•

١.

	<u>۲</u>	ш,	BORING NO. 6 ELEVATION:		PENETRATION RESISTANCE		DENSITY (PCF)	URE NT [%]	
DEPTH [FT	SYMBOL	SAMPL	DESCRIPTION	······································	PENET	IN-SITU	DENSI	MOISTURE CONTENT [74]	· · · · · · · · · · · · · · · · · · ·
			FILL, CL, clay, silty, slightly medium plasticity, soft, brown organic & black in layers, stro debris of wood, glass, metal, e	to black, very - ng odor, contains					
25			PROBABLE FILL, CL, clay, silty, medium plasticity, soft to firm contain debris or trash, but ha is organic.	, wet, does not					
30	2.3.2 2.3.2		PIERRE FORMATION, CL/CH, minor moderate to high plasticity, inv very hard, sulphate deposits, g	on stained, hard to					
35			TOTAL DEPTH OF BORING: 30' GROUND WATER AT 20' AT TIME OF (BORING					
				LOG OF SUBSURFA	CE F	X PI	0R	ATION	
	NCC		GRAND JUNCTION , PUEBLO ,	CENTENNIAL & VAN BU A.C. NICHOLSON	REN	DATE		4/86	
N EN	GINE	ERS	GLENWOOD SPRINGS	JOB NO. 62481	D	RILL	ED	8/1/8	6

.

.

DRILLED 8/1/86-

•

TABLE I SUMMARY OF TEST HOLE LOGS

Test Holes 1-4 from Jan, 1976 report. Test Holes 5-7 drilled 11/18/83.

TH-1 0 - 4.5' Clay cover here are offered the old one 4.5 - 33' Landfill 33 - 35' Residual clays No water. TH-20 - 3' Clay cover $3 - 40^{+}$ Landfill 40 - 47 Residual clays Water at 37 feet. TH-3 0 - 13'Clay cover 13 - 25' Landfill 25 - 30' Residual Clays No water Residual clays and weathered bedrock. TH-4 0 - 20' No water. TH-5 0 - 2.5' Clay cover 2.5 - 32' Landfill Water at 19 feet. Gas probes set at 8 and 15.5 feet. TH-60 - 2' Clay cover $2 - 27^{+}$ Landfill 27 - 30' Clay, possibly residual clays Water at 15 feet. Gas probes set at 8 and 13.5 feet. 0 - 1.5' Clay cover TH-71.5 - 91 Landfill Water at 4 feet.

No probe set due to shallow groundwater.

FIGURE 2

Appendix C Soil Investigation August 2005

KLEINFELDER

Delineation and Evaluation of Existing Landfill South of West Van Buren Street Colorado Springs, Colorado

August 26, 2005

Copyright 2005 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited.

FIGURE 2⁻⁻⁻

KLEINFELDER

An employee owned company

August 26, 2005

Kleinfelder File No. 59292-1

Mr. Ted Waterman, President Waterman, Inc. P.O. Box 27560 Albuquerque, New Mexico 87125

Subject: Delineation and Evaluation of Existing Landfill South of West Van Buren Street Colorado Springs, Colorado

Dear Mr. Waterman:

Kleinfelder is pleased to present the results of our delineation and evaluation of the existing landfill located south of West Van Buren Street in Colorado Springs, Colorado (Subject Site). Our scope of work included; an investigation to delineate the boundary of the landfill area and estimate approximate depth of fill, a limited geotechnical evaluation of existing fill, methane testing within the landfill area to evaluate its potential impact on the proposed park, and methane testing beyond the perimeter of the landfill to evaluate potential impact of any methane migration outside the landfill limits on proposed adjacent developments. This report presents the results of our investigation including analytical data and recommendations.

SUMMARY

This investigation was conducted on a vacant parcel of land located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado.

During this assessment the following tasks were completed:

- Review of existing data/site reconnaissance;
- Subsurface drilling;
- · Excavation of exploratory test pits;
- Evaluation of existing fill;
- Installation of methane gas monitoring wells;
- Screening for methane gas; and,
- Laboratory Analysis for methane gas.

59292/CSP5R051 Copyright 2005 Kleinfelder, Inc.

Page 1 of 9

Subsurface analysis provided the following information:

- . Excessive differential settlement of the solid waste landfill area;
- Large amounts of debris (wood, plastic, paper, cardboard, rubber, glass, aluminum, and metal) exist from ground surface to varying depths throughout the landfill area; and
- Fill material that has the potential to be suitable for use in construction, from a
 geotechnical standpoint, is only located within a small section of the southern
 portion of the landfill area. Sampling and testing of the fill material would be
 recommended to evaluate for any environmental contamination concerns.

Methane gas field and laboratory analysis provided the following information:

- High methane concentrations were found within the boundary of the landfill; and,
- Within the footprint of proposed future development on-site.

<u>SCOPE</u>

This Limited Phase ILESA was conducted in general accordance with our proposal dated June 23, 2005. The purpose of this investigation was to delineate the landfill boundaries, evaluate existing fill, and determine potential methane-related concerns associated with the existing landfill, that have the potential to affect the site development as planned. These concerns were evaluated through intrusive soil drilling, exploratory test pits, and methane gas monitoring. This study did not include investigating other environmental issues such as soil or groundwater contamination.

SITE LOCATION & HISTORY

The Subject Site is a vacant parcel encompassing approximately 48-acres of land, located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado. The site location is indicated on the Site Location Map (Figure 1). The proposed development boundary, within which our investigation was performed, is shown on the Site Plan (Figure 2).

The Subject Site is generally located within the northwest ¼ of the southeast ¼ of Section 1, Township 13 South, and Range 67 West of the 6th PM. The El Paso County Assessor's parcel number is 7401200002. The Subject Site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the Site and the surrounding area slopes down to the south towards the intermittent stream that borders the Subject Site (Figure 2, Appendix A). The topography of the site is irregular, but is dominated in the northeast by a prominent ridge, in the central portion by a valley, in the northwest by a system of ridges. A drainage forms the westerly and southerly side boundaries.

Review of the 1947 and 1966 aerial photographs indicate that a considerable amount of site disturbance occurred between these periods of time. The 1947 photograph 59292/CSP5R051 Page 2 of 9 August 26 2005 Reserved to the second secon

indicated that the site was essentially in its natural condition. The 1966 photograph indicated that most of the ground disturbance had occurred by this time. The historical topography of the landfill area is shown on Figure A-4 in Appendix A.

Previous work performed by Lincoln DeVore at the Subject Site includes the following reports:

- Geologic and Soils Hazard Reconnaissance, Proposed Park Place Development, Colorado Springs, Colorado, dated December 13, 1983, LD Job No. 51013.
- Geotechnical Report, Proposed Centennial Blvd. Project from Fontanero Street to Fillmore Avenue, Colorado Springs, Colorado, dated July 15, 1985, LD Job No. 55146.
- Landfill Site, Section 36, Twp. 13S, R67W of the 6th P.M., near Van Buren and Centennial, Colorado Springs, Colorado, dated August 12, 1986, LD No. 62841.

FIELD INVESTIGATION

Prior to the commencement of field activities at the Subject Site, Kleinfelder prepared a Site-Specific Health and Safety Plan as required by Occupational Safety and Health Administration ("OSHA"), to inform our personnel of the potential hazards that may be encountered and the required procedures to protect worker health and safety. Also, as required by law, Kleinfelder coordinated with utility companies to locate buried utilities in the vicinity of the Subject Site.

Subsurface Investigation

On July 14 and July 15, 2005, Kleinfelder mobilized to the Subject Site with a trackmounted drilling rig equipped with 4-inch continuous flight augers to drill fifteen (15) subsurface borings to delineate the approximate boundary and size of the landfill and also to evaluate what type of wastes were placed in the landfill. A map indicating the location of the borings is presented as Figure A-1 in Appendix A. All borings were drilled through the landfill material to bedrock. Bedrock depths are indicted on the boring logs, which are included in Appendix B. Samples were collected at regular intervals and observed in the field to determine if the soil material was native, soil fill, or landfill. The types of wastes encountered in the soil are also documented on the boring logs. Waste material observed in the landfill included solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. Based on our observations and understanding of the history of the landfill, we expect waste that was placed within the landfill included debris, rubbish, and household waste.

Kleinfelder returned to the site within 24 hours of drilling to measure the static water level in each boring.

Boring ID	Static Water Level (feet below grade)
B-1	*
B-2	11.0
B-3	*
B-4	18.4
B-5	*
B-6	18.9
B-7	+
B-8	*
B-9	15.3
B-10	*
B-11	19.5
B-12	19.3
B-13	20.8
B-14	10.2
B-15	31.7

Table 1 summarizes the static water levels for each boring.

*DRY: Borings were dry and-no groundwater was encountered.

During the period between 1947 and 1966, the site was apparently chosen for disposal of waste. Waste encountered in the subsurface investigation indicated that the central portion of the Subject Site was the main area used as a solid waste landfill. It appears that the drainage and valley, in the central portion of the site, was filled with a considerable amount of waste. The maximum thickness of this waste, based on our subsurface investigation, is estimated to be about 40 feet. The borings indicate that the surface soil cover ranges from about ground surface to 20 feet in thickness. Soil was also found layered and mixed within the solid waste landfill layer.

The Site is underlain by bedrock of the Pierre Shale. This formation consists of dark gray to brown, clay shale with a few interbedded fine-grained sandstone and limestone beds. The Pierre Shale is typically dense to hard where unweathered, thin-bedded, expansive and rich in sulfates. The depth to bedrock ranged from 11 feet at the northwest corner to 57 feet in the central portion of the Subject Site.

The approximate boundary of the landfill was mapped using data compiled from this investigation and previous reports completed by Lincoln DeVore. This landfill boundary is shown on Figure A-2 in Appendix A.

Methane Gas Assessment

The production of methane gas is a problem that is linked to abandoned landfills. Methane gas is generated by the decomposition of natural or man-made organics in a aerobic environment. The production of methane can vary from point to point in a landfill. Methane gas is explosive in concentrations between 5% and 15% by volume of air. Concentrations greater than 15% may be flammable and methane is also toxic.

Augus

Methane is lighter than air and tends to migrate vertically through the landfill to the surface.

On July 14 and July 15, 2005, Kleinfelder mobilized to the Subject Site with a trackmounted drilling rig equipped with 4-inch continuous flight augers to install fifteen (15) methane gas monitoring wells within the existing landfill and also around the perimeter, at the locations indicated on Figure A-3. Boring logs and monitoring well installation records (including depth and materials used) for each methane well, MW-1 through MW-15, are included in Appendix B.

Methane wells were constructed using factory cleaned 1-inch diameter, PVC well casing with 10 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2 to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

On July 19 and July 20, 2005, Kleinfelder performed gas monitoring at the fifteen (15) methane wells installed on the Subject Site. The gas in each well was analyzed using a GasTech Portable Gas Monitor. The meter is designed to measure concentrations of methane (CH₄), hydrogen sulfide (H₂S) and oxygen (O₂). Table 2 summarizes the gases detected in the methane wells.

Monite da -		July 1	9, 2005			July 2	0, 2005	
Monitoring Location	CH₄ (%LEL)	CH₄ (%GAS)	H ₂ S (ppm)	O ₂ (%)	CH4 (%LEL)	CH₄ (%GAS)	H₂S (ppm)	O ₂ (%)
MW-1	0.0	0.0	0.0	20.9	0.0	0.0	0.0	20.7
MW-2	28.0	2.0	0.0	9.3	29.0	2.0	0.0	4.8
MW-3	0.0	0.0	0.0	20.7	0.0	× -0.0	0.0	20.9
MW-4	100	62.0	2.0	0.0	100	60.0	2.0	0.0
MW-5	0.0	0.0	0.0	20.4	0.0	0.0	0.0	20.4
MW-6	28.0	2.0	0.0	13.3	23.0	2.0	0.0	15.4
MW-7	0.0	0.0	0.0	20.9	0.0	0.0	0.0	20.8
MW-8	0.0	0.0	0.0	~ 20.3	0.0	0.0	0.0	20.9
MW-9	1.0	0.0	0.0	20.2	0.0	0.0	0.0	18.7
MW-10	100	53.0	1.0	0.0	100	45.0	2.0	0.0
Ń₩-11	63.0	6.0	0.0	7.8	75.0	7.0	0.0	0.0
MW-12	100	22.0	0.0	6.6	100	18.0	0.0	6.3

TABLE 2 -SUMMARY OF GAS MONITORING

59292/CSP5R051 Copyright 2005 Kleinfelder, Inc.

1	·	1		7		······	·····		
	MW-13	28.0	2.0	0.0	11.4	23.0	2.0	0.0	12.6
-	MW-14	0.0	0.0	0.0	18.3	0.0	0.0	0.0	18.9
	MW-15	100	. 49	0.0	0.0	100	50.0	1.0 ·	0.0
- N	John CIL /0	1 1 1 1 1		<u>_</u>				1	

Notes: CH_4 (% LEL) = CH_4 (% Gas) =

 $H_2S = O_2 =$

Methane % of the lower explosive limit (LEL) % Methane Gas by volume Hydrogen Sulfide parts per million by volume

Oxygen % by volume

In the three monitoring wells that had the highest concentration of methane gas, an air sample was collected that was sent to an accredited laboratory to confirm the presence and level of methane gas. The three monitoring wells that were sampled were B-4, B-10, and B-15. According to the laboratory analysis, high concentrations of methane gas existed in each of the three wells. The results of the laboratory tests were as follows; monitoring well B-4 consisted of 58.33 % methane gas, monitoring well B-10 consisted of 43.38 % methane gas, and B-15 had 48.77% methane gas. The laboratory data sheets are included in Appendix C.

Existing Fill Evaluation/ Excavation of Exploratory Test Pits

On August 1, 2005, Kleinfelder mobilized to the Site with a John Deere 310G 4X4 #12 Backhoe to excavate exploratory test pits, labeled as TP-1 through TP-5, and to evaluate existing fill for potential construction use. Test pits locations are mapped on Figure A-1. All five-test pits were excavated to approximately fifteen feet below existing grade. Significant amounts of debris were observed in four of the five exploratory test pits. The waste generally included wood, plastic, paper, cardboard, rubber, glass, aluminum, and metal. The thickness of the debris was greater than the total depth excavated of fifteen feet in four of the five test pits (TP-2 to TP-5). These four test pits did not contain material that could be used as construction fill during the development of adjacent areas.

The first exploratory test pit (TP-1) was located at the southern end of the existing landfill. The test pit was excavated to approximately fifteen feet as well. No waste was observed within the test pit to the total depth investigated. The material observed in the test pit consisted of a sandy lean clay with gravel and cobbles. However, based on the borehole that was drilled within close proximately to this test pit, debris was encountered at that location at approximately 16 feet. Site photographs from the excavation of the test pits are included in Appendix D, except for TP-1.

CONCLUSIONS

Environmental Hazards

Environmental hazards, which exist on the Site, include methane gas and excessive differential settlement of the solid waste landfill area. Significant levels, based on local and federal guidelines, of methane exist in eight of the fifteen methane wells constructed on site. This is consistent and anticipated with the placement of high

organic content and uncontrolled fill on the site. Methane gas is explosive in concentrations over 5% by volume in ambient air and can be produced for many decades from the initial deposition of wastes similar to those found in a landfill. Methane gas becomes a hazard if it is allowed to collect in poorly ventilated areas including crawl spaces, basements, utility vaults, or other enclosed spaces. On this site, the methane hazard can probably be mitigated by simple avoidance of the solid waste landfill area. Given the potential for gas development and possible gas mitigation into planned site development, additional protective measures must be implemented. These measures should be developed following additional investigation and be consistent with proposed site use, which we understand may include a park.

As a past site used for disposal of solid wastes, it is likely that the site is subject to Colorado Department of Public Health & Environment (CDPHE) explosive gas requirements for solid waste disposal sites. These regulations, found in Title 6 of the Code of Colorado Regulations (CCR), Section 1007-2, Part 1, state that "The concentration of explosive gases generated by the facility for solid waste disposal shall not exceed:

(A) Twenty-five percent [25%] of the lower explosive limit (LEL) (one percent [1%] by volume in air for methane) within facility structures (excluding gas control or recovery systems); and

(B) At the boundary, the lower explosive limit which is five percent (5%) by volume in air for methane."

Considering this rule, it is likely that any future development of the site would need to consider monitoring of any structure developed on the site as well as monitoring of the site perimeter in order to maintain compliance with these rules. The development of a vapor intrusion model and/or additional analysis to determine sufficient mitigation controls may be required as part of construction design.

Subsurface Hazards

Subsurface hazards, which exist on the Subject Site, are associated with large amounts of debris and other waste existing at ground surface and at differing depths throughout the existing landfill area. The only location within the boundary of the existing landfill that fill material may have the potential to be used in construction would be a small section of the southern portion of the landfill near boreholes B-14 and B-15. The ground surface surrounding B-14 was free of landfill debris and the upper fifteen feet of B-15. However, landfill debris was encountered in B-15 at approximately sixteen feet.

RECOMMENDATIONS

Kleinfelder recommends that a meeting be scheduled with CDPHE to discuss the planned development of the subject site, and what controls or mitigation would be considered by the agency. This limited Phase II ESA was performed for the purpose of evaluating methane levels on the known landfill area and also determine the location and depth of the landfill. Based on this assessment and the previous Lincoln DeVore

Page 7 of 9

reports, Kleinfelder and CDPHE will be able to provide guidance as to compatible land development and public safety considerations.

Since high methane concentrations were found throughout the site, any development of the site would have to address methane issues, including surface emission potential as well as migration issues. In addition, CDPHE may or may not require additional assessment activities such as additional long-term methane monitoring wells and/or soil and groundwater sampling as part of the site assessment. Additional work may include, but would not be limited to, probing of the site perimeter to check for methane migration on proposed areas of development. Also, by assessing the volume of solid waste that has been placed on the site, or how big the volumetric area of solid waste is on the subject site, the long-term production of methane gas could be calculated by using a landfill gas emissions model. This would provide necessary information as to how long the site will continue to produce methane over the years. If buried utilities are installed across the solid waste landfill area, the utility trenches may provide additional avenues for methane migration. As a result, methane venting may be required along the utility corridors.

It should be noted that presence of methane does not necessarily exclude the site from future development. Many successful methane mitigation and remediation solutions, both passive and active, have been developed and demonstrated on similar sites in the past. However, to adequately engineer appropriate remediation and management of the known landfill area, a more extensive understanding of the methane gas production potential, gas migration, permeability of soils onsite and groundwater flow direction may need to be assessed through additional investigation at the Site. This type of study would also require a detailed knowledge of proposed development in order to provide a thorough and meaningful evaluation/design.

Kleinfelder also recommends that fill material located within the boundary of the existing landfill, with the exception of the soil found at the southern edge, not be used in the planned development of the Subject Site. Large amounts of landfill debris are encompassed within soils throughout the landfill area. Kleinfelder also recommends that soil samples be collected and analyzed at an accredited laboratory for contamination, prior to the excavation of any fill material from the southern portion of the landfill area.

LIMITATIONS

The limited sampling performed during this investigation was performed to provide a general indication of methane production within the study area. Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of work on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of work was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report is beyond the scope of our work and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since

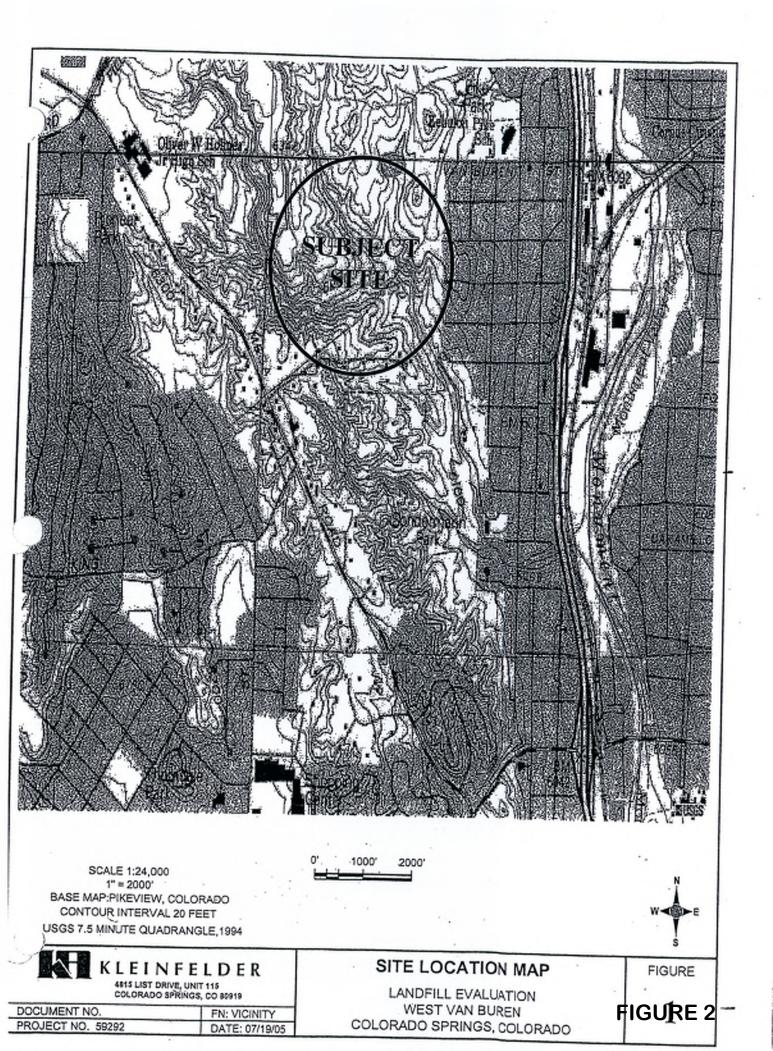
such detailed services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

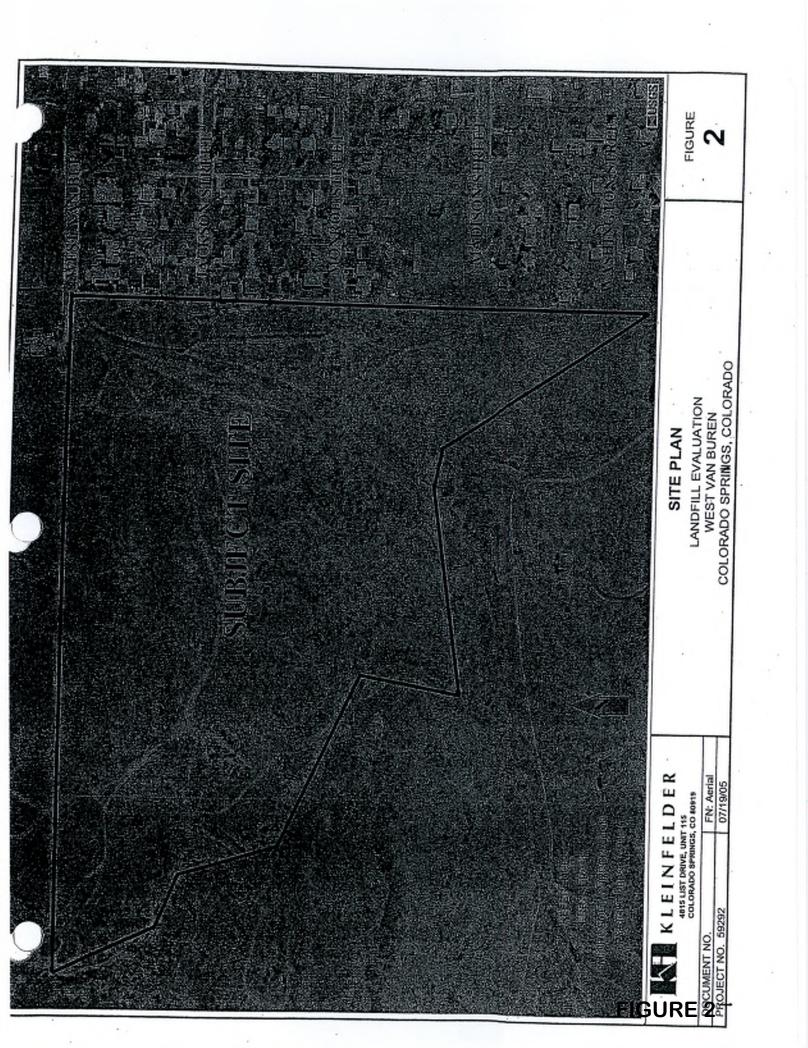
KLEINFELDER

Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at (719) 632-3593.

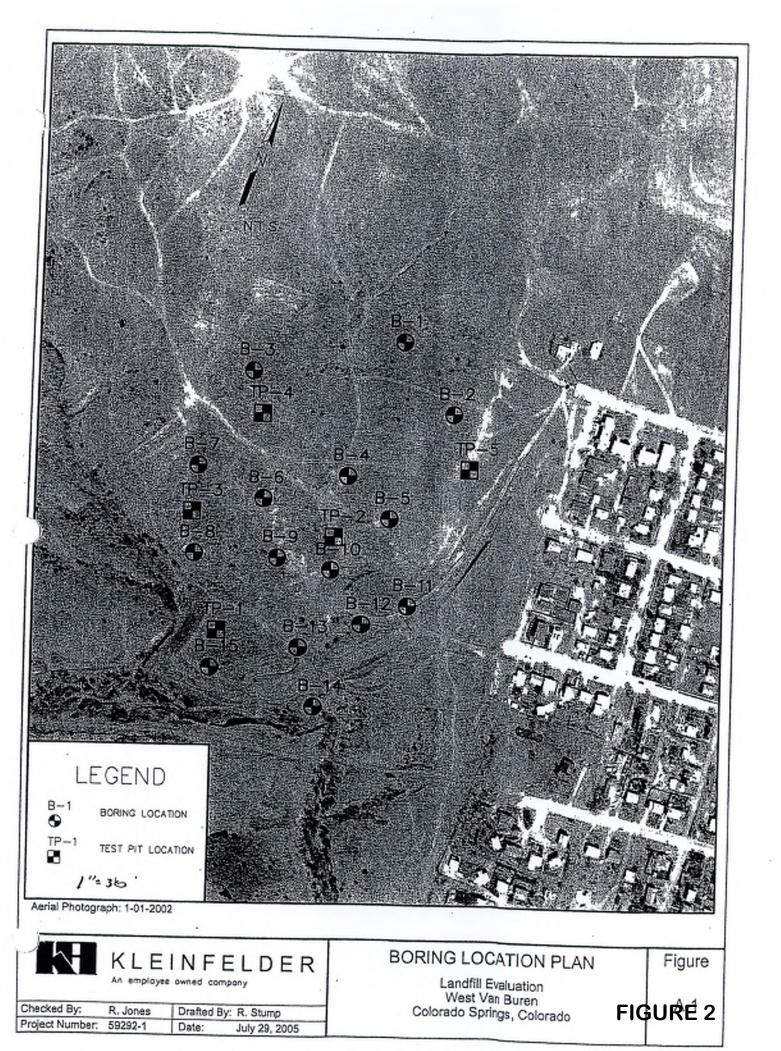

Respectfully submitted,

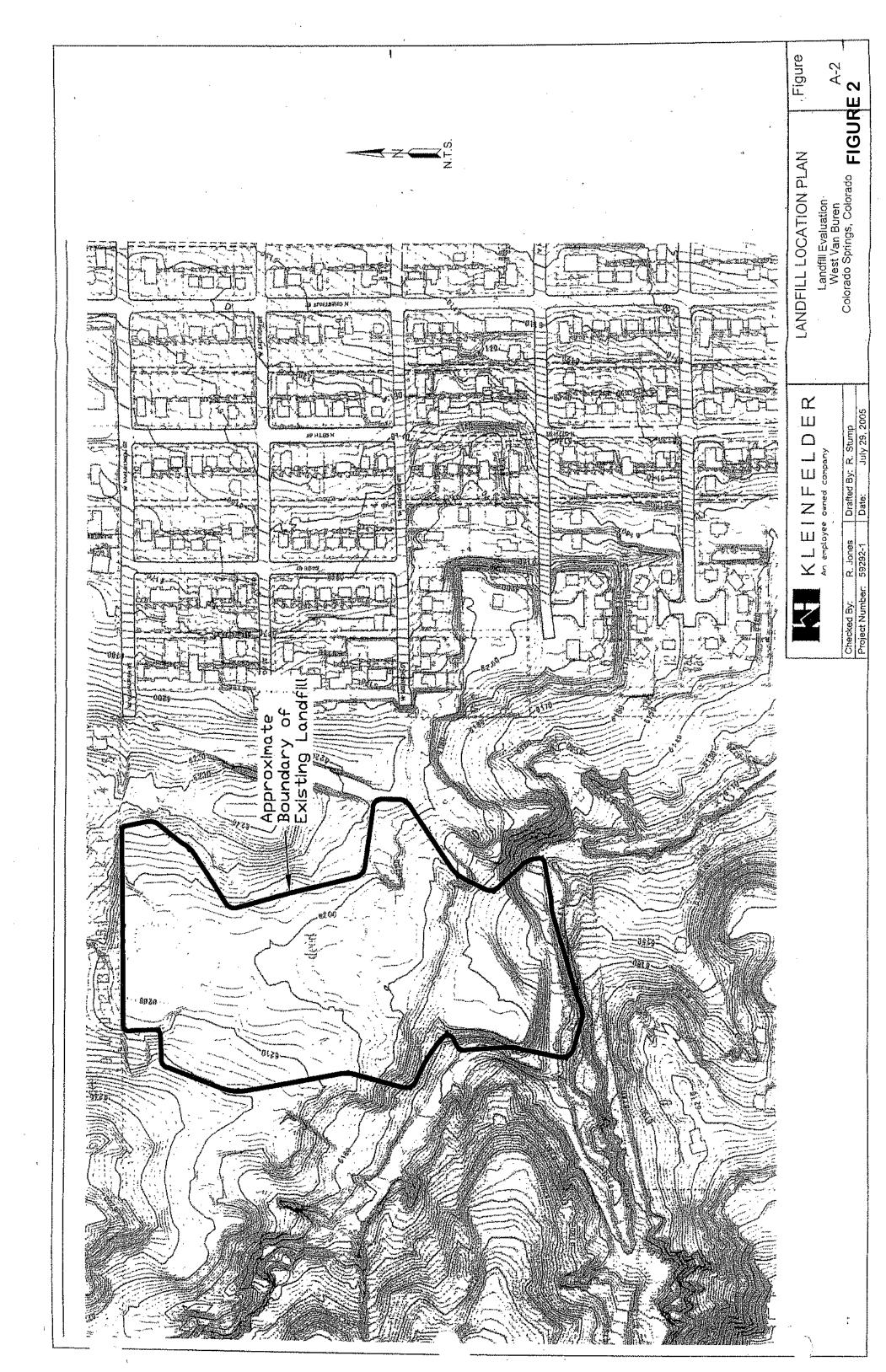

KLEINFELDER, INC.

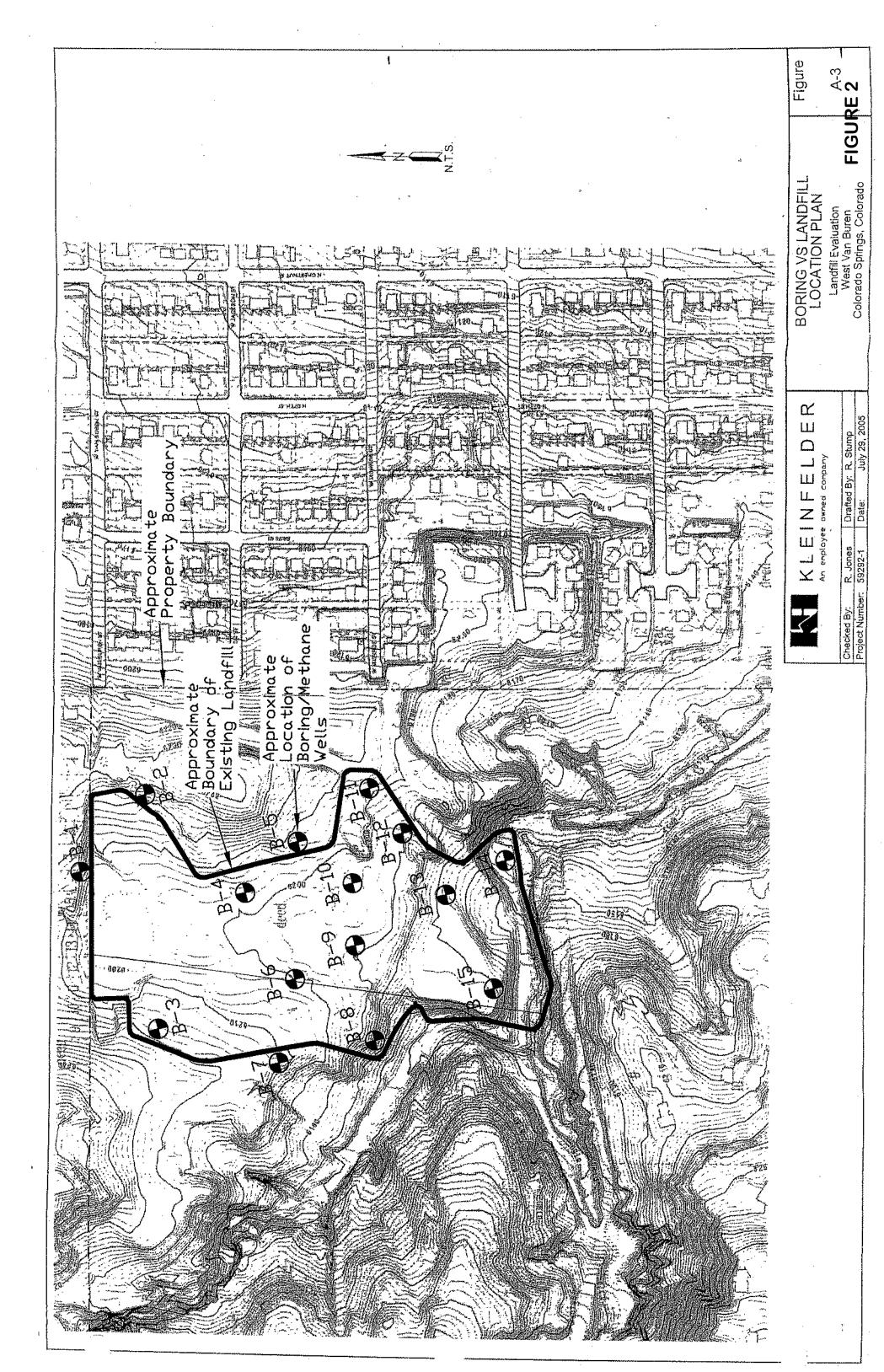
Rickey L. Johes / Staff Environmental Scientist

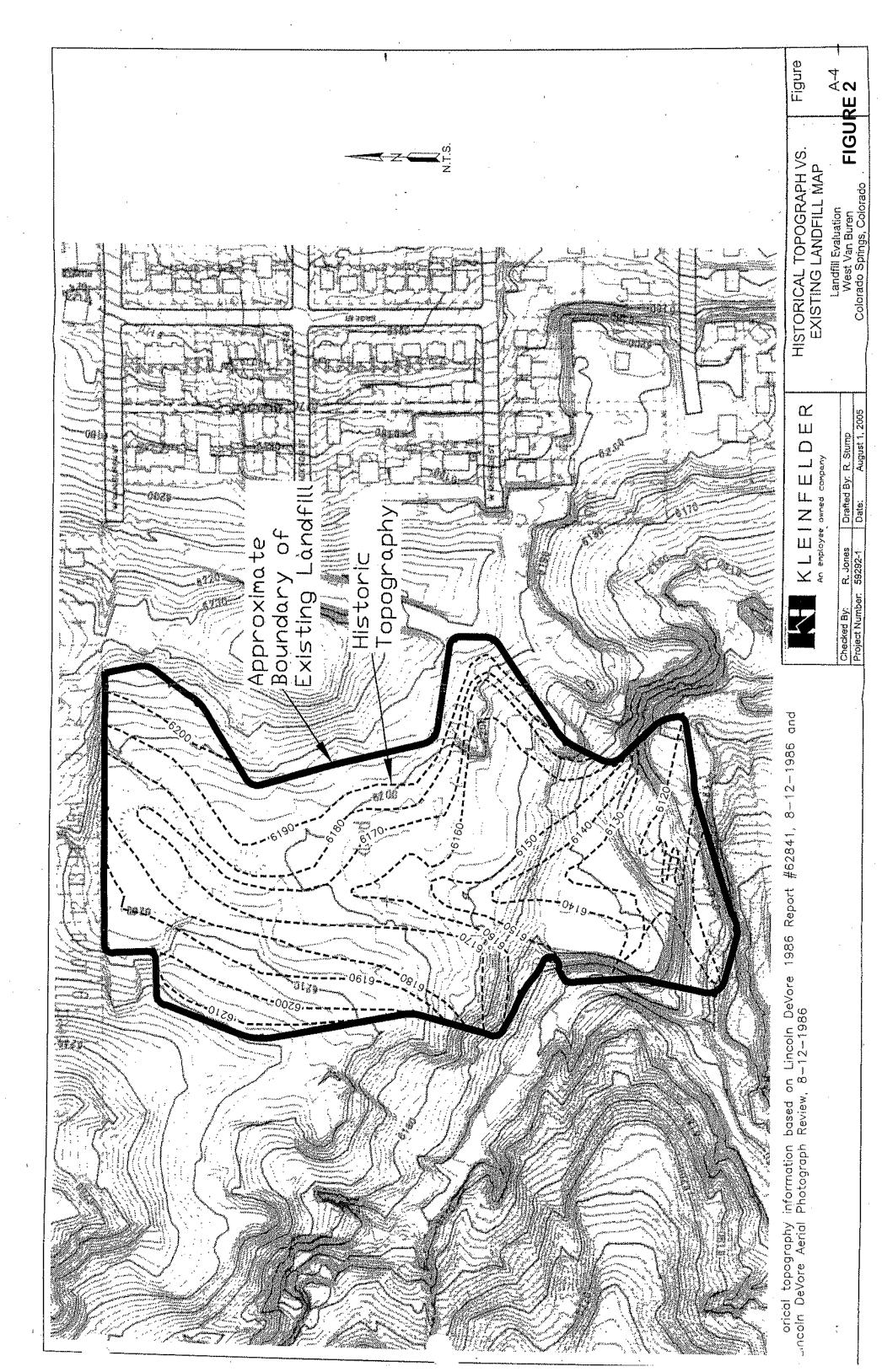
William J. Barriere, P.E. Area Manager

RLJ:WJB:ss




KLEINFELDER


APPENDIX A


j.

Boring Location Plan

KLEINFELDER

APPENDIX B

Logs of Test Borings

· ·

· · ·

. . .

FIGURE 2

59292-1	ENVIRONMENTAL B	ORING LE	GEND		SHEET	1 OF	1
DRILLING QUIPMENT XXX	PROJECT NAME Landfill Evaluation		LOCATIO		L		•
	DESCRIPTION	BLOW COUNTS	LABORATORY SAMPLES	P.I.D. READINGS (ppmv)	SAMPLE TYPE	NOTES	
MH ELASTIC SILT CH FAT CLAY CH FAT CLAY C	DED GRAVEL L VEL D SAND DED SAND Y or SILT, LOW PLASTICITY ADED GRAVEL w/ SILT ADED GRAVEL w/ CLAY GRADED GRAVEL w/ CLAY GRADED GRAVEL w/ CLAY AYEY GRAVEL ADED SAND w/ SILT DED SAND w/ CLAY GRADED SAND w/ CLAY	Indicates number of blows required to drive 0 indicates number of blows required to drive the identified sampler 12 inches with a 140 lb. 0 the identified sampler 12 inches with a 140 lb. 0			SAMF GRAE SAMF GRAE SAMF GRAE SAMF (OD- NO NO RECO SAMP (OD- SAMP (OD- SAMP (OD- SAMP (OD- SAMP (OD- SAMP (OD- SAMP SAMP (OD- SAMP SAMP SAMP SAMP (OD- SAMP SAMP SAMP SAMP SAMP (OD- SAMP SAMP SAMP SAMP SAMP SAMP (OD- SAMP SAMP SAMP SAMP SAMP SAMP SAMP SAMP	FIED CALIF LER 3") VERY 9Y LER DARD FRATION LER DARD FRATION LER (2") FILTER (2") FILTER (8/12) NITE (3/8") uid Limit stic Index =percent load pansive re rcent e ot	× ×

PROJECT NO. 59292-1 LOG OF E	BORING	1	SHEET	1 OF 1
CME 55 (W/ AUTOHAMMER) PROJECT NAME Landfill Evaluation		LOCATION SE	È TEST BI CATION PL	DRING AN
PPE OF BIT 4" AUGER HAMMER DATA: WT. 140 LBS. DROP 30 INCL		NI/A TOT	AL DEPTH HOLE	30
STARTED: 07/15/05 DRILLING AGENCY Spectrum Exploration	GROUNDWATER	NONE	DATE AT E	
Grass and Weeds				
LOG OF MATERIAL	BLOW	CON13 LABORATORY SAMPLES	SAMPLE TYPE WELL	NOTES
FILL, Silty SAND, with debris (rubber, glass, metal, paper, wire, cloth), strong organic odor, dry, brown	1. ·			
			11111111111111111111111111111111111111	
B-CLAY, stiff to very_stiff, moist, brown. No debris or odor.			47472727272 411111111111	0.010" Stotted
			11111111	10, 0
	20			
	30 35			
BEDROCK: CLAYSTONE, hard to very hard, slightly mo to moist, brown to gray.	ist			•
	50/6			DE-9-
LOGS KLEINFELDER		ŝ	FIGU	

•

59292-1 DRILLING GUIPMENT	PROJECT NAME		<u>6</u> 2				1 of 2
CME 55 (w/ AUTOHAMI YPE OF BIT 4" AUGER					SEE TES	N PLA	N
STARTED: 07/15/05	HAMMER DATA: WT. 140 LBS. DROP 30	1 52647		/A	TOTAL DEP OF HOLE	TH 5	50
COMPLETED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWA DEPTH	JER	11.0	DATE	AT DR	ILLING
BACKFILLED: 07/13/03	LOGGED BY R. Jones SURFACE CONDITIONS	4					`
	Grass and Weeds					<u></u>	
	LOG OF MATERIAL		BLOW	LABORATORY SAMPLES	SAMPLE TYPE		NOTĖS
FILL, Silty strong org	SAND, with debris (plastic, glass, rubb anic odor, moist, light brown.	er),					
²- ****						日 路 .	R R R
3						2222	n,
							EN EN
						10/	CC SEEN
							1
							SLOTTED
			1				0.010*
FILL, CLAY,	with debris (gloss, plastic), soft, mois	t black	1 2			111	
to gray.		C DIGCK			43976		10,
					2000		
	· · ·						
			1				
			2		F		
	· · · ·						
Sandy CLAY,	stiff to very stiff, moist, brown to blo	ock.					ļ
	EINFELDER				-FIC	2110	F J →

PROJECT NO. 59292-1		LOG OF	BORIN	IG 2		SHEET 2 OF				
ORILLING EQUIPMENT CME 55 (w/ AU	JTOHAMMER)	PROJECT NAME LOCATION SEE					TEST BORING			
YPE OF BIT 4"	AUGER H	AMMER DATA: WT. 140 LBS. DROP 30	INCHES SUR	TACE N/		OTAL DEPTH OF HOLE	50			
STARTED: 07/1		NG AGENCY Spectrum Exploration	GRÓUNDW. DEPTH	ATER	NONE	DATE A	T DRILLING			
COMPLETED: 07/1	· .	ED BY R. Jones			······································					
BACKFILLED:	Gras	ACE CONDITIONS is and Weeds					·			
C DEPTH (FEET) SYMBOL		LOC OF MATERIAL		BLOW	LABORATORY SAMPLES	SAMPLE TYPE	NOTES			
30 31 32 33 34 35 36 37 38 39 99 99	andy CLAY, sti ontinued).	ff to very stiff, moist, brown to	block	4 5 6						
0				16 25 36						
-6	DROCK: CLAYS moist, brown	TONE, hard to very hard, slight to gray.	y moist	· ·						
51 2 3 4 5						······································				
	·			-						
0		· · · · · · · · · · · · · · · · · · ·		<u> </u>		FIG	URE 2			

DJECT NO. 59292-1	LOG OF				T 1 OF 1
ME 55 (W/ AUTOHAMM	(ER) Landfill Evaluation	Landfill Evaluation		LOCATION	BORING PLAN
E OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 IN	L CLEVANOIA	N/A	TOTAL DEPTH OF HOLE	20
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATER	NONE	DATE AT	DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones SURFACE CONDITIONS			• 	······
BACKFILLED:	Grass and Weeds				······································
(FEEI)	LOG OF MATERIAL	BLOW	COURT CABORATORY SAMPLES	SAMPLE TYPE	NOTES
FILL, Silty glass, galv odor.	SAND, with gravel, debris (rubber, plast anized wire), dry, light brown, strong o	ic, rganic			
				11111111 12700 - 1111	
				1111111111111	L CLAREN
	LAYSTONE, hard to very hard, slightly r	32 50			0.010" SLO
to moist, b	rown to gray.	noist		11111111111111111111111111111111111111	
	· · · · · · · · · · · · · · · · · · ·	50/6			
	EINFELDER		<u> </u>	FIG	URE 2

<u>59292-1</u>	LOG OF	BORIN	<u>G</u> 4			HEET 1 OF 2
RILLING QUIPMENT CME 55 (W/ AUTOHAMMER)	PROJECT NAME Landfill Evaluation			T BORING		
	HAMMER DATA: WT. 140 LBS. DROP 30	{		. TO	TAL DEPTI HOLE	^H 45
STARTED: 07/15/05 DRIL	LING AGENCY Spectrum Exploration	GROUNDWA DEPTH	.TER	18.4	DATE	AT DRILLING
	GED BY R. Jones FACE CONDITIONS	ļ				·····
BACKFILLED: Gra	iss and Weeds	•	·····			
C SYMBOL	LOG OF MATERIAL		BLOW	ABORATORY SAMPLES	SAMPLE TYPE	NOTES
FILL, Silty SANE organic odor, r	D, with debris (plastic, wood), stro moist, light brown. a debris (wood, plastic), soft to m					
stiff, moist, bla	ick to brown.	reatum	3 5			0.010" SLOTED SCREEN-
			5	·		
		-	. 4 4 4			
	· · · · · · · · · · · · · · · · · · ·					
	INFELDER				FIG	URE 2

ROJECT NO. 59292-1	LOG OF	BORIN	G 4			SHEET	2 OF 2
RILUNG QUIPMENT CME 55 (W/ AUTOHAMMER)	PROJECT NAME Landfill Evaluatio	n		LOCATION	SEE TE	ST B	
	IAMMER DATA: WT. 140 LBS. DROP 30		ICE N	/.	TOTAL DE		45
STARTED: 07/15/05 DRILL	ING AGENCY Spectrum Exploration	GROUNDWA DEPTH		18.4	DATE	AT	DRILLING
	ED BY R. Jones						
BACKFILLED: SURF. Gras	ACE CONDITIONS ss and Weeds						
(FEET) SYMBOL	LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	SAMPLE TYPE	WELL	NOTES
		<u> </u>	16	LAI	3		
I _ I _ Surr, moist, blo	debris (wood, plastic), soft to r ck to brown (continued).	nedium	28 45				
	st, brown, no debris.						
							-
1/1							
BEDROCK: CLAYS	TONE, hard to very hard, slightly	moint					
to moist, brown	to groy.	morst					
		,					
	· · · · · · · · · · · · · · · · · · ·						
	•						
4							
	, · · ·						
		· • • • • • • • • • • • • • • • • • • •					

PROJECT NO. 59292-1	LOG OF	BORING 5		SHEET 1 OF 1
RILLING QUIPMENT CME 55 (w/ AUTOHAMMER)	PROJECT NAME			TEST BORING CATION PLAN
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 IN	CHES SURFACE N/	/ TOTA	L DEPTH 20.5
STARTED: 07/15/05 DRIL	LING AGENCY Spectrum Exploration	GROUNDWATER DEPTH	·····	ATEAT_DRILLING
COMPLETED: 07/15/05 LOG	GED BY R. Jones		·······	
BACKELLED. SUR	FACE CONDITIONS iss and Weeds			
			 ≿	<u> </u>
C (FEET) SYMBOL	LOG OF MATERIAL	BLOW	ABORATORY SAMPLES	MELL TYPE
	f, moist, brown, no debris, no odo	r.		2' STICK UP
2-1//				
3-	•			ο
5-1/1				
				SCREEN-
		r		10/20 SAND
7/				
\overline{Y}		, I		01
		16		0.010
		33		.01-
-1/1				
\neg / \land				
7/1				
	· · ·			
BEDROCK: CLAYST	FONE, hard to very hard, slightly re	oist 50/6		
to moist, brown	to gray.			
••• ·	. <i>.</i>			
••••••••••••••••••••••••••••••••••••••		2000 - 20		

LOGS KLE	İNFELDER			FIGURE 2

PROJECT NO. 59292	1	LOG	OF BOR	ING 6		SHEET 1 OF 2
DRILLING EQUIPMENT CME 55 (V	AUTOHAMMER)	PROJECT NAME Landfill Eva			LOCATION SEE	TEST BORING
YPE OF BIT	4" AUGER	HAMMER DATA: WT. 140 LBS. 1	DROP 30 INCHES	SURFACE N/	L TOTA	L DEPTH
STARTED:		LING AGENCY Spectrum Exp		NDWATER		ATE AT DRILLING
		ED BY R. Jones				
BACKFILLED;	Gra	ACE CONDITIONS and Weeds				·····
o DEPTH (FEET) SYMBOL		LOG OF MATERIAL		BLOW	ABORATORY SAMPLES	SAMPLE TYPE
	FILL, SAND with light brown.	gravel, fine to coorse gr	reined, moist,			
	FILL, CLAY, with medium stiff, m	debris (glass, wood, plas oist, light brown.	tic), soft to			United States of Control of Contr
9- 7- 1-	Dark clay layer	at 10'		3 2	-	10, 0.010" SLOTTED
12 13 14 15 16				2		
	₩ ₩		. *	3		
22				2 2		
			· .			
FN: LOGS						FIGURE 2
	N.L.E.	NFELDER				

. •

којест но. 59292-1	LOG OF	BORIN	IG 6			SH	EET Z	2 or 2
RILLING DUPMENT CME 55 (W/ AUTOHAMMER)	PROJECT NAME Landfill Evaluation	n		LOCATION	SEE LOCA	TEST TION	BOR PLAN	ING N
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30	INCHES SURF	ACE N		TOTAL OF HO	DEPTH	5	
STARTED: 07/15/05 DRI	LLING AGENCY Spectrum Exploration	GROUNDW/ DEPTH	ATER	18.9				LLING
	GED BY R. Jones							
BACKFILLED: SUF	RFACE CONDITIONS ass and Weeds							
5 3			_ vi	S RY	·····	TYPE		
SYMBOL	LOG OF MATERIAL		BLOW	RATC		14	WELL	NOTES
			<u>∞</u> 8	LABORATORY SAMPLES		SAMPLE	~	
	h debris (glass, wood, plastic), so	oft to	7					
medium stiff,	moist, light brown (continued).		8					
					[
					ļ			
Silty to sondy	CLAY, soft to medium dense, moi		0					
- Drown.	CEA, SUIT to medium dense, mor	st, light	4					
1/1								
$\sqrt{\Lambda}$. .							
7/1								
1/1								
		·						
BEDROCK: CLAYS	STONE, hard to very hard, slightly	moist						
to moist, brown	to gray.							
	*							
								·····

PROJECT NO. 59292-1		LOG OF	BORING	7	SHEET 1 OF 1
DRILLING EQUIPMENT CME 55 (W/ AU			····		EE TEST BORING OCATION PLAN
	· · · · · · · · · · · · · · · · · · ·	T. 140 LBS. DROP 30		N/A TO	DTAL DEPTH
STARTED: 07/1		Spectrum Exploration	GROUNDWATER DEPTH	NONE	
TE COMPLETED: 07/1		Jones	depth	INDINE	DATE AT DRILLING
BACKFILLED:	SURFACE CONDITIONS Grass and Weed				· · · · · · · · · · · · · · · · · · ·
		<u>1</u> 2	<u> </u>	<u> </u>	
DEPTH (FEET) SYMBOL	LOG OF N	ATERIAL	BLOW	ABORATORY SAMPLES	NOTES
2	L, Silty SAND, with some stic, galvanized wire, rubh nse, moist, brown.	ber), medium dense	glass, to 24 32 42 42		2' STICK UP BENTONITE IS IN IN IIIIIIIIIIIIIIIIIIIIIIIIIIIIII
26 	· · · · · · · · · · · · · · · · · · ·				
FN: LOGS	KLEINFEI		Į.		FIGURE 2
		نے لیے لیے ا	·····		·

Source LOG OF BORING 8 Description Reserved Proceed make Proceed make Proceed make Proceed make Vec of off 4" AUGCR Hexadex action Doctoring see make Doctoring see make Vec of off 4" AUGCR Hexadex action Starter Doctoring see make Vec of off 4" AUGCR Hexadex action R. Jones Starter Doctoring see make Starter 07/15/05 Loade set R. Jones Doctoring see make NOTE Booknetteb 07/15/05 Loade set R. Jones Doctoring see make NOTE Booknetteb 07/15/05 Loade set R. Jones Doctoring see make Doctoring see make Booknetteb 07/15/05 Loade set R. Jones Doctoring see make Doctoring see make Booknetteb 07/15/05 Loade set R. Jones Doctoring see make Doctoring see make Booknetteb 07/15/05 Loade set Doctoring see make Doctoring see make Doctoring see make Booknetteb 100 Sandy CLAY, medium stiff, molst, brown, no debris or Doctoring see make Doctoring see make 12 Sandy CLAY, with weathered claystane fragments, molst, gray, light Doctoring see make Doctoring see make <	PROJECT NO.						
Come SSC Lass Park yme or err 4" AUGCR yme or err	59292-1		LOG OF	BORING	8	SHEET	- 1 OF 1
Image: State in a construction of the last last of the construction o	DRILLING EQUIPMENT CME 55 (w/ AUTOH/	· · ·	fill Evaluatio	n .	LOCATION	SEE TEST E	BORING
SAMELE 07/15/05 Dature backet Spectrum Exploration Second and the second	YPE OF BIT 4" AUG	ER HAMMER DATA: WT. 1	40 LBS. DROP 30	NCHES SURFACE	N/A	TOTAL DEPTH	
Image: Second constraints Constraints Constraints Constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second const		DRILLING AGENCY Spec	ctrum Exploration	· · · · · · · · · · · · · · · · · · ·		······································	
Arrow of the second Weeds LOC OF MATERIAL NOTES 1 Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: second to be second to b	COMPLETED: 07/15/05		əs				······································
1 Sandy CLAY, medium stiff, moist, brown, no debris or odor. 2 3 4 5 6 7 8 9 9 0 12 2 13 12 13 14 15 16 16 7 17 8 18 9 10 2 11 12 12 10 13 14 15 16 16 17 17 18 18 19 19 20 21 CLAY, with weathered claystone fragments, moist, gray. 22 21 21 CLAY, with weathered claystone fragments, moist, gray. 22 23 24 24 25 9 26 9 27 9 28 9 29 10 20 10 21 10 22 10 23 10 24 10 25 10 26 10 27 10 28	BACKFILLED:	SURFACE CONDITIONS Gross and Weeds				······ ··· ··· ·	*
1 Sandy CLAY, medium stiff, moist, brown, no debris or odor. 2 3 4 5 6 7 8 9 9 0 12 2 13 14 15 6 16 7 17 8 9 0 12 2 13 14 15 6 16 7 17 8 18 9 10 2 11 15 16 7 17 10 18 10 19 10 20 10 21 CLAY, with weathered claystone fragments, moist, gray. 22 10 23 10 24 2 25 10 26 BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 26 50/6	1 1 1	LOG OF MATE	RIAL	AC REAL	COUNTS ABORATORY SAMPLES		NOTES
20- 10 21- CLAY, with weathered claystone fragments, moist, gray. 12 22- 23- 24- 24- 25- 26- 26- BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 50/6	1 Sandy 0 2 3 4 5 6 7 7 8 9 10 12 13 14 15 16 17	CLAY, medium stiff, moi	st, brown, no deb	ris or		50 111111111111111111111111111111111111	BENTOTIED SCORE OS/01
21							
22-23-24-25-26-26-26-25-26-26-26-26-26-26-26-26-26-26-26-26-26-				······			
23 24 25 26 27 BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 29 30 50/6		n weathered claystone fi	ragments, moist, i				
24 25 26 7 BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 29 30 50/6				f			
25- 26 7 BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 29 30 50/6							-
26 BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 29 30 50/6							
BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 30							
30 50/6	BEDROCK:	CLAYSTONE, hard to ve brown to gray.	ry hard, slightly n	noist			
	29						
	FN: LOGS	LEINFELD	DER	<u></u>	}	FIGU	RE 2

	PROJECT NO. 59292	1	LOG OF	BORI	NG 9		SHEET 1 OF 2
STARTE: 07/13/05 Decurs Addrew Spectrum Exploration DECADEN IVA Dort AT DELUNG Downsch Conditions Downsch Conditions DECADEN IVA Downsch Conditions BeckenLich: Downsch Conditions Decaden IVA Decaden IVA Image: Starter in the				on		351	TEST BORING CATION PLAN
Stantics: 07/15/05 DRLUG AGENT Spectrum Exploration Spectrum Exploration Bowner,TED: 07/15/05 LOGED FR. Jones Stantics: 07/15/05 NOTES Bowner,TED: 07/15/05 Concerver R. Jones Stantics: 07/15/05 NOTES Bowner,TED: 07/15/05 LOGE OF MATERIAL Stantics: 07/15/05 NOTES Bowner,TED: 07/15/05 LOG OF MATERIAL Stantics: 07/15/05 NOTES Bowner,TED: 07/15/05 LOG OF MATERIAL Stantics: 07/15/05 NOTES Bowner,TED: 07/15/05 LOG OF MATERIAL Stantics: 07/05/05 NOTES Bowner,TED: 07/15/05 LOG OF MATERIAL Stantics: 07/05/05 NOTES Bowner,TED: 07/15/05 LOG OF MATERIAL Stantics: 07/05/05 NOTES FILL, Silty SAND, with growel, dry. brown. Interview of the stantics Interview of the stantics Interview of the stantics 9 FILL, Silty SAND, dense (sand) to medium stiff Interview of the stantics Interview of the stantics Interview of the stantics 11 Interview of the stantics 11 Interview of the stantics Interview	YPE OF BIT	4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30		RFACE N/	A TOT	NL DEPTH 50
Boundary Ltp: Concernence Rest Barry	1 2	07/15/05	DRILLING AGENCY Spectrum Exploratio			······	
Encland Grass and Weeds Encland Org 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 3 0 4 0 3 0 4 0 3 0 4 0 3 0 4 0 5 0 6 0 7 0 7 0 8 0 9 0 11 0 12 0 13 0 14 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 13 0 14 0 15	COMPLETED:	07/15/05	LOGGED BY R. Jones				
LOG OF MATERIAL NOTES 0 FILL, Sifty SAND, with grovel, dry, brown. Image: Second secon	SACKFILLED:		SURFACE CONDITIONS Grass and Weeds				A
1 FILL, Silty SANO, with grovel, dry, brown. 2 3 3 4 3 5 6 7 8 FILL, Silty SAND to CLAY, with gravel, with debris (plastic, wood, glass), dense (sand) to medium stiff (clay), moist, brown, strong organic odor. 11 11 12 11 13 4 14 5 15 5 16 5 17 5 18 5 19 5 10 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 21 21 5 22 5 23 6 24 5 25 6 26 7 27 6			·····	I	10	s R	
1 FILL, Silty SANO, with grovel, dry, brown. 2 3 3 4 3 5 6 7 8 FILL, Silty SAND to CLAY, with gravel, with debris (plastic, wood, glass), dense (sand) to medium stiff (clay), moist, brown, strong organic odor. 11 11 12 11 13 4 14 5 15 5 16 5 17 5 18 5 19 5 10 5 10 5 11 5 12 5 13 5 14 5 15 5 16 5 17 5 18 5 19 5 20 21 21 5 22 5 23 6 24 5 25 6 26 7 27 6	1 1		LOG OF MATERIAL		BLOW	ABORATO SAMPLE	
7 8		FILL, Silty S	SAND, with grovel, dry, brown.				1' STICK UP I BENTONITE BENTONITE UI I
(plastic, wood, glass), dense (sand) to medium stiff 2 (clay), moist, brown, strong organic odor. 2 12 11 13 11 14 11 15 5 16 5 17 5 18 5 19 5 20 5 21 5 22 5 23 5 24 5 25 6 26 6	7						10/20 SAND
	.9- .0- 	— (plastic, woo	od, glass), dense (sand) to medium	is stiff			111111
		·			(I		
	14-	•	· · ·				
	16	÷				•	
	21				5 6 6		
	23-23-24-2000						
	25-26-26-26-26-26-26-26-26-26-26-26-26-26-						
				• •			
	50				<u>. </u>		FIGURE 2

59292-1 RILLING QUIPMENT	LOG OF	ROKIN	6 9				2 OF 2.
OUIPMENT CME 55 (w/ AUTOHAN		'n		LOCATION	SEE TE	ST B IN P	ORING LAN
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30	INCHES SURF	ACE N/		TOTAL DEP OF HOLE	ĩΗ	50 -
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWA DEPTH	TER	15.3	DATE	AT	DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones SURFACE CONDITIONS						
BACKFILLED:	Grass and Weeds						
	LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	SAMPLE TYPE	WELL	NOTES
1 FILL, Silty (plastic, 2 (clay), m	y SAND to CLAY, with gravel, with debris wood, glass), dense (sand) to medium oist, brown, strong odor (continued).	s stiff	3 3 3	<u></u>			
				·			4
			4				
Silty SANC), moist, gray.		7				
BEDROCK: to moist,	CLAYSTONE, hard to very hard, slightly brown to gray.	moist					
		······					
	- · ·						
	·		7474-54-7-				
		111					
LOGS K	LEINFELDER			···	FI	зн	RE 2

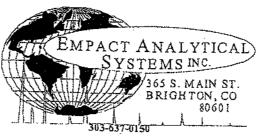
PROJECT NO. 59292-	1	LOG OF E	BORIN	G 10	······		SHEET 1	OF 2
CME 55 (W	/ AUTOHAMMER)	PROJECT NAME Landfill Evaluation			1	EE TES	ST BORING	3
PE OF BIT	4" AUGER H	AMMER DATA: WT. 140 LBS. DROP 30 IN	CHES SURF	ACE N/	. 7	OTAL DEP		
STARTED:		ING AGENCY Spectrum Exploration	GROUNDWA DEPTH		NONE	F HOLE	AT DRILLI	
COMPLETED:	07/15/05 LOGG	ED BY R. Jones	DEPTH		NORL		AI DRILLI	
BACKFILLED:	SURF	ACE CONDITIONS						
		ss and Weeds			<u></u>	·	<u></u>	
o ULPIH (FEET) SYMBOL		LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	SAMPLE TYPE		TES
1- 2- 3-	FILL, GRAVEL, fi	ne to medium grained, moist, bro	wń.					SER-
	FILL, CLAY, with rubber), soft to	debris (plastic, galvanized wire, p medium stiff, moist, black, strong	per, g odor.				720 SAND	
		-					3' 0.010"	
				2 4 5				
	• •		P	5				
								-
	Cloyey SAND, den	se to very dense, moist, light bro	wn.	9 12 17				
	·							
	- ·							· →
LOGS		NFELDER				TT.	SURE	Z

PROJECT NO. 59292	1		LOG OF	BORIN	G 10	····	SHEE	T 2 OF 2
DRILLING EQUIPMENT		PROJECT NAME	fill Evaluatio			LOCATION SEI	E TEST	BORING
PE OF BIT	AUTOHAMM 4" AUGER	······	40 LBS. DROP 30		ACE N/A	TOT,	AL DEPTH	PLAN
STARTED:	07/15/05		ctrum Exploration				HOLE DATE AT	41 DRILLING
COMPLETED:	07/15/05	LOCGED BY R. Jon		UEPIH	<u> </u>			DIGLERIO
BACKFILLED:		SURFACE CONDITIONS Grass and Weeds	·······					
DEPTH (FEET) SYMBOL		LOG OF MAT	ERIAL		BLOW COUNTS	LABORATORY	PLE TYPE WELL	NOTES
50					шÖ	SAN	SAMPLE	
	Clayey SAN (continued)	ND, dense to very de).	ense, moist, light	brown	14 18 23			
4—//////// 5—///////////////////////////								
6								
			2					-
				•				
	BEDROCK: (CLAYSTONE, hard to	very hard, slightly	moist	50/6	·		
	<u>to moist, o</u>	rown to gray.	······					
								-
-								
_	:							
		-						
				.]				
	N 1.							
l			~ ~ ~	<u> </u>			FIG	JRE 2
1: LOGS	KL	EINFEL	DER	·······			100	

PROJECT NO. 59292-1	LOG OF I	BORING	11	SHEET 1 OF 1
DRILLING EQUIPMENT CME 55 (w/ AUTOHAMME	PROJECT NAME		LOCATION SEE	TEST BORING TION PLAN
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 M		N/A TOTAL OF HO	DEPTH
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATER	19.5 DAT	
COMPLETED: 07/15/05	LOGGED BY R. Jones	02FIN		······
PACKELLED	SURFACE CONDITIONS Grass and Weeds			
			2 X X Y	J 77
DEPTH (FEET) SYMBOL	LOG OF MATERIAL	MOTE	ABORATORY SAMPLES	MOTES REF
2	ik, medium grained, moist, light brown with debris (rubber, galvanized wire, co ack, strong organic odor. AYSTONE, hard to very hard; slightly r own to gray.	3 2 2 mvas), 2 1		
29			F	-IGURE 2
K K L	EINFELDER			

	92-1		LOG OF	BORIN	IG 12	· · · · · · · · · · · · · · · · · · ·		SHEET	2 of 2
RILLING QUIPMENT	<u>5 (w/ AUTOHAMN</u>		PROJECT NAME Landfill Evalua	tion		LOCATION	SEE TE	ST B	
YPE OF B			AMMER DATA: WT. 140 LBS. DROP 3		RFACE N/		TOTAL DE		31
STARTE	D: 07/15/05	DRILLI	NG AGENCY Spectrum Explorati			19.3	DATE	AT	DRILLING
	ETED: 07/15/05	LOGGE							<u> </u>
BACKFI	LLĘD:	Gross	CE CONDITIONS s ond Weeds						·····
				<u></u>		ž		i	
1	51 M 50 L	-	LOG OF MATERIAL		BLOW	LABORATORY SAMPLES	SAMPLE TYPF	WELL	NOTES
	BEDROCK, (continued)	CLAYS	TONE, hard to very hard, wet	, black	28	<u> </u>			
2					1		Γ		
3									
' 4'	*								
õ	1								
	ļ								
'									
3		-							_
_									ſ
-									
_									
	R + + +								
_									
7					,				
							•	****	
-									
-			•						
-									
	·								
-									
4									
-									
ł				·			- Et	eH	RE 2
LOGS	K L	ΕI	NFELDER		:		, F *I	30	

ROJECT NO. 59292-1	LOG OF BORIN	G 12	s	HEET 1 OF 2
RILLING QUIPMENT CME 55 (w/ AUTOHAMM	ER) PROJECT NAME Landfill Evaluation	LOC	ATION SEE TES	T BORING N PLAN
PE OF BIT 4" AUGER		FACE N/A	TOTAL DEPT	
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration GROUNDW		OF HOLE DATE	AT DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones	:	<u></u>	
BACKFILLED:	SURFACE CONDITIONS Grass and Weeds	<u> </u>		···
SYMBOL	LOG OF MATERIAL	BLOW COUNTS	SAMPLES SAMPLES	NOTES
1 FILL, SAND	and GRAVEL, loase, dry, light brown.		3 63	1' STICK UP
P P P P P P P P P P P P P P	with debris (aluminum, newspaper, stiff, moist, black, strong organic odor.	12 8		4. 0.010" SLOTTED SCREEN 4. 0.010" SLOTTED SCREEN
		6		
- BEDROCK; .CL	AYSTONE, hard to very hard, wet, black.	3 4 4		
		<u> </u>	┉┉┈┙┲┙┰┲	SURE 2


PROJECT NO. 59292-1	LOG OF I	BORING 1	3	SHEET 1 OF
DRILLING EQUIPMENT CME 55 (W/ AUTOHAM	PROJECT NAME Landfill Evaluatio	n	LOCATION SI	EE TEST BORING
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 II	NCHES SURFACE ELEVATION	TO TO	TAL DEPTH 31.5
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATER DEPTH	20.8	DATE AT DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones			
BACKFILLED:	SURFACE CONDITIONS Grass and Weeds			
C DEPTH	LOG OF MATERIAL	BLOW	ABORATORY SAMPLES	MELL TYPE
Fill, Grav	el, fine to medium grained, moist, light with debris (newspaper, wood), mediur black, strong organic odor.	n stiff. 3 4 4		
	EINFELDER			FIGURE 2

_	OJECT NO. 59292	2-1		000 :=:	······	L(DG	OF	BOI	RIN	G 1.				SHEET		2
2		W/ AUTOHAMM	IER)	PROJEC	Lar	dfill	Eva	luati	on			LOCAT	ON SEE		ST B	ORING LAN	
'P	E OF BIT	4" AUGER	н	AMMER (DATA: WT	140	.8S, (DROP 30	INCHES	SURE	ATION N	/A	TOTA OF 1	L DEP	TH	31.5	
J	STARTED:	07/15/05	DRILLI	ING AGE	NCY S	ipectrur	n Exp	loratio	n GR	OUNDW/ PTH		20.8			AT	DRILLING	
ŝ	COMPLETED	07/15/05	LOGGE			ones			7 -	, ,,,		-				DIVICENTO.	-
	BACKFILLED	:	SURFA Gras	s ond	DITIONS	s											
	(FEET) SYMBOL					ATERIAL			<u>.</u>		BLOW COUNTS	LABORATORY		SAMPLE TYPE	WELL	NOTES	
0	-XXXX	Possible Fi	LL, so	andy C	LAY. s	tiff. mr	nist h	CO.W.D			9	Ľ <u>ľ</u>)	Š			
1-			Conti	nued).						۰۲ ــــــــــــــــــــــــــــــــــــ	14 20						
2- 3-		BEDROCK,	CLAYS	TONE,	mediu	im hard	l, moi	st.		/	~~						
د 4]															
5																	
⊃ ≎	_	-															
 7																	
																	_
}—																	
)	-																Į
) 	-																
													:				
_																	
										ļ							ļ
										ĺ							
																	ł
	1				· .												
_											-						
-																	
									•								
															•		
_																	
_																	ĺ
-																	
7																	
		•															
1															211	RE 2	

PROJECT NO. 59292-1	LOG OF I	BORING 14	. SHEET 1 OF 1
DRILLING EQUIPMENT CME 55 (w/ AUTO	PROJECT NAME		LOCATION SEE TEST BORING LOCATION PLAN
TPE OF BIT 4" AU		CHOEVOE	TOTAL DEPTH
STARTED: 07/15/		J ELEVANON	A OF HOLE 20.5
COMPLETED: 07/15/		GROUNDWATER DEPTH	10.2 DATE AT DRILLING
BACKFILLED;	SURFACE CONDITIONS		
	Grass and Weeds		<u>> </u>
DEPTH (FEET) SYMBOL	LOG OF MATERIAL	BLOW	LABORATORY SAMPLES SAMPLE TYPE WELL
0 1 2 3 4	CLAY, with some gravel, stiff, moist, brown	n.	
5			SLOTTED SCREEN
10 10 12 12 13 14		3 5 6	10, 0.010° SLO
15- 16- 17- 18- 19- 20-	K: CLAYSTONE, hard to very hard, slightly r st, brown to gray.	noist 50	
21 22 23 24	······································		
25 26 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7			
29	KLEINFELDER	·	FIGURE 2

PROJECT NO. 59292-1	LOG OF I	BORING 15	5	SHEET 1 OF
DRILLING EQUIPMENT CME 55 (W/ AUTOHAMA	(ER) PROJECT NAME Landfill Evaluatio	n ·	LOCATION	SEE TEST BORING
MPE OF BIT - 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 H	NCHES SURFACE N	1, 1	OTAL DEPTH OF HOLE 41.5
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATER		_ DATEAT_DRILLING
COMPLETED: 07/15/05	LOCCED BY R. Jones			
BACKFILLED;	SURFACE CONDITIONS Grass and Weeds			
o DEPTH (FEET)	LOG OF MATERIAL	BLOW	LABORATORY SAMPLES	HIT NOTES
1 FILL, GRAV moist, ligh	EL, fine to coarse groined, medium de t brown, no debris or odor.	nse,		
	عد .	4 5/ 7	·	0.010" SLOTTED SCREEN-
FILL, GRAVEL paper, wood	, fine to coarse grained, with debris (), medium dense, moist, light brown.	glass,		
		8 11 15		
	EINFELDER		·····	FIGURE 2

Billing Product Aude Product Aude Landfill Evaluation Landfill Landfill Evaluation Ver or Set 4" AUG2R Immute take with 140 Las. Once 30 Bioles Billings N/A Total Offic Dett 1.1.3 Statter: 07/13/05 DetLing Addrew Spectrum Exploration Billings N/A Total Offic Dett 4.1.3 Immute take with 140 Las. Once 30 Bioles Billings N/A Total Offic Dett 4.1.3 Immute take with Addrew Spectrum Exploration Billings Diff. AT OFLIC Offic Dett Immute take with Addrew Spectrum Exploration Billings Diff. AT OFLIC Offic Dett Immute take with addrew Spectrum Exploration Billings Diff. AT OFLIC Diff. AT OFLIC Immute take with addrew Spectrum Exploration Billings Diff. AT OFLIC Diff. AT OFLIC Immute take with addrew Spectrum Exploration Billings Diff. AT OFLIC Diff. AT OFLIC Immute take with addrew Spectrum Exploration Billings Diff. AT OFLIC Diff. AT OFLIC Immute take with addrew Spectrum Exploration Billings Diff. AT OFLIC Diff. AT OFLIC Immute take with addrew Spectrum Exploration Billings Billings Diff. AT OFLIC Immute take with addrew Spectrum Exploratin addrew Spectrum Explorating	PROJECT NO. 59292-1	LOG OF	BORING 15		HEET 2 OF 2
Starts: 07/15/05 Datume Active: Spectrum Exploration Display=00000000 11.2 Data At 1.5 Starts: 07/15/05 Locab pr A. Jones Display=00000000 Display=000000000000000000000000000000000000	DRILLING EQUIPMENT	PROJECT NAME			
STARTE: 07/15/03 BecLine AGRX Spectrum Exploration DEXMONATE 31.7 DATE AT DEILLING COMPLETED: 07/15/03 LOGED BY R. Jones DEFENSION 31.7 DATE AT DEILLING MaxScrutz:: Straws and Weeds Brows and Weeds DEFENSION 31.7 DATE AT DEILLING Image: Straws and Weeds Brows and Weeds DEFENSION Straws and Weeds DEFENSION Straws and Weeds Image: Straws and Weeds LOG OF MATERIAL Straws and Weeds Straws and Weeds Straws and Weeds Image: Straws and Weeds LOG OF MATERIAL Straws and Weeds Straws and Weeds Straws and Weeds Image: Straws and Weeds LOG OF MATERIAL Straws and Weeds Straws and Weeds Straws and Stra					PLAN
Image: State of the state o	,		ECCANICAN V	OF HOLE	41.5
Backfull Stand Counting Crass and Weede LOC OF MATERIAL 31 Stand Counting	COMPLETED: 07/15/05		DEPTH	31.7 DATE	AT DRILLING
LOG OF MATERIAL 100 31 32 33 34 35 34 42 42 44 45 46 47 44 45 46 47 44 45 46 47 47 47 47 47 47 47 47 47 47		SURFACE CONDITIONS		<u> </u>	
S1 FILL. GRAVEL: fine to coarse grained, with debris 32 (continued). 33 (continued). 34 (continued). 35 (continued). 36 (continued). 37 (continued). 38 (continued). 39 (continued). 10 (continued). 11 (continued). 12 (continued). 13 (continued). 14 (continued). 15 (continued). 15 (continued). 16 (continued). 17 (continued). 18 (continued). 19 (continued). 10 (continued). 11 (continued). 12 (continued). 13 (continued). 14 (continued). 15 (continued). 16 (continued). 17 (continued). 18 (continued). 19 (continued). 10 (continued	In d	Joness and meeds		<u>ک</u> ایرا	
31 FILL GRAVEL fine to coarse grained, with debris 2 32 "gloss, paper, wood), medium dense, moist, light brown 3 33 "gloss, paper, wood), medium dense, moist, light brown 3 34 "gloss, paper, wood), medium dense, moist, light brown 3 35 "gloss, paper, wood), medium dense, moist, light brown 3 36 "gloss, paper, wood), medium dense, moist, light brown 15 37 "gloss, paper, wood, medium dense, moist, light brown 15 38 "gloss, paper, wood, medium dense, moist, light brown 15 39 "gloss, paper, wood, medium dense, moist, light brown 15 39 "gloss, paper, wood, medium dense, moist, light brown 15 39 "gloss, paper, wood, medium dense, moist, light brown 15 34 "gloss, paper, wood, medium dense, moist, light brown 15 34 "gloss, paper, wood, medium dense, moist, light brown 15 34 "gloss, paper, wood, medium dense, moist, light brown 15 34 "gloss, paper, wood, medium dense, moist, light brown 15 35 "gloss, paper, wood, medium dense, moist, light brown 16 36 "gloss, paper, wood	YMBC	LOG OF MATERIAL	MON	MTOF PLES	E NOTES
31 FILL GRAVEL: fine to coarse grained, with debris 2 32 (continued). 3 33 (continued). 3 34 3 3 35 (continued). 15 36 5 5 37 5 5 38 5 5 39 15 32 10 5 5 42 5 6 43 6 6 14 15 5 15 7 32 16 7 32 17 15 32 18 15 32 19 32 32 10 15 32 11 15 32 12 34 35 13 15 32 14 15 15 15 16 16 16 17 18 17 18 18 18 16 16 <tr< td=""><td></td><td></td><td>Со Ш</td><td>SAM</td><td>WOILS</td></tr<>			Со Ш	SAM	WOILS
32 Second Seco	31 FILL, G	RAVEL, fine to coarse grained, with debris			
34 35 36 37 38 39 39 15 42 15 42 15 42 12 43 12 44 45 45 16 46 12 18 13 19 10 10 12		paper, wood), medium dense moist liph	brown 3		
35 36 37 38 39 ************************************	33				
36 37 38 39 10 15 42 BEDROCK: CLAYSTONE, hard to very hard, slightly moist 42 to moist, brown to gray. 43 44 44 45 45 10 16 10 51 10 52 10 53 10 64 10 74 10 75 10 76 10 77 10 78 10 79 10 70 10 70 10 71 10 72 10 74 10 75 10 76 10 77 10 78 10 79 10 70 10 70 10 71 10 72 10 74 10 75 10 76 10 77 10 78 10 79 10 70 10 70 10 74 10 <td>34</td> <td></td> <td></td> <td></td> <td></td>	34				
37 38 39 '' 42 BEDROCK: CLAYSTONE, hard to very hard, slightly moist 42 to moist, brown to gray. 43 - 44 - 45 - 46 - 19 - 51 - 51 - 52 -	35				
38 39 15 42 BEDROCK: CLAYSTONE, hard to very hard, slightly moist 15 43 44 44 44 45 46 16 14 17 15 18 15 19 10 19 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10<	36				
39 15 42 bEDROCK: CLAYSTONE, hard to very hard, slightly moist 43 44 44 44 45 46 16 15 17 18 18 19 19 14 19 14 19 14 19 15 19 15 19 16 19 17 19 18 19 19 19 10 19 10 19 10 19 10 10 10 10 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 10 10 10 10 10 10 10 10	37				
BEDROCK: CLAYSTONE, hard to very hard, slightly moist be moist, brown to gray.	38				_
42 BEDROCK: CLAYSTONE, hard to very hard, slightly moist 32 43 to moist, brown to gray. 32 44 45 46 47 48 19 51 22 3 44 45	³⁹				
42 BEDROCK: CLAYSTONE, hard to very hard, slightly moist 32 43 to moist, brown to gray. 32 44 45 46 47 48 19 51 22 3 44 45			15		
43- 44- 45- 46- 47- 48- 49- 50- 51- 51- 52- 33- 44- 5- 6- 6- 7-	BEDROCK	: CLAYSTONE, hard to very hard, slightly	1 20 1		
		, brown to gray.			
	-				
	9				
	io]				
		·			
	•				
	-				
		LEINFELDER	<u> </u>	FIG	

NATURAL GAS ANALYSIS

PROJECT NO. : 0507104 ANALYSIS NO. : 01 COMPANY NAME : **KLEINFELDER INC** ANALYSIS DATE: JULY 22, 2005 ACCOUNT NO. : SAMPLE DATE : JULY 20, 2005 PRODUCER : TO: LEASE NO. : CYLINDER NO. : NAME/DESCRIP : WATERMAN LANDFILL EVALUATION #59292 B-4 TAKEN @ 3:30 ***FIELD DATA*** SAMPLED BY : RICKEY L JONES AMBIENT TEMP :: SAMPLE PRES, : GRAVITY : SAMPLE TEMP. : VAPOR PRES. : COMMENTS . NORM. GPM @ GPM @ COMPONENTS MOLE% 14.65 14.73 HELIUM 0.00 HYDROGEN 0.00 **OXYGEN/ARGON** 0.84 NITROGEN 25.36 Ċ02 15.47 METHANE 58.33 ETHANE 0.00 0.000 0.000 PROPANE 0.00 0.000 0.000 ISOBUTANE 0.00 0.000 0.000 N-BUTANE 0.00 0.000 0.000 **ISOPENTANE** 0.00 0.000 0.000 N-PENTANE 0.00 0.000 0.000 HEXANES+ 0.00 0.000 0.000. TOTAL 100.00 0.000 0.000 BTU @ 60 DEG F 14.65 14.73 GROSS DRY REAL = 588.3 591.5 GROSS WET REAL = 578.0 581.3 RELATIVE DENSITY (AIR=1 @14.696 PSIA 60F) : 0.8135

0.99823

NOTE: REFERENCE GPA 2261(ASTM D1945), 2145, & 2172 CURRENT PUBLICATIONS

COMPRESSIBILITY FACTOR :

FIGURE 2

KLEINFELDER

APPENDIX C

Laboratory Data Sheets

NATURAL GAS ANALYSIS

PROJECT NO. : COMPANY NAME : ACCOUNT NO. : PRODUCER : LEASE NO. : NAME/DESCRIP :

0507104 ANALYSIS NO. : KLEINFELDER INC ANALYSIS DATE: JULY 22, 2005 SAMPLE DATE : CYLINDER NO. : WATERMAN LANDFILL EVALUATION #59292

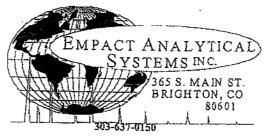
B-10 TAKEN @ 1:50

RICKEY L JONES

SAMPLED BY : SAMPLE PRES. : SAMPLE TEMP. : COMMENTS :

FIELD DATA

AMBIENT TEMP .: GRAVITY : VAPOR PRES. :


TO:

02

JULY 20, 2005

001 000 000 000	NORM.	GPM @	GPM @
COMPONENTS	MOLE%	14.65	14.73
HELIUM	0.00		-
HYDROGEN	0.00		
OXYGEN/ARGON	2.15		
NITROGEN	31.19		
CO2	23.28		
METHANE	43.38		1.1
ETHANE	0.00	0.000	0.000
PRÓPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0:00	0.000	0.000
TOTAL	100.00	0.000	0.000
BTU @ 60 DEG F		14.65	14.73
GROSS DRY REAL =		437.6	the second se
GROSS WET REAL =		429.9	440.0
		429.9	432.3
RELATIVE DENSITY (AIR=1 @1	4.696 PSIA 60F) :	0.9203	
COMPRESSIBILITY FACTOR :		0.99817	

NOTE: REFERENCE GPA 2261(ASTM D1945), 2145, & 2172 CURRENT PUBLICATIONS

NATURAL GAS ANALYSIS

PROJECT NO. : COMPANY NAME : ACCOUNT NO. : PRODUCER : LEASE NO. : NAME/DESCRIP :

0507104 ANALYSIS NO. : KLEINFELDER INC ANALYSIS DATE: JULY 22, 2005 SAMPLE DATE : CYLINDER NO. ; WATERMAN LANDFILL EVALUATION #59292 B-15 TAKEN @ 2:35

FIELD DATA SAMPLED BY : SAMPLE PRES. : SAMPLE TEMP. : COMMENTS :

RICKEY L JONES

AMBIENT TEMP .: GRAVITY : VAPOR PRES. :

03

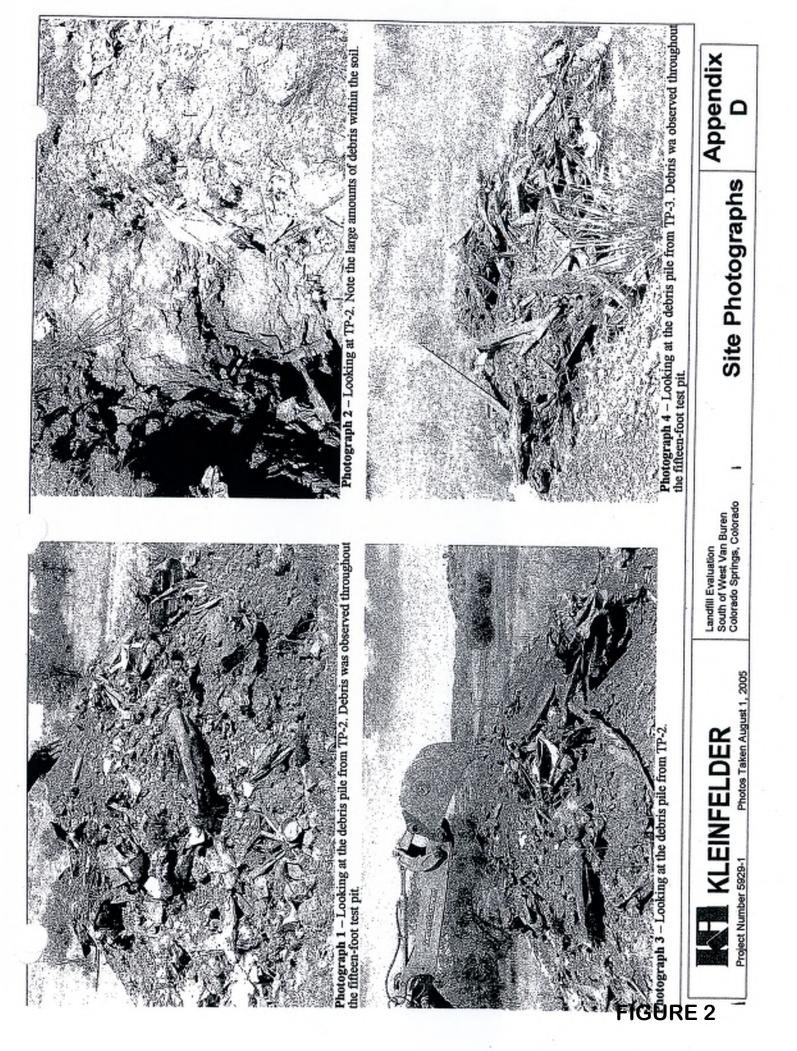
TO:

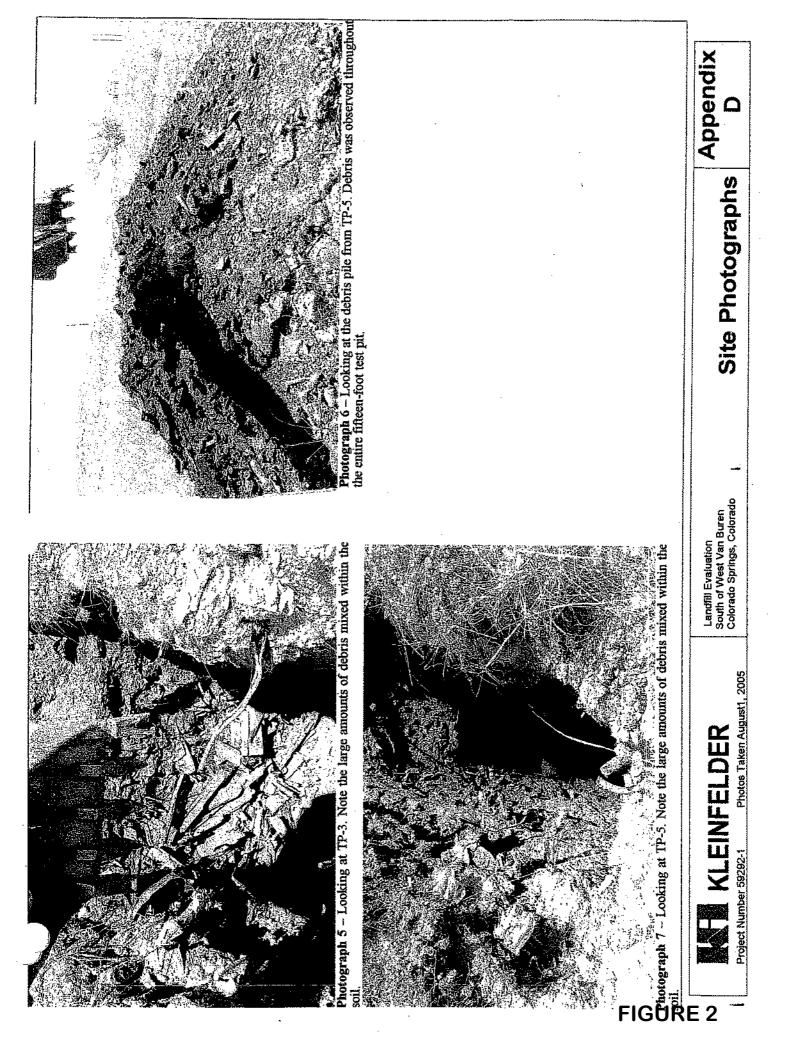
JULY 20, 2005

	NORM.	GPM @	GPM @
COMPONENTS	MOLE%	14.65	14.73
HELIUM	0.00	-	-
HYDROGEN	0.01	-	_
OXYGEN/ARGON	0.82		-
NITROGEN	28.05	- .	-
CO2 .	22.35	-	-
METHANE	48.77	-	
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000
BTU @ 60 DEG F		14.65	14.73
GROSS DRY REAL =		492,0	494.7
GROSS WET REAL =	·	483.4	486.1
RELATIVE DENSITY (AIR=	1 @14.696 PSIA 60F) ;	0.8909	

COMPRESSIBILITY FACTOR :

0.99811


NOTE: REFERENCE GPA 2261(ASTM D1945), 2145, & 2172 CURRENT PUBLICATIONS


KLEINFELDER

APPENDIX D

·

Site Photographs

Appendix D Soil Boring Investigation November 2005

November 30, 2005

Kleinfelder File No. 63249

Mr. Ted Waterman, President Waterman, Inc. P.O. Box 27560 Albuquerque, New Mexico 87125

Subject: Soil Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

Dear Mr. Waterman:

Kleinfelder is pleased to present the results of our soil boring investigation for the Mesa Valley Springs Property in Colorado Springs, Colorado (Subject Site). Our scope of work included the drilling and logging of three sets of soil borings, determining the depth to the top and bottom of the solid waste zone, performing groundwater measurements for each boring, recording the materials removed from the soil borings, and preparing a report presenting the results of the soil boring investigation.

SUMMARY

This investigation was conducted on a vacant parcel of land located at the Mesa Valley Springs Property in Colorado Springs, El Paso County, Colorado.

During this assessment the following tasks were completed:

- The completion of three sets of soil borings. Set 1 included three borings that were equally spaced at 150-foot intervals between Borings 14 and 15. Set 2 included three borings that were installed in a straight line, spaced at 200-feet intervals, in the vicinity of Boring 1 and Boring 4. Set 3 included three borings placed at 200-foot intervals from Boring 15 to Boring 2. These borings were placed as shown on the drawing provided to Kleinfelder.
- 2) Each boring was drilled beyond the bottom of the landfill and extended to a depth of at least three feet below the bottom of the landfill. Depths were determined for the top and bottom of the solid waste zone. All measurements were taken from the ground surface. Additionally, the depth to groundwater was measured for each boring, if encountered, during drilling operations.
- The materials removed from the soil borings were recorded. Solid waste that was encountered in each boring was classified as the following materials: (1) wood; (2) paper or paper products; (3) concrete; (4) metal; (5) lumber; (6) asphalt.

SCOPE

This soil boring investigation was conducted in general accordance with our proposal dated October 31, 2005. The purpose of this study was to conduct a soil boring investigation to record the depths of the existing landfill debris and to characterize the types of solid wastes observed. This study did not include investigating other environmental issues such as soil or groundwater contamination. This study included preparing a description of the materials observed in the borings based on visual observation only. No testing or other methods were utilized to describe the subsurface conditions.

SITE LOCATION & DESCRIPTION

The Subject Site is a vacant parcel encompassing approximately 48-acres of land, located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado. The Subject Site is generally located within the northwest ¼ of the southeast ¼ of Section 1, Township 13 South, and Range 67 West of the 6th PM. The El Paso County Assessor's parcel number is 7401200002. The Subject Site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the Site and the surrounding area slopes down to the south towards the intermittent stream that borders the Subject Site. The topography of the site is irregular, but is dominated in the northeast by a prominent ridge, in the central portion by a valley, in the northwest by a system of ridges. A drainage forms the westerly and southerly side boundaries.

FIELD INVESTIGATION

Prior to the commencement of field activities at the Subject Site, Kleinfelder prepared a Site-Specific Health and Safety Plan as required by Occupational Safety and Health Administration ("OSHA"), to inform our personnel of the potential hazards that may be encountered and the required procedures to protect worker health and safety. Also, as required by law, Kleinfelder coordinated with utility companies to locate buried utilities in the vicinity of the Subject Site.

Subsurface Investigation

On November 22 and November 23, 2005, Kleinfelder mobilized to the Subject Site with a trackmounted drilling rig equipped with 4-inch continuous flight augers to drill nine (9) subsurface borings (Set-1, Set-2, and Set-3) to delineate the depth of solid wastes and also to evaluate what type of wastes were present. A map indicating the location of the borings is presented as Figure 1.

All borings were drilled beyond the bottom of the landfill extending to a depth of at least three feet below the bottom of the landfill. Landfill depths are indicted on the individual boring logs, which are included in Appendix A. Samples of the subsurface materials were collected at 5-foot intervals and observed in the field to record the type of solid waste present (e.g.: wood, paper or paper products, concrete, metal, lumber or asphalt). The types of wastes observed are documented on the boring logs. Waste material observed in the landfill included solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. Kleinfelder returned to the site on November 28, 2005 to measure the static water level in each boring.

63249/CSP5R063 Copyright 2005 Kleinfelder, Inc. Page 2 of 4

November 30, 2005

Table 1: Static Water Levels

Boring ID	Static Water Level (feet below grade)*
S1-1	24.5
S1-2	26.4
S1-3	27.6
S2-1	12.9
S2-2	14.7
\$2-3	20.6
<u>\$3-1</u>	16.5
- \$3-2	DRY
<u>83-3</u>	DRY

*DRY: No free groundwater was encountered during or immediately after drilling activities. Water levels shown above were measured 6 days after drilling.

FINDINGS

Nine (9) subsurface borings were drilled to delineate the depth of solid wastes and also to evaluate what type of wastes were present within the landfill. Boring 1 through 3 of Set 1 was located along the southern boundary of the property. Boring 1 through 3 of Set 2 was located in the northern portion of the Subject Site. Boring 1 through 3 of Set was located in the central portion. The findings of drilling and sampling activities are presented below in Table 2.

			Table 2: Findings		
Boring	Top Depth of Solid Waste Zone (feet below grade)	Bottom Depth of Solid Waste Zone (feet below grade)	Type of Wastes Observed	Approximate Elevation (Ground Surface)	Northing/Easting (Based on Hand- Held GPS)
S1-1	21	29	Wood, Glass, Brick	6173'	1,376,182.713/ 3,187,162.646
S1-2	25	47	Glass, Wood, Asphalt, Plastic, Styrofoam	6190'	1,376,242.324/ 3,187,011.935
S1-3	20	32	Paper, Plastic, Metal, Glass, Wood	6187'	1,376,271.587/ 3,186,861.445
S2-1	0	17	Glass, Plastic, Metal, Concrete, Brick, wood	6217'	1,377,152.672/ 3,186,989.535
S2-2	0	20	Glass, Plastic, Wood, Metal	6214'	1,377,000.586/ 3,186,943.180
S2-3	3	20	Plastic, Wood, Galvanized Wire	6216'	1,376,838.383/ 3,186,896.896
S3-1			No Wastes	6202'	1,376,911.084/ 3,187,157.375
S3-2	2	9 1/2	Wood, Glass	6214'	1,376,648.805/ 3,187,262.094
S3-3	2	7 1/2	Glass, Wood, Plastic	6192'	1,376,395.670/ 3,187,232.289

Table 2: Findings

*--: No solid wastes were encountered during drilling or sampling activities

63249/CSP5R063 Copyright 2005 Kleinfelder, Inc. Page 3 of 4

November 30, 2005

KLEINFELDER 4815 List Drive, Unit 115, Colorado Springs, CO 80919 (719) 632-3593 (719) 632-2648 fax

LIMITATIONS

The limited sampling performed during this investigation was performed to provide a general indication of the depth and characterization of solid wastes. Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of work on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of work was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report is beyond the scope of our work and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since such detailed services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

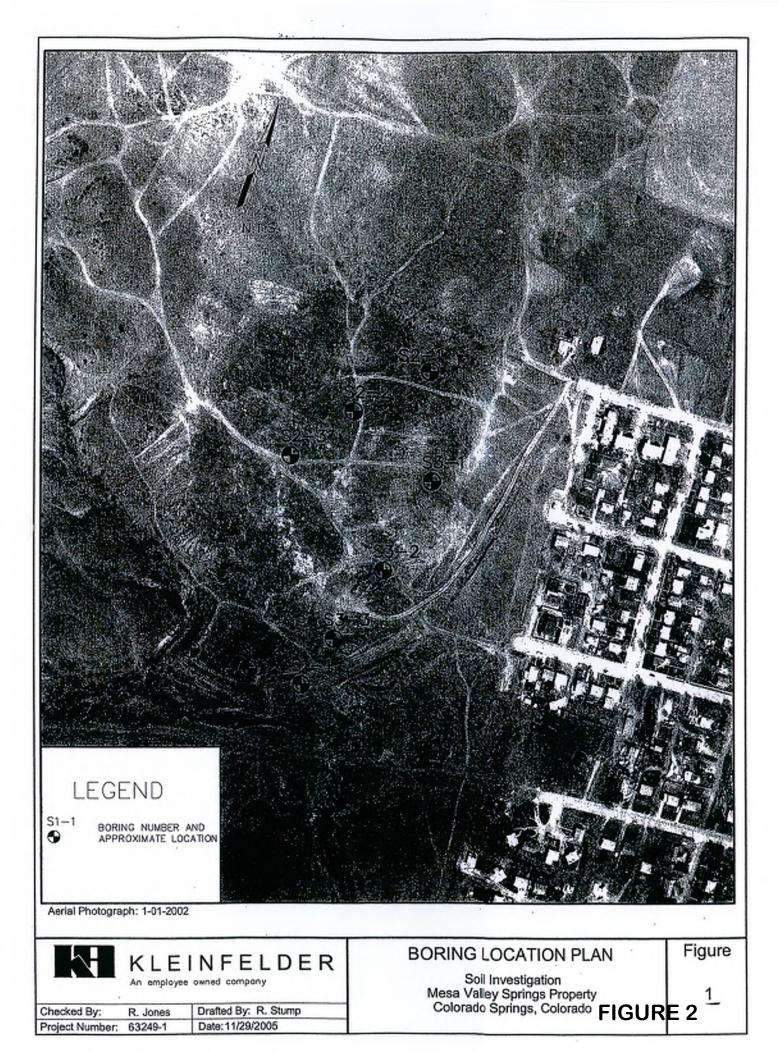
If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at (719) 632-3593.

Respectfully submitted,

KLEINFELDER, INC.

Rickey L. Jones Environmental Scientist

William J. Barriere, P.E. Area Manager


RLJ:WJB

63249/CSP5R063 Copyright 2005 Kleinfelder, Inc. Page 4 of 4

November 30, 2005

FIGURE 2

(719) 632-2648 (ax

LEGEND OF SYMBOLS USED ON BORING LOGS

LOG SYMBOLS

X

BULK / GRAB SAMPLE

MODIFIED CALIFORNIA SAMPLER (2.5 inch inside diameter)

STANDARD PENETRATION SPLIT SPOON SAMPLER (2.0-inch O.D. X 1.4-inch I.D.)

SHELBY TUBE (3 inch outside diameter)

BDBGM SIZE CORE BARREL (1.65-inch I.D.)

NX SIZE CORE BARREL (1.875-inch I.D.)

HQ-3 SIZE CORE BARREL (2.4-inch I.D.)

WATER LEVEL (level where first encountered)

WATER LEVEL (level after completion)

GENERAL NOTES

 Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual.

- No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- Logs represent general soil or rock conditions observed at the point of exploration on the date indicated.
- 4. In general, Unified Soil Classification designations presented on the logs were based on visual classification in the field and were modified where appropriate by visual classifications in the office, and/or laboratory gradation and index property testing.
- 5. NV = No Value; NA = Not Analyzed; NP = No Plasticity
- 6. Exp = percent expansion under defined surcharge pressure.
- 7. Com = Percent compression under defined surcharge pressure.
- 50/X indicates number of blows required to drive the identified sampler X inches with a 140 lb hammer falling 30 inches.

Project Number:

63249-1

USCS YMBOL	SOIL DESCRIPTIONS
GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
GM	SILTY GRAVELS, GRAVEL-SILT-SAND MIXTURES
GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
sw	WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES
SP	POORLY-GRADED SANDS, SAND-GRAVEL NIXTURES WITH LITTLE OR NO FINES
SM	SILTY SANDS, SAND-GRAVEL-SILT MIXTURES
SC	CLAYEY SANDS, SAND-GRAVEL-CLAY MIXTURES
ML	INORGANIC SILTS & VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS, CLAYEY SILTS WITH SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	INTEBEDDED SANDSTONE/CLAYSTONE
	LIMESTONE
-	CLAYSTONE
	SHALE
	SANDSTONE
	LANDFILL REFUSE
	FILL

Note: Fine grained soils that plot within the hatched area on the Plasticity Chart, and coarse grained soils with between 5% and 12% passing the No. 200 sieve require dual USCS symbols, ie., GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.

KLEINFELDER

R. Stump

BORING LOG LEGEND

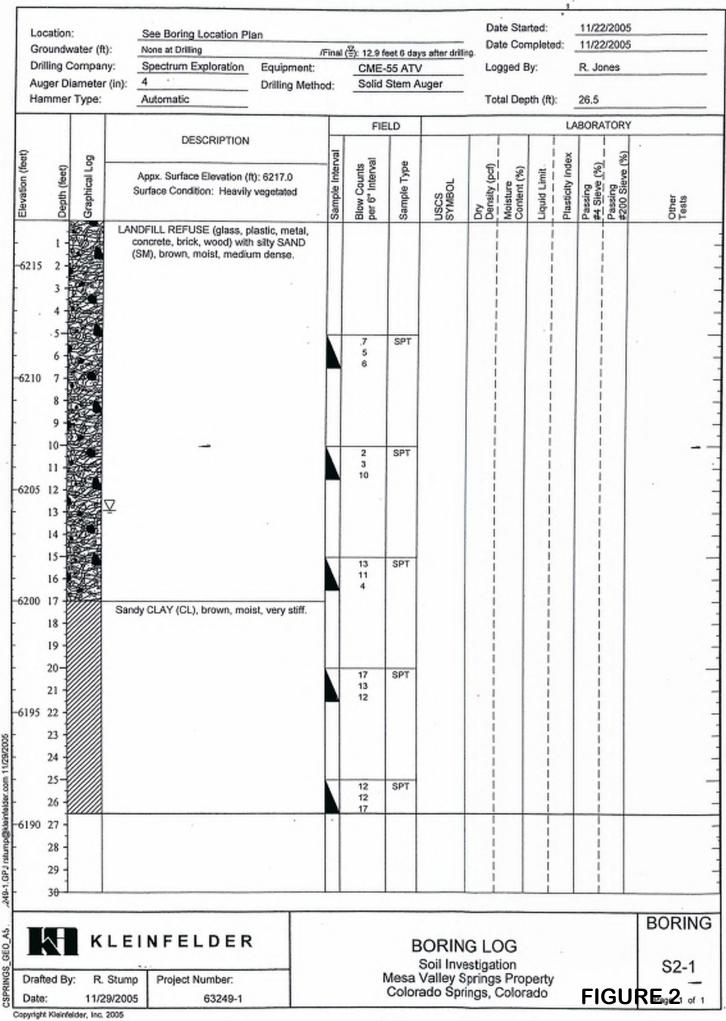
Soil Investigation Mesa Valley Springs Property Colorado Springs, Colorado

FIGURE 2

Date: 11/29/2005 Copyright Kleinfelder, Inc. 2005

Drafted By:

	ation	: vater (ft):		See Bor None at E	ring Location	n Plan			R			-	te Sta te Cor		ed:		2/2005		
		company			m Exploratio	on E	quipment:			feet 6 da -55 AT\	ys after drilling	2.	ged E			R. Jones			
		ameter		4	in Espioratio		Drilling Met			The second s	the second s	LUI	Plon r	·.		14. 00	100		
		Type:	().	Automa	tic		aning met	Method: Solid Stern Auger					al Dep	oth (ft))c	35.5			
								-	EI	ELD	1	LABORATORY						/	
					DESCRIPTIO	ON		h		T					1	T	1		
() and ()	8							2		0					xe		1 8		
Elevation (feet)	Depth (feet)	Graphical Log			face Elevatio ondition: Hea			Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other Tests	
-6170	1-2-3-			.L: Sandy (stiff.	CLAY (CL), b	irown, i	moist,												
	4 5 6 7								5 7 6	SPT								-	
6165	8				-				5	SPT									
	11								7 8										
6155	15-10-10-10-10-10-10-10-10-10-10-10-10-10-						•		7 7 9	SPT									
	19-								4	SPT								-	
	21 - 22 - 23 - 24 - 24 - 24 - 24 - 24 - 24		v	NDFILL RE with silty S. stiff.	FUSE (wood AND (SM), b	i, glass rown, r	, brick) noist,		6										
	25-26-27-2		-					Ņ	3 5 8	SPT								-	
-6145	28 - 29 - 30 -																		
						-												BORING	
Draft	c	y: R.	Stump 3/200	p Proje	ELDE ect Number: 63249-						Soil Invest Valley Sp ado Sprir			perty ado	,	FI	GU	S1-1 JRE 2 of 2	


					FIE	LD			LABORATORY					
Elevation (feet)	Depth (feet)	Graphical Log	DESCRIPTION	Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS	Dry Density (pcf) Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Slove (%) Passing #200 Slove (%)	Other Tests		
-6140	31 - 32 - 33 - 34 -		CLAYSTONE BEDROCK: gray, moist to slightly moist, medium hard to very hard.(continued)		8 12 20	SPT						-		
	35-				50/3	SPT								
	36 -													
-6135	37 -	-										-		
	39 - 40 -											_		
	41 -								I		İ	-		
	42 -											-		
-6130	43 -								1			-		
	45 -		-						i					
	46 -								1			-		
	47											-		
-6125	-											-		
	49 -								1					
	50 - 51 -								-					
	52 -											_		
-6120	-											-		
	54 -								i			-		
	55 -								-			-		
	56 -								-					
	57 -											-		
-6115						1								
	59 - 60 -								i			_		
	61 -							i	İ			-		
	62 -			1								-		
-6110	63 -											-		
-	64 -													
	(, D											BORING		
Dra	fted B		Stump Project Number:			Mesa	Soil Inv	IG LOG restigation Springs Pro rings, Colo	perty	y	FIGU	S1-1		
Dat	_	11/2 feider, inc.	9/2005 63249-1			000	auo sp	ings, Colo	ado		FIGU			

Location:	<u>in</u>	/Final $(\frac{\Sigma}{2})$: 26.4 feet 6 days after drilling						ted: npiete	-		/22/2005				
Groundwater (ft):	None at Drilling	Final				ġ.		-	-						
Drilling Company:	Spectrum Exploration	Equipment:		CME-	Logged By:				R. Jo	nes					
Auger Diameter (in):	•	Drilling Metho	od;	Solid	Stem A	uger	-				co •				
Hammer Type:	Automatic						То	tal Dep	otn (ft)	· -	50.0	<u></u>			
				FIE	LD					ιA	BOR/	TORY			
	DESCRIPTION				1			Ī			Į				
			rval	<u>ه</u> ۵	Ð		6			dex	(;	(%)			
Crevauon (reet) Depth (feet) Graphical Log	Appx. Surface Elevation (It): 6190.0	Inte	terv	d _y t	-	D D	8	ju ji	l n I ∧	و م				
Depth (feet) Graphical Log	Surface Condition: Heavily	vegetated	Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	sity	Moisture Content (%)	Liquid Limit	Plasticity Index	Siev	Passing #200 Sieve (%	its it		
Srap Dept			Sam	Ser t	Sam	SYNC	င်ခို	Noi	Ľigu	Plas	Pas #	#20 #20	Other Tests		
	LL: Silty SAND (SM), fine to	coarse	–	<u> </u>	1			 				****** †			
1-100000	grained, brown, moist, med	dium dense.						1					-		
2 -								ł		1		.	-		
						1		1							
3 -								1		f.					
4								i							
5185 5-6								} •							
				7 7	SPT			•					-		
6 -				7				1							
7 -								1							
8								ł					-		
-188888883 FI	LL: Sandy CLAY (CL), brown	n, moist, stiff				ł		ł					-		
⁹ - 🗱 👯	to very stiff.							E					-		
6180 10-				3	SPT			ŀ							
11 - 1000				5 6				ŧ		ŀ					
				D				•		i F		1	ء س		
12 -								F		ł			-		
13 -								t L		ŧ					
i4 -					1			ļ		ł		,	-		
-888888								1		ł	}				
6175 15-00000				3 7	SPT			1		l					
16 -				9				1							
17 -								1							
-888888								1		1			-		
18 -								l		ľ					
19 -			1					1		l E					
6170 20-				5	SPT			ļ		t					
21 -				8				1		((. –		
				9				\$		1			-		
22 -			1		1			1		1			•		
23 -								ļ		Į.					
24								1		1					
								i.		1					
6165 25 0000 L	ANDFILL REFUSE (glass, w	vood, asphalt,		4 6	SPT			l I		1	ļ		-		
26 ₩	plastic, styrofoam) with silt (SM), brown, moist, loose	y SAND to medium		6						ł		!	-		
27 - 27 - 2	dense.			-				1		1					
								i		Ì		1			
28								1		1					
29					1			i		í					
6160 30				<u>.)</u>		1	.1		1	l	<u> </u>	L			
	······	······						 .				·			
													BORING		
KL	EINFELDEF	2				BORIN	IG L	.OG							
													S1-2		
Drafted By: R. Stu	Imp Project Number:				Mesa	Valley S	Spring	gs Pr	oper	ty	_				
-					Colo	orado Špi	rings,	, Colo	orado) J	F	IGl			
Date: 11/29/2 copyright Kleinfelder, Inc. 2009	005 63249-1				Colo	Soil Inv Valley S rado Spi	rings	Colo	orado		F	IGl			

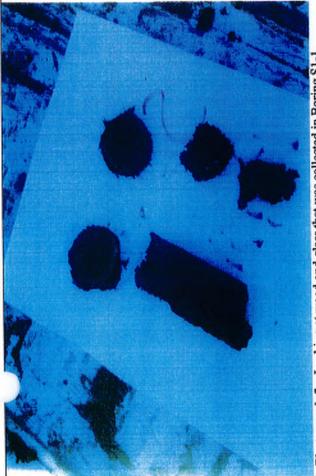
					FIE	LD	LABORATORY							(
Elevation (feet) Depth (feet)	Depth (feet)	Graphical Log	DESCRIPTION	Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Molsture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other Tests
	31 - 32 - 33 -		LANDFILL REFUSE (glass, wood, asphalt, plastic, styrofoam) with sity SAND ² (SM), brown, moist, loose to medium dense.(continued)		1 2 3	SPT								-
-6155	36 -				2 2 4	SPT								-
-6150	38 - 39 - 40 - 41 - 42 -				3 4 5	SPT								
-6145	43 - 44 - 45 - 46 -				11 13 17	SPT								
-6140	47 - 48 - 49 - 50 - 51 -		FILL: Sity SAND (SM), brown, moist.											
-6135	52 - 53 - 54 - 55 -													-
-6130	56 - 57 - 58 - 59 -													-
-6130	61 - 62 - 63 - 64 -													-
	fted E	By: R.	Stump Project Number: 29/2005 63249-1			E Mesa Color	BORIN Soil Inv Valley S rado Sp	IG LC estiga Springs	DG tion s Pro Color	perty		FI	GI	BORING S1-2 JRE 2 of 2

	cation				Location Pla			9			Del	te Star te Con		d:	11/22		and a second second second second second second second second second second second second second second second	
	Drilling Company:			Spectrum Exploration Equipment:								ged B			R. Jones			
			_									1900.0	<i>y</i> .	-	10.00	100		
	-	r Type:		Automatic		Strang moti		-			Tot	al Dep	ch (ft)	:	36.5			
-							T	EIF	LD					LA	BORA	TORY		
				DES	SCRIPTION		h		1					-				
Elevation (feet)	Depth (feet)	Graphical Log			Elevation (f ion: Heavity	· · · · · · · · · · · · · · · · · · ·	Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	nsity (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	ssing Sieve (%)	Passing #200 Sieve (%)	Other Tests	
ä	å	5					Sau	per Bio	Sar	SV	58	§₿	Ĕ	ä	5 ¥	5 G	10	
-6185	1 - 2 - 3 - 4 - 5 - 7 - 8 - 9 -		gra	sing SAND ;	(Swi, meaiu n, moist, me	im to coarse dium dense.		7 9 8	SPT									
-6175	10- 11 - 12 - 13 - 14 -				-			4 5 6	SPT									
-6170	15-							6 6 8	SPT								-	
F	20-		LAND		SE (naner n	lastic, metal,	+	3	SPT		- 1		i		i		-	
6165			glas	ss) with silty ist, loose.	SAND (SM), brown,		3 4										
-	23 -			÷					-									
-6160	26 -		V				·	3 5	361									
	28 - 29 - 30-																	
Draf	ted B	by: R.	Stump		LDER Number: 63249-1	2			Mesa	BORIN Soil Inve Valley S rado Spri	stiga	tion s Pro	pert	y	FI	GL	S1-3	
Draf	25- 26 - 27 - 28 - 29 - 30- Red E	by: R.	Stump 9/2005			2		5	Mesa	Soil Inve Valley S	stiga	tion s Pro	perty	y	FI	GL	S	

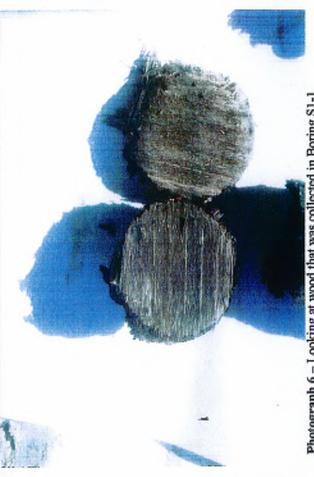
				L	FIE	LD				LA	BORATORY	
Elevation (feet)	Depth (feet)	Graphical Log	DESCRIPTION	Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS	Dry Density (pcf) Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%) Passing #200 Sieve (%)	Other Tests
-6155	31 -		LANDFILL REFUSE (paper, plastic, metal, glass) with silty SAND (SM), brown, moist, loose.(continued)	N	2 3 4	SPT						-
	33 -		Sandy CLAY (CL), brown to gray, moist, very stiff.									
	35-				7 10	SPT						-
-6150	+	-			16			1	- 1	-		-
	38 -											-
	39 -								i			-
	40 -								1			-
	41								1			-
6145	42 -											-
	43 -								1			-
	44 -											-
	45 -		-									
	46 -											
6140	47 -								1			-
	48 -								1			
	49 -								1			-
	50 -								i			_
	51 -								i			
-6135	-								1			
	53 -								1			
	54 -											
	56 -								ł			
-6130												
-	58 -											
	59 -											
-	60 -											-
-	61 -											
-6125	62 -											
-	63 -											
-	64											
						. 1						
	5	к	LEINFELDER			E	BORIN	IG LOG				BORING
Drat	fted E		. Stump Project Number: 29/2005 63249-1			Mesa Colo	Valley rado Sp	vestigation Springs Pro rings, Colo	pert	У	FIGUI	S1-3

Gro Dríl Aug	ling C ger Di	ater (ft) Company ameter	y:	See Boring Location Pl None at Drilling Spectrum Exploration 4			CME-	eet 6 day 55 ATV Stern A		g. Log	e Star e Com ged B al Dep	iplete y:	d:		/2005 /2005 nes	
Har	nmer	Type:		Automatic								un (st.)				
-				DESCRIPTION		al	FIE								TORY	
Lievation (feet)	Depth (feet)	Graphical Log		Appx. Surface Elevation (Surface Condition: Heavily		Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sleve (%	Other Tests
5210	2 - 2 - 3 - 4 - 5 -			NDFILL REFUSE (glass, metal) with silty SAND (SI moist, very loose to mediu	A), brown,		2	SPT				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- - -
5205	6 - 7 - 8 - 9 -						1									- - - -
6200	11 - 12 - 13 - 14 -		Ā				3 4 7	SPT SPT								- - - -
6195	16 - 17 - 18 - 19 -						3 4									- -
6190	21 - 22 - 23 -		Sa	ndy CLAY (CŁ), brown, m stiff to hard.	oist, medium		4 3 3	SPT								
	25- 26 -						12 28 35	SPT			\$ - 		 			
-6190	27 - 28 - 5 29 3 0 -															
Da	afted te:	By: F	L Stu /29/20	005 63249-1		<u></u>	<u> </u>	Mesa	BORIN Soli Inv Valley Frado Sp	estig: Spring	ation gs Pr	oper	ty	FI	GU	BORING S2-2 REP2 1 of 1

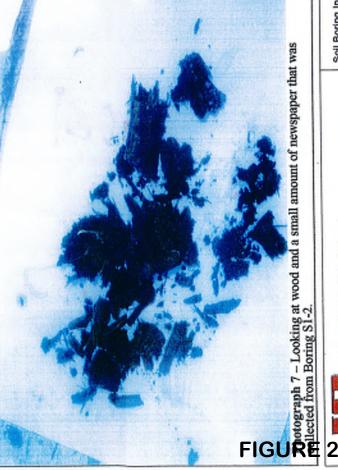

Loc	atio	n:		See Boring Location Pla						Date S				11/22/		
		water (i		None at Drilling	1	Final	()c 20.6 f	eet 6 day	s after drillin					11/22/		
Dril	ling	Compa	ny:	Spectrum Exploration	Equipment:			55 ATV		Logged	зB)	r: -		R. Jon	88	
Aug	ger D	Diamete	r (in):	4	Drilling Metho	:bc	Solid	Stem A	uger							
		r Type:		Automatic						Total D	ept	h (ft)	:	26.5		
		T	1			-		10					1.4	BORAT	INPY	,
				DESCRIPTION		H	FIE	LD			-	-		III		
0				DESCRIPTION						1	1	i	×	i	3	
Elevation (feet)		Graphical Log				Sample Interval	Sa Ba	2		8!	6	=	Plasticity Index	8	0	
5	Depth (feet)	8 8		Appx, Surface Elevation (ff		통	ne u	Sample Type	d d	÷ e	읽	E.	ž	0.91	ev.	
AB6	- 4	if d		Surface Condition: Heavily	vegetated	ě	0.9	nple	SB	the state	흼	Pin	sto	Ser	50	10 St
B B	ă	5				-Se	Blow Counts per 6" Interval	Sar	USCS SYMBOL	Dry Density (pcf) Moisture	Š	Liquid Limit	룶	Passing #4 Sleve (%)	#20	Other Tests
			FI	LL: Silty SAND (SM), brown	, moist.		-							1		
-6215	1	-								i		i		1		-
	2					11								1 1		
	-					11						i		l i		
-	3	協思		NDFILL REFUSE (plastic, v	wood, wire)	11		ŀ I				!		1	1	
-	4			with silty SAND (SM), brow	m, moist,											
				loose to medium dense.						i		i		i		
	5-	144					7	SPT				!				
-6210	6 -	W.C					- 7			i		i				-
	7.	122								1		1		1		-
	1	100										-				
F	8 -	The second								i		i		i		-
-	9.	ĸ	4							!		!		1		-
		122														
t	10-	B IC		-			1	SPT		i		i		1		
-6205	11 -		1				2									-
	10						3				-	1		l i		
	12 .	143								i		i		i		
ſ	13 -											- 1				-
	14											i		i i		_
	14									1		1		1		
-	15-	120					7	SPT				- 1			- 1	_
-6200	16 -	52	1				4			i		i		i		-
							4							1		
	17	影				11						- i				
-	18 -	166				11				1		1		1		-
	19	節的				11						- 1				_
										i		i		i		
t	20-	1111	√Sa	indy CLAY (CL), brown, mo	ist, stiff to		2	SPT				-				
-6195	21	¥/////		very stiff.			4			. i		i		1		
	22	\$/////					-			1		-		1		
	26	V////										ł				
	23	¥/////								1		i		i		
-	24	¥/////	1													
		<i>\////</i>	3							i		i		l i		
-6190	25-	¥////					10	SPT		1		1		1		_
-6190	26	<i>\ </i>				N	10					i				
1	27	-	-			Ŀ				1	T	1		1		
		1														
t	28	1								I		i		l i		
ŀ	29	-										1				
	30-	1														
	20-															
																BORING
	۱.			EINFELDER						0.00						
		l r			· · ·			E	SORIN	GLOG	5					
Draf									Soil Inve	estigation	n					S2-3
Draf	ted	By: F	R. Stur	mp Project Number:				Mesa	Valley S	estigation prings P ings, Co	rop	pert	У	_	.	-
Date		11	/29/20	63249-1				00101	auo spr	ings, Co	iora	900		FI (зU	
	t Klei	nfelder, In	c 2005													


	ation		_	See Boring Location F			A			Date	e Star e Con			_	/2005	
		water (ft): Company	_	None at Drilling Spectrum Exploration		/Final		set 6 day 55 ATV	s after drilling	3.	ged B	<u> </u>	-	R. Jo		
	-	iameter (-	4	Drilling Meth	od:		Stem A		243			-			
-		r Type:	(a.v	Automatic	- Drining mouth	00.				Tota	al Dep	th (ft)	:	21.5		
						-	Fil	10					1.4	BORA	TORY	
				DESCRIPTION	N	H	FIE	LD								
÷				DEGGRA HOI	•	100	-						X		(%	
(166	60	1 2	A	ppx, Surface Elevation	(8)- 6202 0	- 6	erva	ype		2	(%)		Ind	8	- P	
tion	e) (le	E I		arface Condition: Heavi		8	8 <u>-</u>	Leg	Bo	-th	ent	d Li	100	E S	Sig	2 10
Elevation (feet)	Depth (feet)	Graphical Log				Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Cont	Liquid Limit	Plasticity Index	t oss	Passing #200 Sieve (%)	Other Tests
<u> </u>	<u> </u>		FILL:	Silty SAND (SM), brow	vn, moist,	-	ша	0,	200		20	_	-			
-	1 -		me	edium dense.						i		i				
-6200	2 -															
										1		1				
	3 -							-		i		i				
	4 -									1						
-	5-		Sand	y CLAY (CL), brown, m	noist very stiff		5	SPT		i		i				
	6 -		10	hard.	ional, vory som		7									
-6195	7						0			i		i				
-0195	1									1		i				
	8 -									!		1				
-	9 -					ŀ				i		i				
-	10-			-		H	9	SPT				1				
	11 -						- 14	ori		i		i				
							13									
-6190	12 -								·	1		1				
-	13 -									1		i				
-	14 -											1				-
	15-					H		0.077		i		i				-
	16					N	10 14	SPT								
	16 -		Ā			H	17			i		į				
-6185	17 -									1		ļ				
-	18 -									1						
-	19 -									1		i				· · ·
	20-															
							11 12	SPT		i						
ī	21	¥////A					14	-					-	-		
-6180	22 -	1														
-	23	1								1						
-	24	1														
-6175										i						
F	25															
t	26	1								1			1		1	
-6175	27	+ 1											1		1	
-	28	1														
L	29	1 1								l i			1			
															<u>.</u>	
ſ	30-															
-																BORING
Dra	5	ĸ	LE	INFELDE	R			1	BORIN	GIO	C					
-													-			S3-1
Dra	fted	By: R	Stump	Project Number:				Mesa	Soil Inve Valley S rado Spr	Spring	s Pro	oper	ty		.	
Dat			29/2005		1			Colo	rado Spr	rings,	Colo	rado)	FI	GU	
	_	infelder, Inc.														

	ation			See B			ion Pla	in .						D -	te Sta te Con		~		2/2005 2/2005	
		vater (ft			t Drilling		tion	F		/Final			ays after drilli	ng.	gged E		-	R. Jo		
		Compan		4	rum E	xpiura	008		pment:	ر العرب		-55 AT\ Stem A		εuį	ldea c	oy.	-	ft. 30	illes .	
-		iameter Type:	· (III):	Auton	natic		·	Uniti	ng Meth	00;	0010	0.65117		То	al Dep	oth (ft)):	16.0		
			··				···						1					000		,
					DES	SCRIP	TION				F11	ELD			F	· · · · · ·		BORA	ATORY	
ŝ					ULU		101			10							×			
(fec	et)			Appx. S	Surface	Eleva	ition (fl	0: 6214	4.0	- lei	eva	Sample Type		ğ	(%)	Ť	Plasticity Index	(%)		
atior	th (f€	shice		Surface						ple	3.0 	bie	s BO BO	sity	sture	id L	i igi	sing	i Dig	1
Elevation (feet)	Depth (feet)	Graphical Log								Sample Interval	Blow Counts per 6" Interval	Sam	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plas	Pas:	Passing #200 Sieve (%	Other Tests
6210	1 - 2 - 3 - 4 -			NDFILL with silty very loo	/ SANC	SE (wo D (SM)	ood, g), brow	lass, n m, moi	ubber) ist,											
	5-										3	SPT								
	6 -	LA.									2 1								1	
	7 -															1				
	8 -															1				
205																1				
5205	9-		C	ndy CLA	VICIN	hrow	n me	iet vor	v chiff	-						;				
	10-			to hard.	+ (UL)	, <u>n</u> nw	41, 3 Q Q	iat, vel	y 2(11)		6	SPT				1				-
	11 -										12 17									
	12 -															l				
	13 -															ļ				
5200	14 -															: 1				
	15-															‡ 1				
	-									N	50 11	SPT				1				
	16 -																			
	17 -															ĺ				
	18 -															l				
5195	19 -															-				
	20 -															1				
	21 -															1				
	22 -															1				
																ו 1				
	23 -																			
6190	24 -														ł					
	25 -	•																1		
	26 -															1			1	
	27 -													1				1		
	28 ·																			
		-																		
6185		1																		
	3 0	<u>}</u>	1									. .	A	-		·	·	*****		<u></u>
		1	() F	EINFELDER							1	ואוסהב						BORIN		
								• 	_					ING LOG nvestigation					\$3-2	
	fted f	•	2. Stur	· •	Project Number: Mesa Valley Springs Property 63249-1 Colorado Springs, Colorado FIG						IGI	URE 2								
Date		11/ Intelder, int	29/20	us		032	49-1				<u>_</u>			- · ·				•		

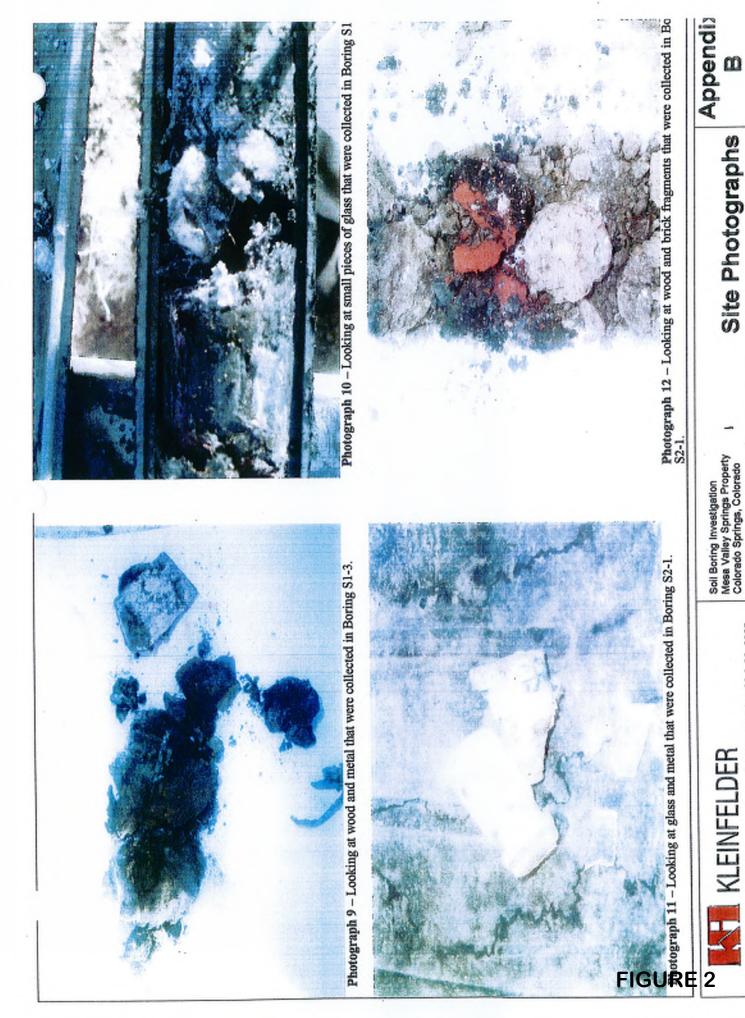

	ation				ng Location F	Plan		***			0.4	te Stai te Con		-		2/2005 2/2005	
		vater (ft		None at Dr						nys after drill	ing.			-	R. Jo		
		Compan			n Exploration				-55 AT		LO	gged B	y:	-	л. J0	1105	·····
		iameter	(in):	4	t_	_ Drilling Me	ethod:	Solid	Stem A	uger	То	tal Dep	vib /#*	۱.	15.0		
Karr	nmei	r Type:		Automati	10	<u> </u>					0 i		201 (H)				
								FI	ELÖ	1				LA	BORA	TORY	
				1	DESCRIPTIO	N		}		1		1		1		님~~	
eet)	~	Do:					Sample Interval	val val	be		\$.	Plasticity Index	8	Passing #200 Sieve (%)	
Elevation (feet)	Depth (feet)	Graphical Log			face Elevation		int.	ount	Sample Type	7	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	ity Is	ve (i Di Siev	
vatic	Ť	phic		Surface Co	ndition: Heavi	ily vegetated	npie	 0	npie	USCS	usit)	nten	Did Did	istic	Sier	ssin 00	Other Tests
ů W	Dep	Gra					Sar	Blow Counts per 6" interval	Sar	SUS S	68	နိုင်	Ê		54	6 #	, đ
	-	4.6	١A	NDFILL RE	FUSE (glass,	wood, plastic)					l		1			
	1 -			with silty S/ medium de	AND (SM), bro	own, moist,					Ì			•			
6190	2 -												ļ	l			
	3 -												-	1		1	
												 		•			
	4 -										:	ŀ		1 1			
	5-							7	SPT	-]		1			
	6 -							7 9			ł		{				
6185	7 -										ŀ	1		1			
3.02	, .		<u>Co</u>	ndy CLAY /	CL), brown to	urav moist								1			
	8 -		ാർ	very stiff to	harð.	. gr 47, moist,					ł	, 		1			
	9 -											t					
	10-						-	12	SPT		ł	E E		1 			
	11 -							17						ļ	1		
	•							21				1		F 			
6180	12 -											ļ.		ł			
	13 -											e t	ł	1			
	14 -											t a					
	15-							ļ		<u> </u>	<u> </u>	-					
												1		1			
-	16 -										-	}		1			
-6175	17 -	1										E		1			
-	18 -	-										5		} I			
-	19 -																
	20 -	1					ĺ					1		1			
		-										ł		Ì	ļ	ļ	
-	21 -	1										t 5		1			
-6170	22 ·										1	1		ļ		1	1
-	23 -	1										ł		1			
	24	1										l I				1	
	64	1										ĺ				1	
-	25	1							-		1	1		1		1	ł
Ļ	26	-										į		i		ļ	ļ
-6165	27	1				,					ļ	1		1		1	
	20	1						1			1	-		Ì		İ	
F	20	-								1	1	1				ł	
-	29	1										Ì		1		ļ	
-6165	3 0 -	1	I				l	.1	<u>l</u>			J	i	1	. .	_L	<u>.</u>
ļ				n				··		······		·····					BORI
												~ ~					
	Ň			EINF	ELDE	ĸ				BORIN							
				<u> </u>						Soil Inv a Valley orado Sp	vestig	ation		.			S3-
Draf Date	fted	By: F	 Stu 	imp Proj	ject Number:				Mes	a valley prado Sr	oprin	gs אי רבי	oper	τy Γ	F		
Date	a .	11	/29/20	005	63249	-1							naut	<i>.</i>	<u> </u>	191	JRE-2

Copyright Kleinfelder, Inc. 2005



Photograph 5 - Looking at wood and glass that was collected in Boring S1-1

Photograph 6 - Looking at wood that was collected in Boring S1-1.



Soil Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

00

Site Photographs

Photos Taken November 22 & 23, 2005

Project Number 63249

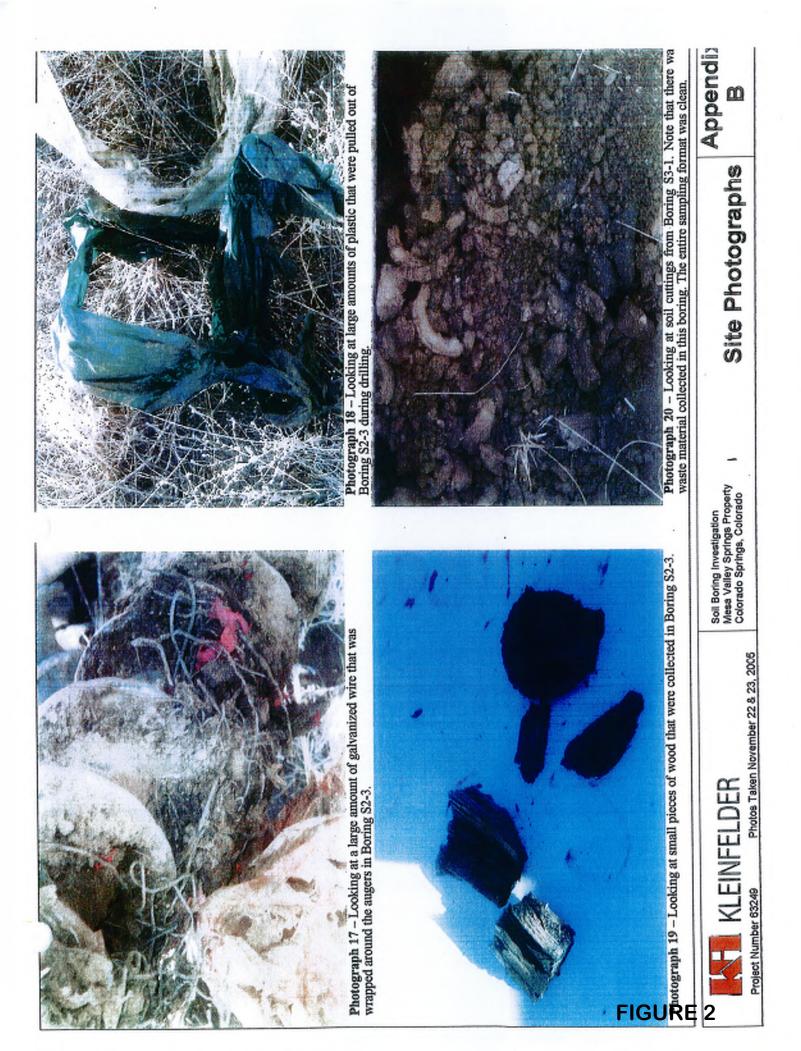
Photograph 13 - Looking at a large piece of cloth that was wrapped around the auger in Boring S2-2.

Thotograph 15 – Looking at soil that was collected in Boring S2-2.Note the matck discoloration of the soil. The black soil was found within the landfill material.

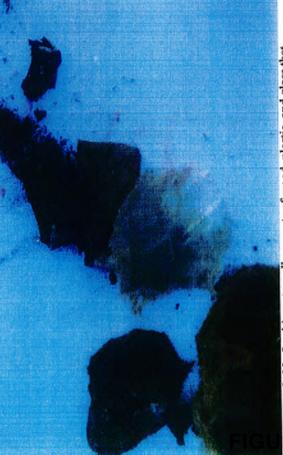
Soll Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

Appendix

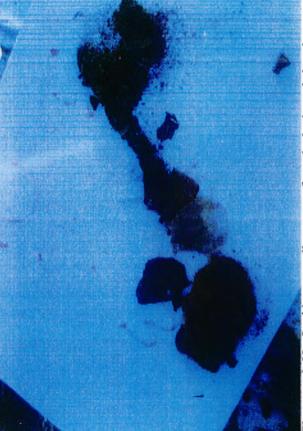
m


Site Photographs

12


Photograph 14 – Looking at small pieces of glass, wood, and plastic that was collected in Boring S2-2.

Photograph 21 -Looking at soil cuttings from Boring S3-2. Note that there was no waste material collected in this boring. The entire sampling format was clean.


Jotograph 23 -Looking at small amounts of wood, plastic, and glass that there collected in Boring S3-3.

Soil Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

Site Photographs

Appendix B

Photograph 22 – Looking at small amounts of wood, plastic, and glass that were collected in Boring S3-3.

Appendix E Groundwater Sampling and Methane Monitoring Report April 2006

GROUNDWATER SAMPLING & METHANE GAS MONITORING MESA VALLEY SPRINGS PROPERTY WEST VAN BUREN STREET COLORADO SPRINGS, COLORADO

3 April 2006

Copyright 2006 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited by anyone other than the client for the specific project.

66511/CSP6R022 Copyright 2006 Kleinfelder, Inc.

KLEINFELDER

April 3, 2006

Kleinfelder File No. 66511-1

Mr. Ted Waterman, President Waterman, Inc. P.O. Box 27560 Albuquerque, New Mexico 87125

Subject: Groundwater Sampling & Methane Gas Monitoring Mesa Valley Springs Property West Van Buren Street Colorado Springs, Colorado

Dear Mr. Waterman:

Kleinfelder is pleased to present the results of our groundwater sampling and methane monitoring investigation for the above referenced property located south of West Van Buren Street in Colorado Springs, Colorado (Figure 1). This report presents the results of our investigation including analytical data.

SUMMARY

This investigation was conducted on a vacant parcel of land located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado.

During this assessment the following tasks were completed:

- Subsurface drilling;
- Installation of two groundwater monitoring wells;
- · Laboratory Analysis of groundwater samples;
- Installation of four methane gas monitoring wells; and,
- Screening for methane gas.

SCOPE

This investigation was conducted in general accordance with our proposal dated February 20, 2006. The purpose of this investigation was to collect groundwater samples from two separate locations and have the samples analyzed to determine if groundwater is contaminated and to monitor methane levels from four separate locations to evaluate if the methane is migrating beyond the perimeter of the landfill at

66511/CSP6R022 Copyright 2006 Kleinfelder, Inc. 1 of 6

these locations. This study did not include investigating other environmental issues such as soil contamination.

SITE LOCATION & HISTORY

The Subject Site is a vacant parcel encompassing approximately 48-acres of land, located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado. The site location is indicated on the Site Location Map (Figure 1).

The Subject Site is generally located within the northwest ¼ of the southeast ¼ of Section 1, Township 13 South, and Range 67 West of the 6th PM. The El Paso County Assessor's parcel number is 7401200002. The Subject Site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the Site and the surrounding area slopes down to the south towards the intermittent stream that borders the Subject Site. The topography of the site is irregular, but is dominated in the northeast by a prominent ridge, in the central portion by a valley, in the northwest by a system of ridges. A drainage forms the westerly and southerly side boundaries.

FIELD INVESTIGATION

Prior to the commencement of field activities at the Subject Site, Kleinfelder prepared a Site-Specific Health and Safety Plan as required by Occupational Safety and Health Administration ("OSHA"), to inform our personnel of the potential hazards that may be encountered and the required procedures to protect worker health and safety. Also, as required by law, Kleinfelder coordinated with utility companies to locate buried utilities in the vicinity of the Subject Site.

Groundwater Assessment

On February 22, 2006, Kleinfelder mobilized to the Subject Site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to install two (2) groundwatermonitoring wells and to install four (4) methane monitoring wells. A map indicating the location of the monitoring wells is presented as Figure 2.

The groundwater monitoring wells were drilled to an approximate depth of 30 feet. Groundwater wells were constructed using factory cleaned 2-inch diameter, PVC well casing with 20 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2 to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface. Well construction specifications are indicated on the logs, which are included in Appendix A.

One groundwater sample from each of the two monitoring wells was submitted via Federal Express to ACZ Laboratories in Steamboat Springs, Colorado for chemical analysis. The samples were analyzed for cations/anions and 47 volatile organics as listed in Appendix IA and IB of the *Regulations Pertaining to Solid Waste Disposal Sites*

and Facilities set forth by the Colorado Department of Public Health and Environment. Laboratory analysis of the groundwater samples were performed using appropriate methods described in EPA Publication SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* Table 1 summarizes the metals analysis of the groundwater wells. Wet chemistry and volatile organics results are summarized in Appendix B.

Sample ID	GW-1	GW-2	Applicable Standards
Sample Date and Time	2/23/06 1:30	2/23/06 2:30	
Sample Interval	10-13 ft (screen)	10-13 ft (screen)	
Matrix	Groundwater	Groundwater	Groundwater
Units	(mg/l)	(mg/l)	(mg/l)
Antimony	0,008	No Detect	0.006
Arsenic	0.0215	0.0071	0.01
Barium	0.963	0.056	2.0
Beryllium	No Detect	No Detect	0.004
Cadmium	No Detect	No Detect	0.005
Calcium, dissolved	145	338	N/A
Chromium	0.05	0,01	0.1
Cobalt	0.03	0.02	N/A
Соррег	0.05	No Detect	1.0
Iron	0.64	No Detect	0.3
Lead	0.14	No Detect	0.05
Magnesium, dissolved	106	593	N/A
Manganese, dissolved	0.40	1.45	N/A
Nickel	0.03	0.03	0.1
Potassium, dissolved	53.1	21	N/A
Selenium	No Detect	No Detect	0.05
Silver	No Detect	No Detect	0.05
Sodium, dissolved	408	3380	N/A
Thallium	0.0009	0.0003	0,002
Vanadium	0.083	0.013	0.1
Zinc	0.34	0.04	5.0

TABLE 1 – GROUNDWATER SAMPLE RESULTS

References:

Applicable standards are obtained from the CDPHE Regulation No. 41, Basic Standards for Groundwater, Human Health Standards, 2001.

-Maximum Contaminant Levels promulgated under the Safe Drinking Water Act, EPA 816-F-02-013, July 2002 (Arsenic standard effective 01/23/06).

-Applicable standards are obtained from the CDPHE Regulation No. 41, Basic Standards for Groundwater, Ground Water Organic Chemical Standards, 2001.

Methane Gas Assessment

On February 22, 2006, Kleinfelder mobilized to the Subject Site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to install four (4) methane gas monitoring wells outside the existing landfill perimeter, at the locations indicated on Figure 2. Monitoring well installation records (including depth and materials used) for each methane well, MW-1 through MW-4, are included in Appendix A.

Methane wells were constructed using factory cleaned 1-inch diameter, PVC well casing with 10 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2 to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

On February 27 and February 28, 2006, Kleinfelder performed gas monitoring at the four (4) methane wells installed on the Subject Site. The gas in each well was analyzed using a GasTech Portable Gas Monitor. The meter is designed to measure concentrations of methane (CH₄), hydrogen sulfide (H₂S) and oxygen (O₂). Table 2 summarizes the gases detected in the methane wells.

		February	27, 2006		February 28, 2006							
Monitoring Location	CH₄ (%LEL)	CH₄ (%GAS)	H ₂ S (ppm)	O ₂ (%)	CH4 (%LEL)	CH₄ (%GAS)	H₂S (ppm)	O2 (%)				
MW-1	0.0	0.0	3.0	20.2	0.0	0.0	0.0	20.1				
MW-2	0.0	0.0	0.0	20.1	0.0	0.0	0.0	19.7				
MW-3	1.0	0.0	0.0	17.2	2.0	0.0	0.0	13.3				
MW-4	1.0	0.0	0.0	20.4	0.0	0.0	0.0	20.6				

TABLE 2 -SUMMARY OF METHANE GAS MONITORING

Notes: CH₄ (% LEL) = Methane % of the lower explosive limit (LEL) CH₄ (% Gas) = % Methane Gas by volume

 $H_2S = O_2 =$

Hydrogen Sulfide parts per million by volume Oxygen % by volume

CONCLUSIONS

Groundwater Hazards

Laboratory analysis indicated that groundwater quality has been impacted by historic activity at the Subject Site based on the limited data collected to date. For the analyses listed above, there were four confirmed regulatory exceedances of analytes that indicate

an environmental concern. Antimony, Iron, Lead and Thallium all exceeded the regulatory standards for groundwater.

Methane Hazards

Methane gas field monitoring provided the following information. No measurable methane concentrations were found within the four monitoring wells and methane gas is not migrating beyond the perimeter of the landfill. It is not likely that the site is subject to CDPHE explosive gas requirements for solid waste disposal sites. These regulations, found in Title 6 of the Code of Colorado Regulations (CCR), Section 1007-2, Part 1, state that "The concentration of explosive gases generated by the facility for solid waste disposal shall not exceed: At the boundary, the lower explosive limit which is five percent (5%) by volume in air for methane." Considering this rule, it is unlikely that any future development of the Subject Site that is outside the perimeter of the landfill would not need to consider monitoring of any structure developed on the Site.

RECOMMENDATIONS

Kleinfelder recommends that the Colorado Department of Public Health and Environment (CDPHE) be contacted to review the conclusions of this investigation and to further evaluate the results of the groundwater and methane analysis.

LIMITATIONS

Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of work on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of work was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report is beyond the scope of our work and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since such detailed services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no

responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at (719) 632-3593.

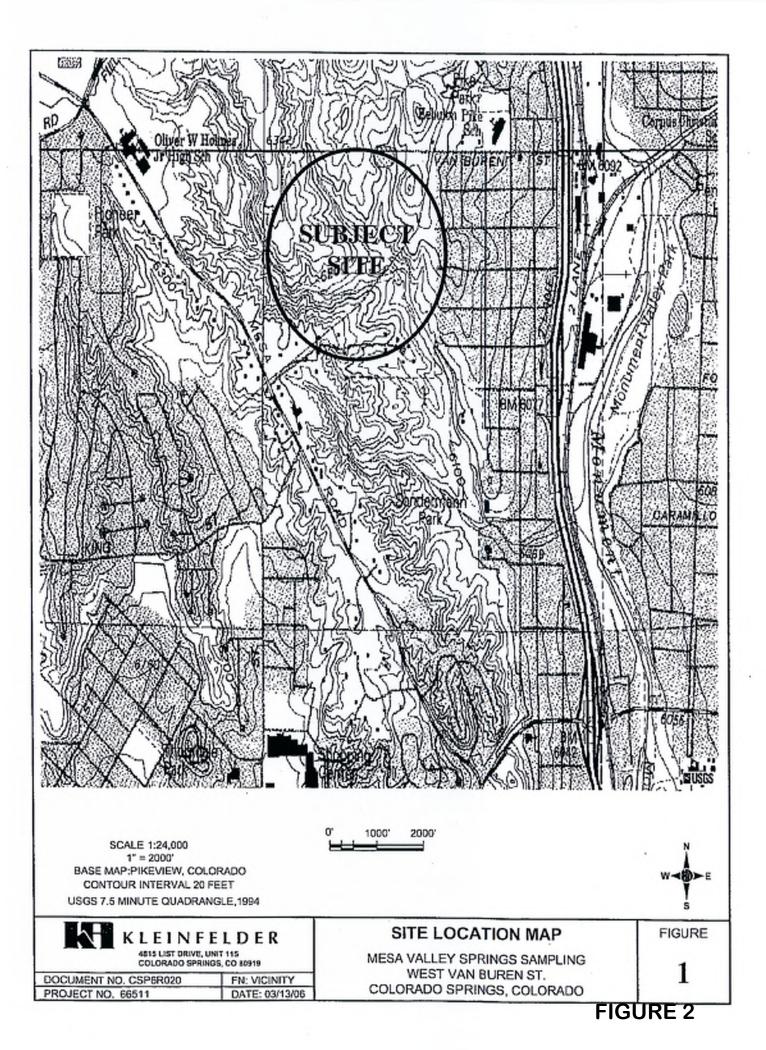
Respectfully submitted,

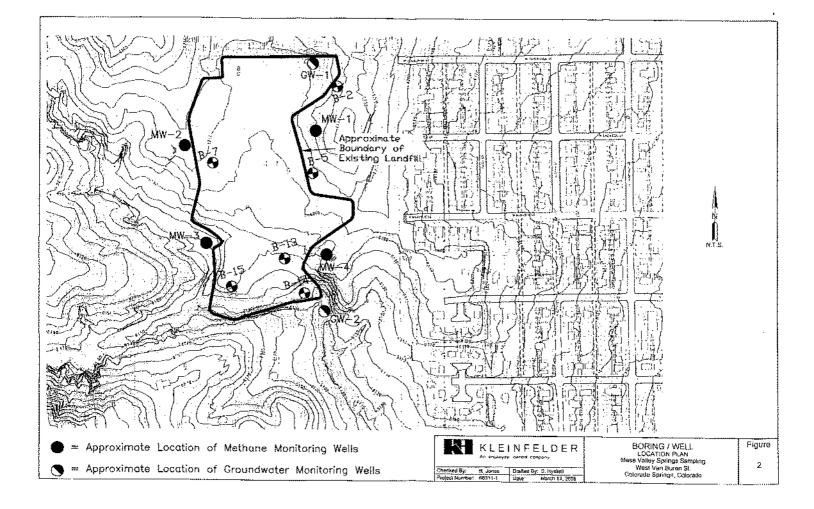
KLEINFELDER, INC.

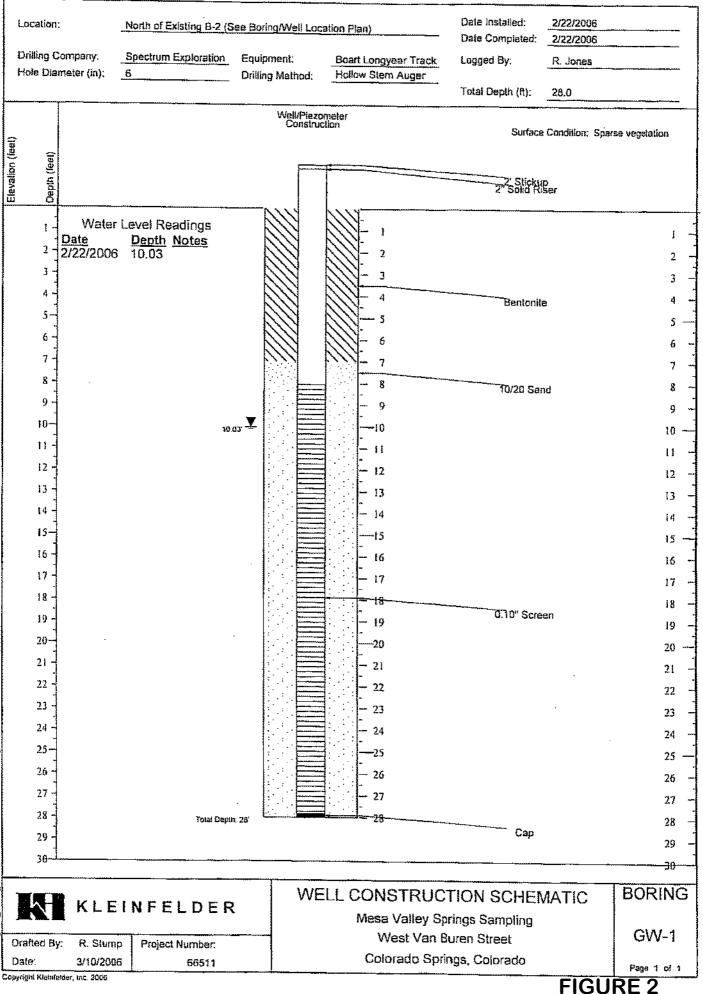
Rickey L. Jones

Environmental Scientist

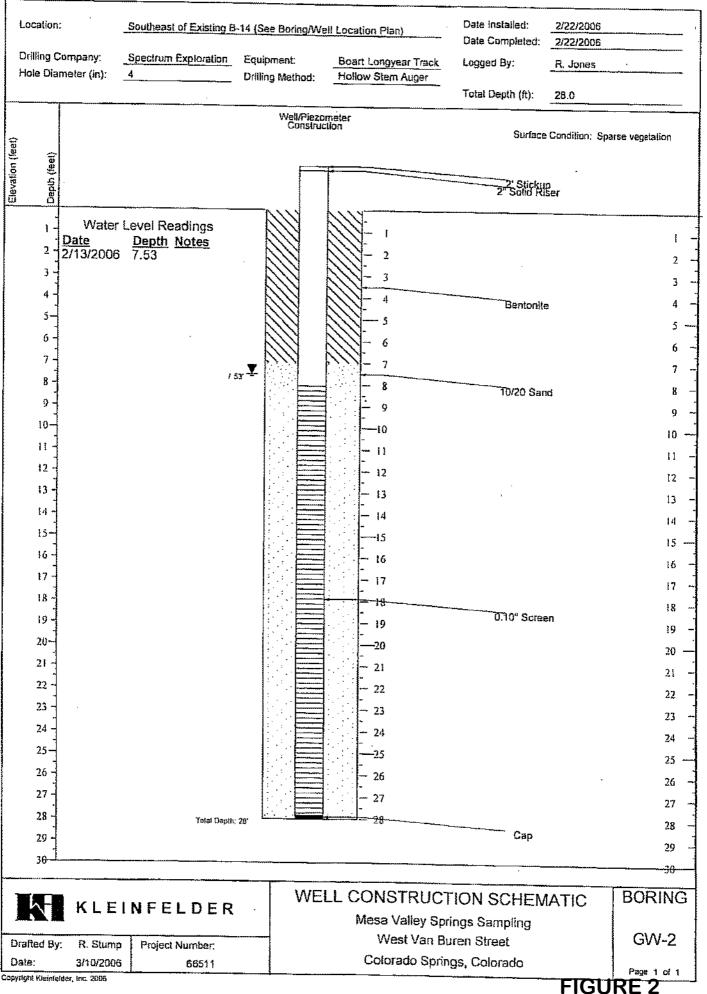
bu

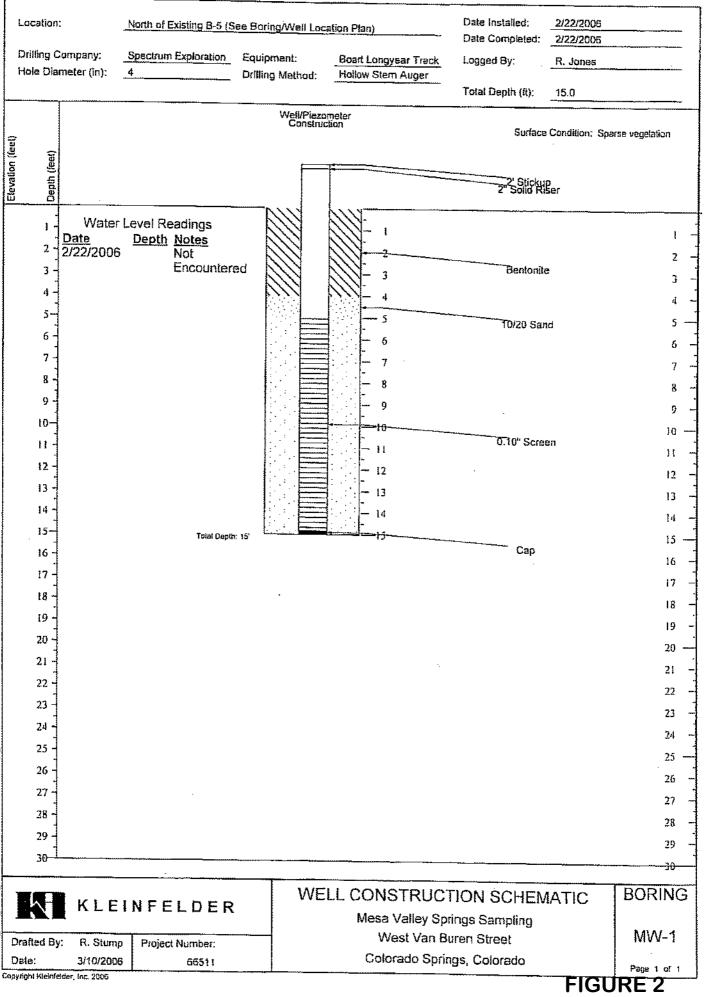

William J. Barreire, P.E. Area Manager

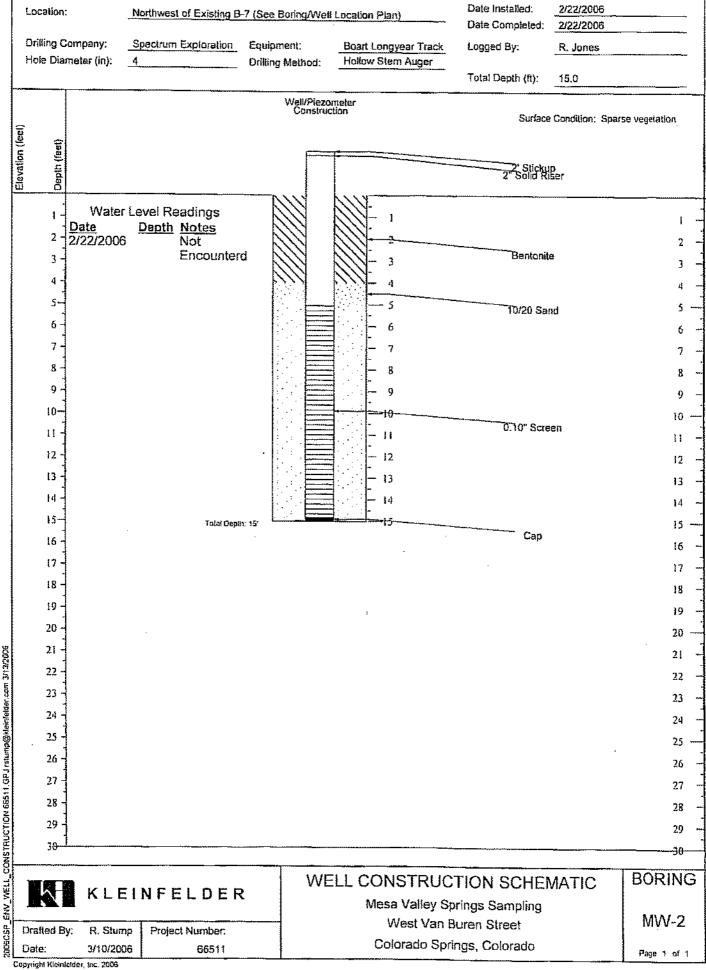

RLJ:WJB:ss

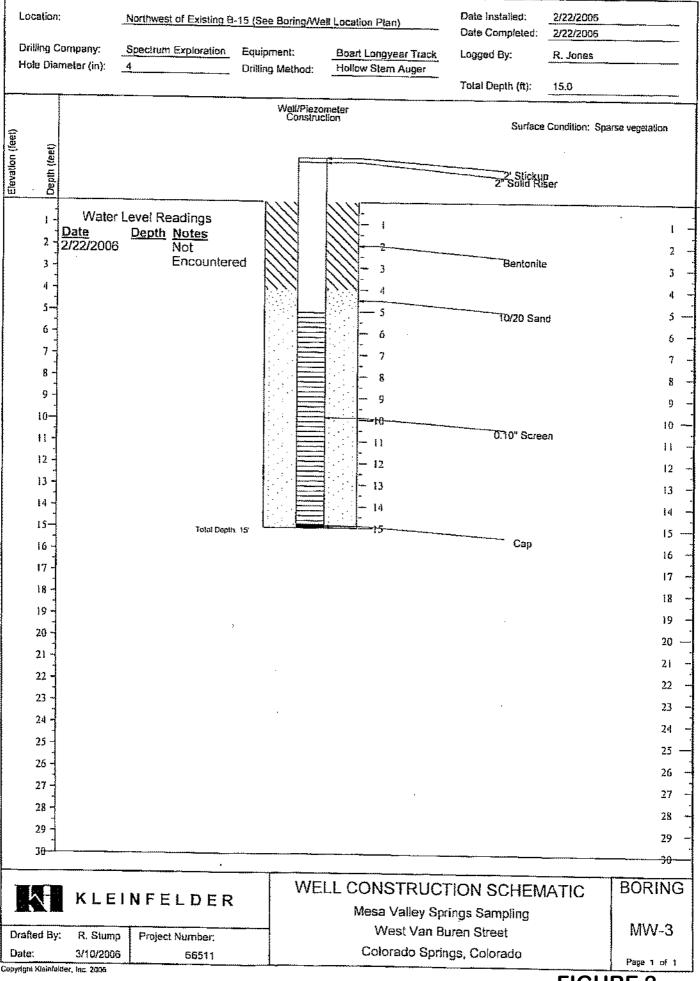

りひれ

66511/CSP6R022 Copyright 2006 Kleinfelder, Inc.



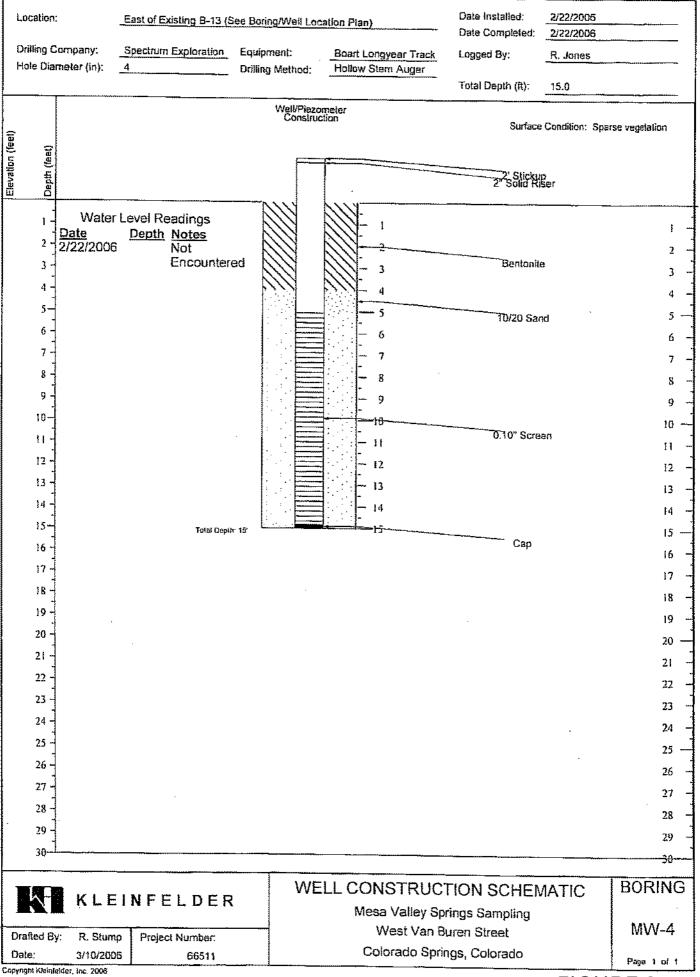



CONSTRUCTION 66511.GP.J retump@kleinfelder.com 3/13/2006 ENV, WELL 2006CSP


2006CSP_ENV_WELL_CONSTRUCTION 66511.GPJ ISINITP@Keinfelder.com 3/13/2006

2006CSP_ENV_WELL_CONSTRUCTION 65511.GPJ rsturtp@kleirkelder.com 3/13/2006

FIGURE 2


CONSTRUCTION 66511. GPJ rstump@xleinfeider.com 3/13/2006

WELL

ENV 1

2006CSP

FIGURE 2

FIGURE 2

CONSTRUCTION 66511.GPJ rstump@kleinfekter.com 3/13/2006

ENV WELL

006CSP

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

March 28, 2006

Report to: Ricky Jones Kleinfelder, Inc. 4815 List Drive, Unit 115 Colorado Springs, CO 80919

Bill to: Brenda Anthony Kleinfelder, Inc. 4815 List Drive, Unit 115 Colorado Springs, CO 80919

Project ID: 66511 ACZ Project ID: L55388

Ricky Jones:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on February 24, 2006. This project has been assigned to ACZ's project number, L55388. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L55388. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after April 28, 2006. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years.

If you have any questions or other needs, please contact your Project Manager.

28/Mar/06

Sue Webber, Project Manager, has reviewed and approved this report in its entirety.

L55388: Page 1 of 32

FIGURE 2

REPAD.01.06.05.01

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 8048; (800) 334-5493

Kleinfelder, Inc.

March 28, 2006

Project ID: 66511 ACZ Project ID: L55388

A022 Baboratories, Inc. (ACZ) received 3 ground water samples from Kleinfelder, Inc. on Fabruary 24, 2006. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L55388. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Additionalyses except those qualified with an ACZ 'H' flag were performed within EPA recommended holding times.

Taxt8:samples were analyzed for inorganic and organic parameters. The individual methods are referenced on both the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

1: Suspect analytes were reanalyzed to confirm Cation/Anion Balance.

2. For the Volatile Organic surrogate Toluene d-8 value flagged with an *S1*, the recovery was above laboratory control limits, but within method acceptance limits.

3. For the Volatile Organic surrogate Bromofluorobenzene value flagged with an "N1", the recoveries were low but all other internal standards and surrogates were within control limits.

4. For Volatile Organic compounds (other than bromofluorobenzene) flagged with an "N1", the response for these analytes was below 0.1 in the calibration. While this is still within method criteria, the data may not be reliable near the PQL as a result. Samples were rerun to confirm.

L55388: Page 2 of 32

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493 4

66511

GW-1

Kleinfelder, Inc.

Project ID: Sample ID:

_

ACZ Sample ID:	L55388-01
Date Sampled:	02/23/05 00:00
Date Received:	02/24/06
Sample Matrix:	Ground Water

Metals Analysis

								79.1340v
Anëmony, total	M6020 ICP-MS	0.0008	8 *	mg/L	0.0004	0.002	03/01/06 20:53	i i i i i i i i i i i i i i i i i i i
Arsenic, Iolal	M6020 ICP-MS	0.0215		mg/L	0.0005	0.003	03/01/06 20:53	ν ΪΓ
Barlum, total	M6010B ICP	0.963		mg/L	0.003	0.01	02/28/06 6:15	jc
Beryllium, total	M6010B ICP		U j	mg/L	0.002	0.01	02/28/06 6:15	ji⊂ ji⊂
Cadmium, total	M6010B ICP		ປ່	mg/L	0.005	0.02	02/28/06 6:15	jc jc
Calcium, dissolved	M6010B ICP	145			0.4	2	03/07/06 13:19	jic
Chromium, total	M6010B ICP	0.05		mg/L	0.01	0.05	02/28/06 6:15	jic i
Cobalt, total	M5010B ICP	0.03	B	mg/L	0.01	0.05	02/28/06 6:15	j]C
Copper, total	M6010B ICP	0.05		mg/L	0.01	0.05	02/28/06 6:15	IC.
iron, dissolved	M6010B ICP	0.64	٠	- mg/L	0.04	0.1	03/07/06 13:19	10- 10-
Lead, total	M6010B ICP	0,14	₿	mg/L	0.04	0.2	02/28/06 6:15	
Magnesium, dissolved	M6010B ICP	106		mg/L	0.4	2	03/07/06 13:19	jic.
Manganese, dissolved	M601DB ICP	0.40		mg/L	0.01	0.05	03/07/06 13:19	ijc 10
Nickel, total	M6010B ICP	0.03	8	mg/L	0.01	0.05	02/28/06 6:15	[c
Potassium, dissolved	M6010B ICP	53.1		mg/L	0.6	2	03/07/05 13:19	лс.]С
Selenium, total	SM 3114 B, AA-Hydride		U	mg/L	0.001	0.005	02/28/06 15:36	d]l-pre
Silver, total	M6010B ICP		U	mg/L	0.D1	0.03	02/28/06 6:15	jc
Sodium, dissolved	M6010B ICP	408		mg/L	0.6	2	03/07/06 13:19	jc
Thailium, lotal	M6020 ICP-MS	0.0009	*	mg/L	0.0001	0.0005	03/01/06 20:53	ي. ال
Vanadium, total	M6010B ICP	0.083		mg/L	0.005	0.03	02/28/D6 6:15	ر الح
Zinc, total	M6010B ICP	0.34	•	mg/L	0.01	0.05	02/28/06 6:15	"c ∦c
				-				10

Metals Prep		
教育的 是1996年1996年1996年1996年1996年1996年1996年1996		
Total Hot Plate Digestion	M3010 ICP	02/27/06 18:38
Tolal Hot Plate Digestion	M3010 ICP-MS	02/28/06 13:36

ł

L55388: Page 3 of 32

djt

jr

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-1

Date Sampled: 02/23/06 00:00 Date Received: 02/24/06 Sample Matrix: Ground Water

Wet	Chemistry
	CH 101111511 ¥

			1990 S	6 <u>1</u> 2 2 2		a a se	62099Q		
Alkalinity as CaCO3	SM2320B - Titration	Stating Control Station	2012/07/2018 2012			an an tao	1.1.1.1.1.1.1.1.1		
Bicarbonate as CaCO3		1510	н		mg/L.	2	20	03/25/06 0:00	Jit
Carbonate as CaCO	3		UH		mg/L	2	20	03/25/06 0:00	jar
Hydroxide as CaCO	3		UH		mg/L	2	20	03/25/06 0:00	11
Total Alkalinity		1510	н		mg/L	2	20	03/25/06 0:00	្រ រូវ
Carbon, lotal organic (TOC)	M415.1 Combustion/IR	105			mg/L	5	30	02/28/06 10:03	,» erf
Cation-Anion Balance	Calculation								
Cation-Anion Balance	8	-9.6			%			03/27/06 0:00	calc
Sum of Anions		42.8			mea/L	0.1	0.5	03/27/06 0:00	caic
Sum of Catlons		35.3			meq/L	0.1	0.5	03/27/06 0:00	calc
Chloride	M325.2 - Colorimetric	270	н	•	ma/L	10	50	03/24/06 17:31	p b
Conductivity @25C	M9050 - Mater	3600			umhos/cm	1	10	02/27/06 13:16	tam
Hardness as CaCO3	SM2340B - Calculation	798			mg/L	1	7	03/27/06 0:00	CSIC
Lab Filtration	SM 3030 B			*		•	•	02/24/06 14:54	jlt
Lab Filtration & Acidification	SM 3030 B			*				03/01/06 17:13	djt
Nitrale as N, dissolved	Calculation: NO3NO2 minus NO2	0.49			mg/L	0.02	0.1	03/27/06 0:00	calc
Nitrate/Nitrite as N,	M353.2 - Automated Cadmium	0.50		٠	mg/L	0.02	0.1	02/24/06 17:53	pjb
dissolved	Reduction					0.01	v.,	0024/00/11/33	סנק
Nilrile as N, dissolved	M353.2 - Automated Cadmium Reduction	0.01	8	٠	mg/L	0.01	0.05	02/24/06 17:53	pjb
pH (lab)	M9045C/M9040B								
pН		7,6	н		unils	0.1	0.1	02/27/05 0:00	lam
pH measured at		23.0			С	0,1	0.1	02/27/05 0:00	tam
Residue, Fliterable (TDS) @180C	M160.1 - Gravimetric	2170			тıg/L	10	20	02/28/06 15:30	tam
Sodium Absorption Ratio in Water	USGS - 11738-78	6,36				0.03	0.15	03/27/06 0:00	caic
Sulfate	SM4500 SO4-D	240		•	mg/L	10	50	03/23/06 17:17	lam
TDS (calculated)	Calculation	2130			mg/L	10	50	03/27/06 0:00	calc
TDS (ratio -	Calculation	1.02			u r :	••		03/27/06 0:00	calc
measured/calculated)								20/21/00 0100	00(0

REPIN.02.06.05.01

Please refer to Extended Qualifier Report for detail.

L55388: Page 4 of 32

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-2

		the second second second second second second second second second second second second second second second se	a subscription of the second second second second	
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
		en la substantia de la substantia de la substantia de la substantia de la substantia de la substantia de la sub	all and the second second	
	the second second second second second second second second second second second second second second second s		2 State of the state of the state	
	1			
	state in the second			11 N N 1 N N N N N N N N N N N N N N N
2011년 - 2012년 2013년 2013년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2017년 2 1917년 - 1월 1917년 2017년	His New York, Ne			
				1.
		- 10 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1		
[1997] 2017년 1998년 1월 1976] - 1978년 1976년 1월 1977년 2월 1977년 1978년 2월 1978년 1978년 1978년 1978년 1978년 1978년 1978년 1				
·····································	17 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug 19 Aug		and shall ender from	
the second second second second second second second second second second second second second second second se	the second second second second second second second second second second second second second second second s	والمستحد والمرجع والمستحد المستح		- de i - el - ka
······································				

L55388-02
02/23/06 00:00
02/24/06
Ground Water

Metals Analysis

和国际在国际中的 主义。					inskal di sa kan Sa angingingingi se kan	4	અંગ્રહ્યું છે.		
Antimony, total	M6020 ICP-MS		U	*	and the second s	0.0004			Sec. 2
Arsenic, total	M6020 ICP-MS	0.0071	Ű		mg/L	0.0004		03/01/06 21:05	. <u>I</u> r
Barium, total	M6010B (CP	0.056			mg/L	0.0005		03/01/06 21:05	QL.
Beryilium, total	M6010B ICP	0.000			mg/L	0.003	0.01	02/28/06 6:19	jc
Cadmium, total	M6010B ICP		U 		mg/L	0.002	0.01	02/28/06 6:19	jjc
Calcium, dissolved	M6010B ICP	700	U		mg/L	0.005	0.02	02/28/06 6:19	jje
Chromium, total	M60108 ICP	338	_		៣ឮ/្	2	10	03/07/06 13:29	jc
Cobalt, total		0.01	в		mg/L	0.01	0.05	02/28/06 6:19	jjc
Copper, lotal	M6010B ICP	0.02	8		ած\Ր	0.01	0.05	02/28/06 5:19	jje
	M6010B ICP		U		mg/L	0.01	0.05	02/28/06 6:19	jc
from, dissolved	M6010B ICP		Ų	•	mg/L	0.2	0.5	03/07/06 13:29	jc
Lead, Iolal	M6010B ICP		U		mg/L	0.04	0.2	02/28/06 6:19	 ∦c
Magnesium, dissolved		593			mg/L	2	10	03/07/06 13:29	jc
Manganese, dissolved		1.45			mg/L.	0.05	0.3	03/07/06 13:29	
Nickel, Iotal	M6010B JCP	0.03	8		mg/L	0.01	0.05	02/28/08 6:19	jc
Polassium, dissolved	M6010B ICP	21			mg/L	Э	10	03/07/06 13:29	[c
Selenium, total	SM 3114 B, AA-Hydride		U		mg/L	0.001	0.005	02/28/05 15:38	djt-pre
Silver, Iolal	M6010B ICP		U		mg/L	0,01	0.03	02/26/06 6:19	
Sodium, dissolved	M6010B ICP	3380			mg/L	3	10	03/07/06 13:29	jjc
Thallium, lotal	M6020 ICP-MS	0.0003	в	•	mg/L	0.0001			jc
Vanadium, total	M6010B ICP	0.013	в		mg/L	0.005	0.03	03/01/06 21:05	ļ.
Zinc, total	M6010B ICP	0.04	В	*	mg/L	0.01		02/28/06 6:19	jc
			~		mgn	0.01	0.05	02/28/06 6:19]]c

Metals Prep

Total Hot Plate	M3010 ICP		
Digestion		02/27/06 19:00	dļt
Total Hot Plate	M3010 ICP-MS	00/00/07 44-04	
Digestion		02/28/05 14:24	Ĭr

* Please refer to Extended Qualifier Report for detail.

L55388: Page 5 of 32

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-2

ACZ Sample ID:	L55388-02
Date Sampled:	02/23/06 00:00
Date Received:	02/24/06
Sample Matrix:	Ground Water

Wet Chemistry

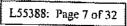
				41. 19				the sector states and	C. 18 19 19 19 1
Alkalinity as CaCO3	SM23208 - Tilration		win the	10597 (S)					
Bicarbonate as CaCO3		1310			mg/L	2	20	02/27/06 0:00	lam
Carbonate as CaCO	3		u		mg/L	2	20	02/27/06 0:00	4
Hydroxide as CaCO	3		U		mg/t_	2	20	02/27/06 0:00	lam
Total Alkalinity		1310	-		mg/L	2	20	02/27/06 0:00	lam
Carbon, total organic (TOC)	M415.1 Combustion/IR	47			mg/L	5	30	02/28/06 11:59	tam erf
Cation-Anion Balance	Calculation								
Calion-Anton Balance	6	1.7			%			02/02/02 0 00	
Sum of Anions		208			meq/L	0.1	8.5	03/27/05 0:00	calc
Sum of Cations		215			,	0.1		03/27/08 0:00	calc
Chloride	M325.2 - Colorimetric	480			meq/L mg/L		0.5	03/27/06 0:00	calc
Conductivity @25C	M9050 - Meter	15700			umbos/cm	10	50 ·		jag
Hardness as CaCO3	SM2340B - Calculation	3280				1	10	02/27/06 13:30	lam
Lab Filtration	SM 3030 B	0200			mg/L	1	7	03/27/06 0:00	caic
Lab Filtration & Acidification	SM 3030 B			*				02/24/06 14:55 03/01/06 17:14	jiL dit
	Calculation: NO3NO2 minus NO2	0.10							-
Nitrate/Nitrite as N	M353.2 - Automated Cadmium				/ng/L	0.02	0.1	03/27/06 0:00	catc
dissolved	Reduction	0.10		•	mg/L	0.02	0.1	02/24/06 17:55	pjb
Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction		U	٠	mg/l,	0.01	0.05	02/24/06 17:55	pjb
pH (lab)	M9045C/M9040B								
На		7.8	н		unils	0.1	0,1	02/27/06 0:00	• · · · · ·
pH measured at		23,0			C	0.1	0.1	02/27/06 0:00	tam
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	15400		•	mg/L	10	20	02/28/06 15:33	tam Iam
Sodium Absorption Ratio in Water	USGS - 1738-78	26.00				0.03	0,15	03/27/06 0:00	calc
Sulfate	SM4500 SO4-D	8030		•	mg/L	50	202	00104100 40 51	
TDS (calculated)	Calculation	13600			mg/L	10	300	03/01/08 12:03	ju
TDS (ratio -	Calculation	1.13			មម្លោះ	10	50	03/27/06 0:00	caic
measured/calculated)		1.1.1						03/27/06 0:00	caic

* Please rafer to Extended Qualifier Report for detail.

L55388: Page 6 of 32

FIGURE 2

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493


Balch	A distinct set of samples analyzed at a specific time
Found	Value of the QC Type of interest
Limít	Upper limit for RPD, in %.
Lower	Lower Recovery Limit, In % (except for LCSS, mg/Kg)
MDL	Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.
PCNISCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis
PQL	Practical Quantitation Limit, typically 5 times the MDL.
QC .	True Value of the Control Sample or the amount added to the Spike
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC Types
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)
Sample	Value of the Sample of Interest

AS	Analytical Spike (Post Digestion)	LCSWD	[thereinst Control Constant and the Day in
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboratory Control Sample - Water Duplicate Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LFM	Laboratory Forlified Matrix
CCV	Continuing Calivation Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Mairix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soil
LCSS	Laboratory Control Sample - Soil	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Vertication standard
LCSW	Laboratory Control Sample - Water	SOL	Serial Dilution

Blanks		Verifies thet there is no or minimal contamination in the prep method or calibration procedure.
Control Sa	mples	Verifies the accuracy of the method, including the prep procedure.
Duplicates		Verifies the precision of the instrument and/or method,
Spikes/For	tified Matrix	Determines sample matrix interferences, if any.
Standard		Verifies the validity of the calibration.
	经收益 经 经 经 经	
8	Analyle concentration of	letected at a value between MDL and POL.
H	Analysis exceeded met	hod hold time. pH is a field test with an immediate hold time.
R	Poor spike recovery ac	cepted because the other spike in the set fell within the given limits.
Ŧ	High Relative Percent (Difference (RPD) accepted because sample concentrations are less than 10x the MOL.
U	Analyle was analyzed (or but not delected at the indicated MDL
V	High blank data accept	ed because sample concentration is 10 times higher than blank concentration
W	Poor recovery for Silver	quality control is accepted because Silver often procipitates with Chloride.
x	Quality control sample	is out of control.
Z	Poor spike recovery is a	accepted because sample concentration is four times greater than spike concentration.
(1)	EPA 600/4-83-020, Me	thods for Chemical Analysis of Water and Wastes, March 1983.
(2)	EPA 600/R-93-100. Me	shods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
(3)	EPA 600/R-94-111. Ma	thods for the Determination of Metals in Environmental Samples - Supplement I, May 1994.
(5)	EPA SW-846. Test Me	hods for Evaluating Solid Wasle, Third Edition with Update III, December 1996.
(6)	Slanderd Methods for th	e Examination of Water and Wastowater, 19th edition, 1995.
(1)	QC results calculated fr	om raw data. Results may vary slightly if the roundad values are used in the calculations.
(2)	Soil, Sludge, and Plant	matrices for inorganic analyses are reported on a dry weight basis.
(3)	Animal matrices for inor	ganic analyses are reported on an "as raceived" basis.

REPIN03.11.00.01

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

66511

Kleinfelder, Inc.

Project ID:

ACZ Project ID: L55388

			·····										
Alkalinity as C	aCO3		SM2320	8 - Titration									
								an an an an an an an an an an an an an a		station of	i i i i i i i i i		
WG202932							22-22-24-24-2-2 2-2-2-2-2-2-2-2-2-2-2-2-	ergessen)	en al an an an an an an an an an an an an an				
WG202932LCSW2	LCSW	02/27/06 12:03	WC060210-3	000 0004									
L55388-02DUP	DUP	02/27/06 13:44	*********	820.0001	1310	888.G	mg/L	108.4	80	120			
WG202932LCSW5	LCSW	02/27/06 14:46	WC060210-3	820.0001	1316	1308.9	mg/L				0.1	20	
WG202932LCSW8	LCSW	02/27/06 17:26	WC060210-3	820.0001		966.7 885,1	mg/Ļ ∼~~"	117.9	80	120			
WG20400B				0L0.040 (003, 1	mg/L	107.9	80	120			
WG204008LCSWZ	LCSW	03/25/06 9:42	WC060210-3	820.0001									
L55759-03DUP	DUP	03/25/06 11:10	10000210-3	020.0001		844.2	mg/L	103	ao	120			
WG204008LCSW5	LCSW	03/25/06 12:50	WC068210-3	820.0001	146	145.6	mg/L				0.3	20	
WG204008LCSW8	LCSW	03/25/06 16:34	WC060210-3	820.0001		858 870.5	mg/L mg/L	104.6 106.2	80 80	120 120			
Antimony, tota	3		M6020 (CP-MS									
					an an an an an an an an an an an an an a	eeusta	7667 (K	t. Marina da	1.200 C 120	Web a bear		2	e trati i menti ne
WG203104		Transfer with the second	10042101210010142				2963-809 <u>8</u> 0	elevite					in de la construir de la construir de la construir de la construir de la construir de la construir de la const Construir de la construir de la Construir de la construir de la
WG203104ICV	1CV	03/01/06 18:56											
WG203104IC8	100	03/01/06 19:02	MS060215-2	.02009		.01979	mg/L	95.6	90	110			
WG203017P8W	PBW	03/01/06 20:42				U	mg/L		-0.0012	0.0012			
WG203017LCSW	LCSW	03/01/06 20:48	MS060215-2			U	mg/L		-0.0012	0.0015			
L55388-02MS	MS	03/01/06 21:11	MS060215-2 MS060116-3	.02008		.02105	mg/L	104.0	80	120			
155388-02MSD	MSD	03/01/06 21:17	MS060116-3	.00625 .00625	ป ม	.00462	mg/L mg/L	73.9 72	75 75	125			M2
Arsenic, total			M6020 10				mgrc	· ~		125	2.63	20	M2
					7920 kg		attan barra	u briteriotek	al Mer Charle				
WG203104				lingen i ser		<u>898</u> 9223	S. 1994-544						
WG203104ICV	ICV	03/04/05 40.55											
WG203104(CB	ICB	03/01/06 18:55 03/01/06 19:02	MS060215-2	.05		.0513	.J\gin	102.6	90	110			
WG203017PBW	Paw	03/01/06 20:42				u	mg/L		-0.0015	8.0015			
WG203017LCSW	LCSW	03/01/06 20:42	10000046.6			υ	mg/i,		-0.0015	0.0015			
L55388-02MS	MS	03/01/06 21:11	MS060215-2	.05		.05274	mg/L	105.5	90	120			
L55388-02MSD	MSD	03/01/06 21:11	MS060116-3 MS060116-3	.05 .05	.0071 .0071	.08594	mg/L	117.7	75	125			
		55557765 2 K I)			.00/1	.06368	mg/L	113.2	75	125	3.49	20	
Barium, total			M6010B ((CP References		S	12100.000						
WD 989879	478, 1911 (Juli)												
WG202973													
NG202973 CV	ICV	02/28/05 4:26	11060119-4	2		1.9895	mg/L	99.5	90	110			
NG202973 C8	ice source	02/28/06 4:30				U	mg/L		-0.009	0.009			
WG202924P8W	PBW	02/28/06 4:47				u	mg/L		-0.009	0.009			
NG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1	•	1.0072	mg/L	100.7	80	120			
L55279-11MS	MS	02/28/06 5:08	II10XWATE	5	2.23	5.686	mg/L	93.1	75	125			
.55279-11MSD	MSD	02/28/06 5:12	HIDXWATE	5	2.23	6.873							

66511

Kleinfelder, Inc.

Project ID:

ACZ Project ID: L55388

Beryllium, total	ł	•	M6010E) ICP								
	N 89			法合法主义			÷.,					
WG202973												2 10-11 COMPLETE
WG2029731CV	ICV	02/28/06 4:26	1050119-4	2		1.9051	mg/L	95.3	50	110		
WG202973ICB	IC8	02/28/06 4:30				U	mg/L	8919	-0.006	0.006		
WG202924P8W	PBW	02/28/06 4:47				U	лīg/L		-0.006	0.006		
WG202924LCSW	LCSW	02/28/05 4:51	1060118-1	1		1.0092	mg/L	10 0 .9	80	120		
L55279-11MS	MS	02/28/06 5:08	HIDXWATE	5	U	4.915	mg/L	98.3	75	125		
L55279-11MSD	MSD	02/28/06 5:12	II10XWATE	5	U	4.861	mg/L	97.2	75	125	1.1	20
Cadmium, total			M6010B	ICP								
	\$. \$454-23											l sola in That an
WG202973												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WG262973ICV	IGV	02/28/06 4:28	11060119-4	2		1.86	ភាជ/៤	93	90	-110		
WG202973ICB	IC8	02/28/06 4:30				u	mg/L		-0.015	0.015		
WG202924PBW	PBW	02/28/06 4:47				u	mg/L		-0.015	0.015		
WG202924LC5W	LCSW	02/28/06 4:51	8060118-1	1		.9822	mg/L	98,2	60	120		
L55279-11MS	MS	02/28/06 5:08	HIOXWATE	5	U	4.849	mg/L	97	75	125		
L55279-11MSD	MSD	02/28/06 5:12	H10XWATE	5	U	4.819	mg/L	96.4	75	125	0.62	20
Calcium, dissol	ved		M6010B	ICP								······
WG203294												
NG203294ICV	ICV	03/07/06 12:41	1060302-5	100		97.29	mg/L	97.3	90	110		
WG203294ICB	ICB	03/07/06 12:45				U	mg/L		-0,6	0.6		
55360-01AS	AS	03/07/06 13:05	1060304-5	67.92102	152	213.53	mg/L	90,6	75	125		
55360-01ASD	ASD	93/07/06 13:09	1080304-5	67.92102	152	213.6	mg /(.	90.7	7 5	125	0.03	20
Carbon, total or	ganic (1	OC)	M415.1 (Combustion	1R				···		··	
											95.47	
WG202959												
WG202959ICV	ICV	02/27/06 15:47	WI060216-5	75		73.2	mg/L	97.6	90	110		
NG202959ICB	ICB	02/27/05 16:44				u	mg/L		-3	3		
WG202959LFB	LFB	02/27/06 17:42	WI060216-3	50		47.6	៣g/L	95.2	90	110		
55388-01DUP	DUP	02/28/06 11:01			105	97.3	mg/L				7.6	20
55388-02AS	AS	02/28/06 12:56	WI060216-3	250	47	274.4	mg/L	91	90	110		-

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

66511

Kleinfelder, Inc.

Project ID:

ACZ Project ID: L55388

Chloride			M325.2 -	Colorimet	ric							
					2	82.876)						
WG203129												
WG203129:CV	icv	03/02/06 11:14	Wi060207-2	55		53.8	mg/iL	97.6	90	110		
WG203129ICB	ICB	03/02/06 11:15				U	mg/L	37.0	-3	3		
WG203129LFB	LFB	03/02/06 11:15	WI051219-3	30		30	mg/L	100	90	110		
1.55388-01AS	AS	03/02/06 11:44	WI051219-3	300	270	575	mg/L	101.7	90	110		
.55388-02DUP	DUP	03/02/06 11:45			460	480	mg/L	*** •••	34	110	0	20
WG204002											•	
NG204002ICV	ICV.	03/24/06 17:02	WI060207-2	55		55,3	mg/L	100.5	90	110		
WG204002ICB	(CB	03/24/06 17:03	·····			U	ng/L	100.0	-3	3		
NG204002LFB	LFB	03/24/06 17:04	WI060321-4	30		30.7	mg/L	102.3	90	110		
.55873-01DUP	DUP	03/24/06 17:08		***	99	98.9	-	102.0	20	110		
.55388-01AS	AS	03/24/06 17:32	WI060321-4	300	270	90.9 585	mg/L mg/l	105		440	0.1	20
					410			100	90	110		····
Chromium, tota	a an an taithe	entra en la result	M6010B I	CP			Colour Colouradaeu			1 . 1.1		
	aan gaar b			anig her Als							in an an an an an an an an an an an an an	
WG202973												
WG202973ICV	ICV	02/28/06 4:26	0059119-4	2		1.904	mg/L	95.2	90	110		
NG202973ICB	ICB	02/28/06 4:30				U	mg/L		-0.03	0.03		
NG202924PBW	PBW	02/28/06 4:47				U	mg/L		-0,03	0.03		
NG202924LCSW	LCSW	02/28/06 4:51	1000118-1	1		.994	mg/L	99,4	80	120		
.55279-11MS	MS	02/28/06 5:08	II10XWATE	5	u	4.96	mg/l	99.2	75	125		
.55279-11MSD	MSD	02/28/06 5:12	HIDXWATE	5	U	4.92	mg/L	98.4	75	125	0.81	26
Cobalt, total			M6010B I	ĊP								
											91994) 91994	
NG202973												
NG202973ICV	ICV	02/28/06 4:26	1060119-4	2		1 470	#	B4 4				
VG2029731CB	ICB	02/28/06 4:30	00001104	2		1.820	mg/L	91.4	90	110		
NG202924PBW	PBW	02/28/06 4:30				u	mg/L		-0.03	0.03		
VG202924LCSW	LCSW	02/28/05 4:51	1060118-1	1.		U	/lgm	D0 -	-0.03	0.03		
.55279-11MS	MS	02/28/06 5:08		-	۰.	.982	mg/L	98.2	80	120		
.55279-11MSD	MSD	02/28/06 5:08	IIIOXWATE	5 5	ប ប	4.79 4.76	mg/L ma/l	95.6 05 0	75	125		
·····						4,10	mg/l.	95.2	75	125	0.63	20
Conductivity @	23 6		M9050 - M	Aeler Series	1.44.19.42	in purchase	1. 2. 7 p. 172 (1400	• 22.1. or - 5 5000	S- Mark and Same	a		
			to Xageree	1944 (1945 - 1947) 1944 - 1947 -	protesting).							
WG202932												
NG202932P6W1	PBW	02/27/05 11:52				1.7	umhosicn		-10	10		
NG202932LC5W1	LCSW	02/27/08 11:54	PCN23833	1409		1374	umhos/cn	97.5	80	120		
.55398-02DUP	DUP	02/27/08 13:44			15700	15540	umhos/cn				1	20
VG202932PBW2	PBW	02/27/06 14:34				1.5	ambos/cn		-10	10	•	
NG202932LCSW4	LCSW	02/27/06 14:35	PCN23833	1409		1386	unhosicn	98.4	60	120		
NG202932LCSW7	LCSW	02/27/06 17:16	PCN23833	1409		1382	imhas/co	98.1	60	120		

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

ACZ Project ID: L55388

Kleinfelder, Inc.

Project ID:

66511

Copper, total			M6010B	ICP									
												r is an an an an an an an an an an an an an	
WG202973													
WG2029731CV	ICV	02/28/06 4:25	11060119-4	2		1.895	mg/L	94.8	80	110			
WG202973ICB	ica	02/28/06 4:30				U	mg/L		+0.03	0.03			
WG202924PBW	PBW	02/28/06 4:47				U	mgR.		-0.03	0.03			
WG202924LCSW	LCSW	02/28/06 4:51	11060118-1	1		.979	mg/L	97,9	80	120			
L55279-11MS	MS	02/28/06 5:08	HIOXWATE	5	U	4.85	mg/L	97	75	125			
L55279-11MSD	MSD	02/28/06 5:12	INDXWATE	5	U	4.81	ന്നുമ.	96.2	75	125	0,83	20	
Iron, dissolved		·····	M60108	ICP									
			langan sanakaran 1981. Sebelah sanakaran sanakaran sanakaran sanakaran sanakaran sanakaran sanakaran sanakaran s										
WG203294													
WG203294ICV	ICV	03/07/06 12:41	1060302-5	2		1.92	mg/L	96	90	110			
WG203294ICB	IC9	03/07/06 12:45				U	mg/L		-9.06	0.06			
L55360-01AS	AS	03/07/06 13:05	1060304-5	1	.06	1.067	mg/L	100.7	75	125			
L55360-01ASD	ASD	03/07/06 13:09	11060304-5	1	.06	1.069	mg/L	100.9	75	125	0.19	20	
Lead, total			M6010B	ICP									
WG202973													
WG202973ICV	iCV	02/28/05 4:26	11060119-4	4		3,777	mg/L	94.4	90	110			
WG2029731C8	1CB	02/28/06 4:30				ť	mg/L		-0.12	0.12			
WG202924PBW	PBW	02/28/06 4:47				u	mg/L		-0.12	0.12			
WG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1		.978	mg/L	97.B	80	120			
L55279-11MS	MS	02/28/06 5:08	HIDXWATE	10	U	9.78	mg/L	97. 8	75	125			
L55279-11MSD	MSD	02/28/06 5:12	IIIDXWATE	10	u	9.63	mg/L	96.3	75	125	1.55	20	
Magneslum, dis	so)ved		M60108	ICP									
							wa kin	的政策					
WG203294													
WG203294ICV	ICV	03/07/05 12:41	1050302-5	100		97.53	mg/L	97.5	90	110			
WG203294ICB	ICB	03/07/06 12:45				ប	mg/L		-0.6	0.5			
L55360-01AS	AS	03/07/06 13:05	1060304-5	54,92926	48.3	99.95	- mg/L	97.7	75	125			
L55360-01A50	ASD	03/07/05 13:09	1060304-5	54.92926	46.3	99.7	mg/L	97.2	75	125	0.25	20	
Manganese, dis	solved		M6010B	ICP			·····-						
	N. A.V										esanto graza Veziata de		14 a - 1
WG203294													_
WG2032941CV	ICV.	03/07/05 12:41	11060302-5	2		1.9046	mg/L	95.2	90	110			
WG2032941CE	ICB	03/07/06 12:45		-		ย	mg/L		-0.015	0.015			
	AS	03/07/08 13:05	11060304-5	.5	.017	.52	mg/i.	100.6	75	125			
L55360-01AS													

L55388: Page 11 of 32

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID:

66511

ACZ Project ID: L55388

WG292973ICB				CONTRACTOR DOCUMENTS									
WG202973ICV			e ne se se se									1054-5	
WG202973ICB													
	ICV	02/28/06 4:26	060119-4	2		1.863	mg/L	93.2	90	110			
	ice	02/28/06 4:30				U			-0.03	0.03			
WG202924PBW	PBW	02/28/06 4:47				Ð	mg/l.		-0.03	0.03			
WG202924LCSW I	LCSW	02/28/06 4:51	1060118-1	1		.996	mg/L	99.6	80	120			
L55279-11MS	MS	02/28/06 5:06	INOXWATE	5	.1	4.87	mg/L	95.4	75	125			
L55279-11MSD	MSD	02/28/06 5:12	INDXWATE	5	.1	4.81	mg/L	94.2	75	125	1.24	20	
Nitrate/Nitrite as N	1, dissu	olved	M353.2 -	Automated	Cadmiu	m Reduc	tion						
			過過認知										
WG202913													
WG202913ICV	ICV	02/24/06 17:47	WI051201-1	2.4063		2.385	mg/L	99.2	90	110			
	IC8	02/24/06 17:48				ų	mg/L		-0.06	0.06			
WG202913LF8	LF8	02/24/06 17:52	WI050914-3	2		2.006	mg/L	108.3	90	110			
L55388-01AS	AS	02/24/06 17:54	WI050914-3	2	,5	2.519	mg/L	101	90	110			
L55388-020UP	DUP	02/24/06 17:55			.1	.117	mg/L				15.7	20	RA
Nitrite as N, disso	lved		M353.2 -	Automated	Cadmiu	m Reduci	llon			·			
WG202913													
WG202913ICV	ICV	02/24/05 17:47	WI051201-1	.6092		.599	mg/L	98.3	90	110			
WG202913ICB	ICB	02/24/08 17:48				υ	mg/L		-0.03	0.03			
WG202913LFB	LFB	02/24/06 17:52	Wi050914-3	1		1.003	mg/L	100.3	90	110			
L55388-01AS	AS	02/24/06 17:54	WI050914-3	1	.01	1.021	mg/L	101.1	90	110			
L55368-02DUP	DUP	02/24/08 17:55			ы	U	mg/L				Ð	20	RA
Ph	·		M9045C/	M9040B		,·			····	.			
WG202932													
WG202932LCSW3	LCSW	02/27/06 12:06	PCN23504	5		6.08	បករាទ	101.3	90	110			
L55388-02DUP	DUP	02/27/06 13:44			7.8	7.82	u∩∦s				0.3	20	
WG202932LCSW6	LCSW	02/27/06 14:50	PCN23564	5		6,09	units	101,5	90	110			
WG202932LCSW9	LCSW	02/27/06 17:29	PCN23504	6		8.1	units	101.7	90	110			
Potassium, dissol	lved		M5010B	ICP									<u> </u>
							1.526	976-789					
WG203294													
WG203294ICV	icv	03/07/06 12:41	1060302-5	20		19.76	mg/L	98.8	90	110			
	ICB	03/07/06 12:45				U	mg/L		-0,9	0.9			
	AS	03/07/06 13:05	11060304-5	100.1604	1.6	109.4	mg/L	107.6	75	125			
	ASD	03/07/06 13:09	1060304-5	100.1604	1.6	108.37	mg/L	106.6	75	125	0.95	20	

L55388: Page 12 of 32

ACZ Laboratories, Inc. 2773 Dawnhill Drive Steamboal Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID:

66511

ACZ Project ID: L55388

WG203036 WG203036 VW O222008 15:20 VU mg/L -20 20 LS5426-02CUP DUP 0228008 15:51 1090 1088 mg/L 132.1 192 325 Selenflum, total SM 3114 B, AA-Hydride <			0.272,176	Garden and A	4. I.M.		Serina				WE Solate	ler states finer	(4-1.)	giad, tradej i se	, Sector		12.723.23	
WG203036/PBW PEW 02/28/06 15:20 PCN23825 260 268 mg/L 103.1 192 325 L554/26 QDL/P DUP 02/28/06 15:51 PCN23825 260 268 mg/L 103.1 192 325 Selentum, total SM 3114 B, AA-Hydride SM 3114 B, AA-Hydride 900 1068 mg/L -0.03 0.003 WG202038LR9 LPB 02/28/06 15:11 1000217-3 .02 0 0198 mg/L 97.5 85 115 LS328-0LFM LPB 02/28/06 15:11 1000217-3 .02 U 0.197 mg/L 98.5 115 LS328-0LFM LPM 02/28/06 15:20 1060217-3 .02 U 0.197 mg/L 98.5 115 Silver, total M6010B ICP WG202973 WG202973 U mg/L -0.03 0.03 WG202924PW PEW 02/28/06 4:31 H000118-1 .25 U mg/L 98.8 120 LS5729-11MSD MS0 </th <th>사망 (KAR (KAR)</th> <th>아파하네가서</th> <th>an Selara S</th> <th>erseyyez</th> <th>VENBRI</th> <th>448.5M</th> <th>g ester de</th> <th>38.84⁸9</th> <th></th> <th>045.94</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>42, 9 Alieja -</th> <th></th> <th></th>	사망 (KAR (KAR)	아파하네가서	an Selara S	erseyyez	VENBRI	448.5M	g ester de	38.84 ⁸ 9		045.94						42, 9 Alieja -		
WG2020308LCSW/ LGSW LGSW 0.0228/06 15:22 0UP PCN23926 0228/06 15:51 250 268 mg/L 103.1 192 325 Selentum, total SM 3114 B, AA-Hydride SM 3114 B, AA-Hydride mg/L -0.003 0.003 WG202938 WG202938 UP 02/28/06 15:13 II060217-3 .02 U mg/L 97.6 85 115 LSS226-10LFM LFM 02/28/06 15:18 II060217-3 .02 U .0197 mg/L 98.5 115 LSS226-10LFM LFM 02/28/06 15:18 II060217-3 .02 U .0197 mg/L 98.5 115 LSS226-10LFM LFM 02/28/06 15:18 II060119-4 1 .938 mg/L 90.5 110 VG202973 VG202973 VG202973 VG202973 VG202973 U mg/L 93.8 90 110 VG202974 VG2029765 II0 1060114-1 1 .938 mg/L 90.3 10.3 10.3 L033 L033 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th>																-		
L55426-02CUP DUP 02/28/06 15:51 1090 1086 mg/L Selentum, total SM 3114 B, AA-Hydride -0.003 0.003 WG202938 UP 02/28/06 15:13 1050217-3 .02 .0195 mg/L 97.5 85 115 S3326-10LFM UF0 02/28/06 15:18 1050217-3 .02 .0198 mg/L 93.8 115 S3326-10LFM UFM 02/28/06 15:18 1050217-3 .02 U .0197 mg/L 93.8 115 S3326-10LFM UFM 02/28/06 4:26 1050217-3 .02 U .0197 mg/L 93.8 115 SNVer, total M6010B ICP .033							-											
Selentium, total SM 3114 B, AA-Hydride WG202938 WG202938 WG202938 Ummile and the average of the aver		325	3	192	.1	103.1	-		~		260	N23926	PG		-			
WG202938 WG202938LF8 LF8 02/28/06 15:11 U mg/L -0.003 0.003 NG202938LF8 LF8 02/28/06 15:11 IIC60217-3 .02 0 .0198 mg/L 97.5 .85 .115 S5326-10LFM LFM 02/28/06 15:20 IIC60217-3 .02 U .0198 mg/L .99 .85 .115 S3326-10LFM LFM 02/28/06 15:20 IIC60217-3 .02 U .0197 mg/L .93.5 .85 .115 Silver, total M6010B ICP	0.4						mga,							12/26/00 15:51				
WG202938 WG202938LF8 LF8 02/28/06 15:11 U mg/L -0.003 0.003 NG202938LF8 LF8 02/28/06 15:13 JIDE0217-3 .02 U .0195 mg/L 97.5 .85 .115 .55326-10LFM LFM 02/28/06 15:20 II060217-3 .02 U .0197 mg/L 98.5 .85 .115 SINer, total M6D10B ICP V .0197 mg/L 98.5 .85 .116 WG202973 V .02/28/06 4:26 II060119-4 1	12-21-2-3-3-1-	20-0-0				4147 - AND		1999 - A.	Regionale							iteratu.		
VX222233LR8 LF8 02/28/06 15:11 U mg/L -0.003 0.003 VX322233LF8 LF9 02/28/06 15:13 1060217-3 .02 .0195 mg/L 97.5 85 115 S5326-10.FM LFM 02/28/06 15:20 1060217-3 .02 U .0198 mg/L 99.8 85 115 S5326-10.FM LFM 02/28/06 15:20 1060217-3 .02 U .0197 mg/L 99.5 85 115 Silver, total M6010B ICP V .0197 mg/L 93.8 90 110 VG202973 V 02/28/06 4:26 1060118-1 .538 mg/L 93.8 90 110 VG202974 LGB 02/28/06 4:26 1060118-1 .25 .248 mg/L -0.03 0.03 VG2029246505W DSW 02/28/06 5:18 1105WATE 5 U 4.84 mg/L 99.2 80 120 .55279-11MS MSD 02/28/06 5:12 1105WATE 5 U 4.84 mg/L 90.5 75 125 <td></td> <td></td> <td>en santa</td> <td>e er state o</td> <td>1999 - E</td> <td></td> <td></td> <td><u>. 197</u>98-</td> <td>20.949 1</td> <td></td> <td></td> <td>可能发出的</td> <td>100</td> <td><u>我们的时候</u>,我们的问题。</td> <td>14 A.</td> <td></td> <td></td> <td></td>			en santa	e er state o	1999 - E			<u>. 197</u> 98-	20.949 1			可能发出的	100	<u>我们的时候</u> ,我们的问题。	14 A.			
NG202938LFB LFB 02/28/05 15:13 II060217-3 .02 .0195 mg/L 97.5 85 115 LS3326-10LFM LFM 02/28/06 15:20 II060217-3 .02 U .0198 mg/L 99 85 115 LS3326-10LFM LFM 02/28/06 15:20 II060217-3 .02 U .0197 mg/L 99.8 85 115 Silver, total M6D10B ICP V .0197 mg/L 93.8 90 110 MG202973 V 02/28/06 4:26 II060119-4 1 .538 mg/L 93.8 90 100 MG202973ICB ICB 02/28/06 4:30 U mg/L -0.03 0.03 MG202924P6W PSW 02/28/06 4:47 U mg/L 90.2 80 120 Sc5279-11MSD MSD 02/28/06 4:51 II060118-1 .25 .248 mg/L 95.2 80 120 Sc5279-11MSD MSD 02/28/06 5:312 II00XWATE 5 U 4.84 mg/L 100.5 90 110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																		
LS32G-10LFM LFM 02/28/06 15:18 1060217-3 .02 U .0198 mg/L 99 85 115 L532G-10LFMD LFMD 02/28/06 15:20 1060217-3 .02 U .0197 mg/L 99.8 55 115 Silver, total M6D10B ICP WG202973 WG202973 WG202973C ICV ICV 02/28/06 4:26 10050119-4 1 .938 mg/L 99.8 90 110 WG202973CB ICB 02/28/06 4:30 U mg/L -0.03 0.03 WG202924PGW PBW 02/28/06 4:51 10650118-1 .25 .248 mg/L 99.2 80 120 L55279-11MS MS 02/28/06 5:12 1100WATE 5 U 4.84 mg/L 96.3 75 125 Sodium, dissolved M6D10B ICP WG203294 WG203074 WG203294 WG203074																		
L55326-10LFMD LFMD 02/28/06 15:20 1060217-3 .02 U .0197 mg/L 98.5 85 115 Silver, total M6D10B ICP WG202973 WG202973 WG202973ICV ICV 02/28/06 4:26 10050119-4 1 .538 mg/L 93.8 90 110 WG202973ICB ICB 02/28/06 4:30 WG202924LCSW PBW 02/28/06 4:51 9060118-1 .25 .248 mg/L 99.8 90 120 L55279-11MS MS 02/28/06 5:12 1100KWATE 5 U 4.84 mg/L 95.8 75 125 Sodium, dissolved M6D10B ICP WG203294 WG203074 H WG203074 H H H H H H H H H H H H H							-											
Silver, total M6010B ICP WG202973 WG202973CV ICV 02/20/06 4:26 H060119-4 1							-											
WG202973 WG202973CV ICV 02/28/06.4:26 II050119-4 1		1 2 2	۱ 	0 	a 	40.0	ngr	97				·····		02/29/06 13:20				
WG202973 WG202973CV ICV 02/26/06 10050119-4 1 .538 mg/L 93.8 90 110 WG202973ICB ICB 02/26/06 6130 U mg/L -0.03 0.03 WG202924PBW PEW 02/26/06 6147 U mg/L -0.03 0.03 WG202924CSW LCSW 02/26/06 6151 #060118-1 .25 .248 mg/L 95.2 80 120 L55279-11MS MS 02/28/06 512 #10xWATE 5 U 4.84 mg/L 96.8 75 125 L55279-11MSD MSO 02/28/06 512 #10xWATE 5 U 4.85 mg/L 96.8 75 125 Sodium, dissolved MSO 02/28/06 512 #100XWATE 5 U 4.85 mg/L 90.9 10.9 L55269-014SD MSO 02/28/06 51241 #050302-5 100 100.5 mg/L 100.6 75 <td></td> <td>al and south the</td> <td></td> <td>i an an an an an an an an an an an an an</td> <td></td> <td>Mariana</td> <td></td> <td></td> <td></td> <td>. Furtheling</td> <td>icp Maria</td> <td>M6D10B I</td> <td>15, 14</td> <td>a station in the second second</td> <td></td> <td>NAME AND T</td> <td></td> <td></td>		al and south the		i an an an an an an an an an an an an an		Mariana				. Furtheling	icp Maria	M6D10B I	15, 14	a station in the second second		NAME AND T		
WG202973ICV ICV 02/28/06 4:26 II060119-4 1 .538 mg/L 93.8 90 110 WG202973ICB IEB 02/28/06 4:30 U mg/L -0.03 0.03 WG202924PBW PBW 02/28/06 4:47 U mg/L -0.03 0.03 WG202924LCSW LCSW 02/28/06 5:08 II 0XWATE 5 U 4.84 mg/L 99.2 80 120 L55279-11MS MS 02/28/06 5:08 II 10XWATE 5 U 4.84 mg/L 97 75 125 Sodium, dissolved MSD 10B ICP VG203294 MG203294ICV ICV 03/07/06 12:41 100:0302-5 100 100.5 mg/L 100.5 90 110 WG203294IC8 ICB 03/07/06 12:45 U mg/L 00.5 75 126 L55360-01AS AS 03/07/06 13:09 II060304-5 99.34137 19.7 119.64 mg/L 90.8 75 125 Suifate SM4500 SO4-D U mg/L -30 30 30 30 3			ana an	en en en en en en en en en en en en en e	<u> </u>	areast a	Magdal II. S 240 a Alfr				an in grad and Saint an an an an an an an an an an an an an		26.2 V.				n an state ist	
WG2029731CB IEB 02/26/06 4:36 U mg/L -0.03 0.03 WG202924PBW PBW 02/28/06 4:47 U mg/L -0.03 0.03 WG202924PBW LCSW 02/28/06 4:51 ii060118-1 .25 .248 mg/L 99.2 80 120 L55279-11MS MS 02/28/06 5:08 ii10XWATE 5 U 4.84 mg/L 96.8 75 125 L55279-11MSD MSD 02/28/05 5:12 ii10XWATE 5 U 4.85 mg/L 97 75 125 Sodium, dissolved M6010B ICP WG203294 WG203294 WG203294 -0.9 0.9 110 97 75 125 WG203294 ICV ICV 03/07/06 12:41 10050302-5 100 100.5 mg/L 100.6 75 126 L55360-01AS AS 03/07/06 13:05 1060304-5 99.34137 19.7 118.66 mg/L 99.8 75 125 Suifate SM4500 SO4-D U mg/L 99.8 75 125																		•
WG202924PBW PBW 02/28/06 4:47 U mg/L -0.03 0.03 WG202924LCSW LCSW 02/28/06 4:51 #060118-1 .25 .248 mg/L 99.2 80 120 L55279-11MS MS 02/28/06 5:08 #10xWATE 5 U 4.84 mg/L 96.8 75 125 L55279-11MSD MSD 02/28/05 5:12 #10xWATE 5 U 4.85 mg/L 97 75 125 Sodium, dissolved M60108 (CP W 4.85 mg/L 90 110 WG203294 WG203294(C8 ICS 03/07/05 12:45 U mg/L -0.9 0.9 L55360-01AS AS 03/07/06 13:05 1060304-5 99.34137 19.7 118.66 mg/L 90.6 75 126 Sulfate SM4500 SO4-D SM4500 SO4-D U mg/L -30 30 WG203074 WG203074E V 03/01/06 12:01 WC080112-3 100 104 mg/L 104 80 120 WG203074LCSW LCSW 03/01/	Û	110	1	90	8	93.8	mg/L				1	50119-4	1106	02/28/06 4:26	(IGV	NG2029731
WG202924LCSW LCSW 02/28/06 4:51 H060118-1 .25 .248 mg/L 99.2 80 120 L65279-11MS MS 02/28/06 5:08 H10XWATE 5 U 4.84 mg/L 96.8 75 125 L55279-11MS MSD 02/28/05 5:12 H10XWATE 5 U 4.85 mg/L 97 75 125 Sodium, dissolved MSD 02/28/05 5:12 H10XWATE 5 U 4.85 mg/L 97 75 125 WG203294 MG203294 MG203294 MG20302-5 100 100.5 mg/L 100.5 90 110 WG203294 KV 03/07/06 12:45 1080304-5 99.34137 19.7 119.64 mg/L 100.6 75 126 L55360-01AS ASD 03/07/06 13:09 10060304-5 99.34137 19.7 118.66 mg/L 99.8 75 125 Suifate SM4500 SO4-D V mg/L 90.8 75			_															
L65279-11MS MS 02/28/06 5:08 II 10XWATE 5 U 4.84 mg/L 96.8 75 126 L55279-11MSD MSD 02/28/05 5:12 II 10XWATE 5 U 4.85 mg/L 97 75 125 Sodium, dissolved M6010B (CP WG203294 WG203294 WG203294ICV ICV 03/07/06 12:41 II050302-5 100 100.5 mg/L 100.5 90 110 WG203294ICB ICB 03/07/05 12:45 U mg/L 00.6 75 126 L55360-01AS AS 03/07/06 13:05 II060304-5 99.34137 18.7 119.64 mg/L 100.6 75 126 L55360-01AS AS 03/07/06 13:09 II060304-5 99.34137 18.7 119.64 mg/L 99.8 75 125 Suifate SM4500 SO4-D WG203074PBW PBW 03/01/06 12:01 WC060112-3 100 U mg/L -30 30 WG203074LCSW LCSW 03/01/06 12:01 WC060112-3 100 U mg/L 104 80 120 WG203074LSW LCSW 03/01/06 12:01 WC060112-3 100 U U U mg/L 104 80 120 WG203953							-											
LS5279-11MSD MSD 02/28/05 5:12 II10XWATE 5 U 4.85 mg/L 97 75 125 Sodium, dissolved M6010B (CP M60010B (CP M6010B (CP M6010B (CP M6010B (CP M6010B (CP M6010B (CP M60010B (CP M6010B (CP M60010B (CP M600 (CP M600 (CP M600 (CP M600 (CP M600 (CP M600 (CP M600 (CP M600 (CP M600 (CP M60 (CP <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							-											
Sodium, dissolved M6010B (CP WG203294 WG203294 WG203294(CV ICV 03/07/06 12:41 10050302-5 100 100.5 mg/L 100.5 90 110 WG203294(C8 ICB 03/07/05 12:45 U mg/L -0.9 0.9 WG203294(C8 ICB 03/07/05 12:45 U mg/L -0.9 0.9 L55360-01AS AS 03/07/06 13:09 I0060304-5 99.34137 19.7 119.64 mg/L 99.6 75 125 Suifate SM4500 SO4-D V 99.8 75 125 WG203074 WG203074 V MC080112-3 100 104 mg/L -30 30 WG203074LCSW LCSW 03/01/06 12:01 WC080112-3 100 104 mg/L 104 60 120 WG203953 U U U mg/L 104 60 120							-											
WG203294 WG203294ICV ICV 03/07/06 12:41 8050302-5 100 100.5 mg/L 100.5 90 110 WG203294ICB ICB 03/07/06 12:45 U mg/L 100.6 75 126 L55360-01AS AS 03/07/06 13:05 1060304-5 99.34137 19.7 119.64 mg/L 100.6 75 126 L55360-01AS AS 03/07/06 13:09 1060304-5 99.34137 19.7 118.66 mg/L 99.8 75 125 Suifate SM4500 SO4-D V 100.106 12:0 100 120 120 120 120 120 120 120 120 120 120 120<	.5 0.21	125	1	15			mg/L							02/28/06 5:12				
WG203294ICV ICV 03/07/06 12:41 8060302-5 100 100.5 mg/L 100.5 90 110 WG203294IC8 ICB 03/07/05 12:45 U mg/L 100.5 mg/L 100.5 90 110 L55360-01AS AS 03/07/05 12:45 U mg/L 100.6 75 126 L55360-01AS AS 03/07/06 13:09 1060304-5 99.34137 19.7 119.64 mg/L 99.8 75 125 Suifate SM4500 SO4-D SM4500 SO4-D V mg/L 90.8 75 125 WG203074 WG203074LCSW LCSW 03/01/06 12:00 WC080112-3 100 104 mg/L 404 80 120 US203074LCSW LCSW 03/01/06 12:01 WC080112-3 100 104 mg/L 60 120 U U U U U 0 mg/L 80 120		io estaria	0.16.29	NARA NI		59-50 056	er havdat	100.00	والمعرفة والرو	110-00-	CP	M6010B		Prop Trans Marchine Cast		red Control of the	dissolv	Sodium,
WG203294ICV ICV 03/07/06 12:41 8060302-5 100 100.5 mg/L 100.5 90 110 WG203294IC8 ICB 03/07/05 12:45 U mg/L 100.5 mg/L 100.5 90 110 L55360-01AS AS 03/07/05 12:45 U mg/L 100.6 75 126 L55360-01AS AS 03/07/06 13:09 1060304-5 99.34137 19.7 119.64 mg/L 99.8 75 125 Suifate SM4500 SO4-D SM4500 SO4-D V mg/L 90.8 75 125 WG203074 WG203074LCSW LCSW 03/01/06 12:00 WC080112-3 100 104 mg/L 404 80 120 US203074LCSW LCSW 03/01/06 12:01 WC080112-3 100 104 mg/L 60 120 U U U U U 0 mg/L 80 120		1765-83 1765-83	61 a 4 6							12/56	94 - 25 - 52 7						A PERCE	
WG203284/ICB ICB 03/07/06 12:45 U mg/L -0.9 0.9 L55360-01AS AS 03/07/06 13:05 1060304-5 99.34137 19.7 119.64 mg/L 100.6 75 126 L55360-01ASD ASD 03/07/06 13:09 1060304-5 99.34137 19.7 119.64 mg/L 99.8 75 125 Suifate SM4500 SO4-D V mg/L 99.8 75 126 WG203074 V V 03/01/06 12:00 V 03/01/06 12:00 V mg/L -30 30 WG203074LCSW LCSW 03/01/06 12:01 WC060112-3 100 104 mg/L 104 80 120 WG2030733 U U U mg/L 104 80 120																		
LS5360-01AS AS 03/07/06 13:05 11060304-5 99.34137 19.7 119.64 mg/L 100.6 75 126 L55360-01ASD ASD 03/07/06 13:09 11060304-5 99.34137 19.7 118.66 mg/L 99.8 75 125 Suifate SM4500 SO4-D WG203074 WG203074 WG203074PBW PBW 03/01/06 12:00 U mg/L30 30 WG203074LCSW LCSW 03/01/06 12:01 WC080112-3 100 104 mg/L 104 80 120 L55404-010UP DUP 03/01/06 12:15 U WC080112-3 100 104 mg/L 104 80 120 WG203953				90:	.5	100.5	+				100	50302-5	10					
L55380-01ASD ASD 03/07/06 13:09 10060304-5 99,34137 19.7 118.66 mg/L 99.6 75 125 Suifate SM4500 SO4-D WG203074 WG203074 WG203074LCSW LCSW 03/01/06 12:01 WC080112-3 100 104 mg/L 104 80 120 L55404-010UP DUP 03/01/06 12:15 U 0 0 mg/L WG203953							-											
Suifate SM4500 SO4-D WG203074 WG203074PBW WG203074LCSW U WG203074LCSW LCSW UCSW 03/01/06 12:01 WG203074LCSW LCSW U mg/L U U WG203074LCSW LCSW U U U U U U U U WG203953 U							-											
WG203074 WG203074PBW PBW 03/01/06 12:00 U mg/L -30 30 WG203074LCSW LCSW 03/01/06 12:01 WC060112-3 100 104 mg/L 104 60 120 L55404-010UP DUP 03/01/06 12:15 U U mg/L WG203953	25 0.65	125	1	75	.6	99.8	π∰/L	i.66	, / 	37 	99,3413	auaua-a	00	03/07/06 13:09		ASO	ASU	
WG203074 WG203074PBW PBW 03/01/05 12:00 U mg/L -30 30 WG203074LCSW LCSW 03/01/06 12:01 WC060112-3 100 104 mg/L 104 80 120 L55404-010UP DUP 03/01/06 12:15 U U mg/L WG203953 30 104 mg/L	11 Martin 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19				the second		ar at taxes and the			W. Low Co. M.	SO4-0	SM4500 3						
WG203074PBW PBW 03/01/06 12:00 U mg/L -30 30 WG203074LGSW LCSW 03/01/06 12:01 WC060112-3 100 104 mg/L 104 80 120 L55404-010UP DUP 03/01/06 12:15 U U mg/L WG203953		3265.Y	10000												2.4			
WG203074LCSW LCSW 03/01/06 12:01 WC060112-3 100 104 mg/L 104 60 120 L55404-010UP DUP 03/01/06 12:15 U U U mg/L WG203953																	174	WG2030
L55404-010UP DUP 03/01/06 12:15 U U mg/L WG203953	0	30		-30			mg/L							03/01/06 12:00	i	PBW	4PBW	WG203074
WG203953		120	1	60	4	104					100	2060112-3	WC					
	0						mg/L	J,						03/01/06 12:15		DUP	DUP	.55404-010
WG203953PBW PBW 03/23/06 17:14 U mg/L -30 30																	53	WG2039
	a	30					mg/L							03/23/06 17:14		PBW	3PBW	WG203953
WG203953LCSW LCSW 03/23/06 17:15 WC060112-3 100 95 mg/L 95 80 120 L55667-010UP 0UP 03/23/06 17:34 U 12 mg/L	20 200	120	1	80	5	95					100	0060112-3	W		-	+-+		

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

ACZ Project ID: L55388

Kleinfelder, Inc.

Project ID: 66511

Thallium, total			M6020 K	CP-MS									
WG203104	. •												
WG203104ICV	ICV	03/01/06 18:56	MS060215-2	.0546		.05592	mg/L	102.4	90	110			
WG203104IC8	IC8	03/01/06 19:02				U	mg/L		-0.0003	0.0003			
WG203017PBW	PBW	03/01/06 20:42				ū	mg/L		-0.0003	0.0003			
WG203017LCSW	LCSW	03/01/06 20:48	MS060215-2	.0546		.05603	mg/L	102.6	80	120			
L55388-02MS	MS	03/01/06 21:11	MS060116-3	,05	.0003	.05978	mg/L	119	75	125			
L55388-02MSD	MSD	03/01/06 21:17	MS060116-3	.05	.0003	.05946	mg/L	118.4	75	125	0.5	20	
Vanadium, tota	l		M6010B I	СР									
	n Charles (24,55) Na Galaine (24,55)				C.A.S.						n in the second s		
WG202973													
WG202973ICV	(CV	02/28/06 4:25	1060119-4	2		1.9081	тgЛ,	95.4	90	110			
WG202973ICB	ICB	02/28/06 4:30				u	ang/L		-0.015	0.015			
WG202924PBW	PBW	02/28/05 4:47				U	mg/L		-0.015	0.015			
WG202924LCSW	LCSW	02/28/06 4:51	#060118-1	1		.8934	mg/L	99.3	80	120			
L55279-11MS	MS	02/28/06 5:08	U10XWATE	5	.18	5.089	mg/L	98.2	75	125			
L55279-11MSD	MSD	02/28/06 5:12	110XWATE	5	.18	5.049	mg/L	97.4	75	125	0.79	20	
Zinc, total			M60108 I	CP									
WG202973													
WG202973ICV	ICV	02/28/06 4:26	1060119-4	2		1.901	mg/L.	95,1	90	110			
WG202973ICB	ICB	02/28/06 4:30				U	mg/L		-0.03	0.03			
WG202924P8W	P8W	02/28/06 4:47				U	mg/L		-0.03	0.63			
WG202924LCSW	LCSW	02/28/06 4:51	1050118-1	1		1.003	rig/t.	100.3	80	120			
L55279-11MS	MS	02/28/06 5:08	H10XWATE	5	.3	5.22	mg/L	98.4	75	125			
L55279-11MSD	MSD	02/28/06 5:12	RIDXWATE	5	.3	5.18	mg/L	97,6	75	125	0.77	20	

AGZZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

ACZ Project ID: L55388

				-	
L55388-01	WG203104	Anlimony, total	M6020 ICP-MS	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG203294	iran, dissolved	M60108 ICP	ZG	The ICP Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG203104	Thallium, lotal	MED20 ICF-MS	25	The ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 100 times the MDL.
	WG202973	Zinc, lotal	M6010B ICP	ZG	The ICP Serial Ditulion was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG204002	Chlaride	M325.2 - Colorimetric	C4	Confirmatory analysis was past holding time.
	WG202913	Nitrale/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RĄ	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG203953	Sullate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too tow for accurate evaluation (< 10x MDL).
	WG204008	Total Alkalinity	SM2320B - Titration	C4	Confirmatory analysis was past holding lime.
L5538B-02	WG203104	Aatimony, lolat	M6020 ICP-MS	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG203294	tron, dissolved	M60109 ICP	ZG	The ICP Serial Difution was not used for data validation because the sample concentration was less than 50 times the MDL
	WG203104	Theilium, lotaí	M6020 ICP-MS	ZB	The ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 100 times the MOL.
	WG202973	Zinc, lotal	MS010B ICP	ZG	The ICP Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MOL.
	WG202913	Nitrale/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	RĄ	Relative Porcent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N, dissolved	M353.2 - Automaled Cadmium Reduction	RA	, ,
	WG203036	Residue, Filterable (TDS) @160C	M160.1 - Gravimetric	zo	TDS concentration is based on a final residue greater than 200 mg.
	WG203074	Sullate	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).

REPAD.15.08.05.01

L55388: Page 15 of 32

ACZ Laborat	ories, Inc. ngs, CO 80487 (800) 334-5493			
Kleinfelder, Inc. Project ID: 66511 Sample ID: GW-1 Locator:		ACZ Sample ID: Date Sampled: Date Received: Sample Matrix:	L55388-01 02/23/06 0. 02/24/06 Ground Wa	
Extract Method: Metho	0B GC/MS od	Analyst: Extract Date: Analysis Date: Dilution Factor:		
Compound				
1,1,1,2-Tetrachioroethane	D00630-20-6	U	ug/L	0.5 1
1,1,1-Trichloroelhane	000071-55-6	U U	• ug/L	0.5 2
1,1,2,2-Tetrachloroelhane	000079-34-5	Ű	* ug/L	0.5 1
1,1,2-Trichloroethane	000079-00-5	Ű	• ug/(0.5 1
1,1-Dichloroethane	000075-34-3	- U	* ug/L	0.5 1
1,1-Dichloroethene	000075-35-4	. – U	* ug/L	0.5 1
1,2,3-Trichioropropane	000095-18-4	U	• ug/L	0.5 1
1,2-Dibromo-3-chloropropane	000096-12-8	U	* ug/L	0.5 1
1,2-Dibromoethane	000106-93-4	U	• ug/L	0.5 1
1,2-Dichlorobenzene	000095-50-1	U	• ug/L	0.5 1
1,2-Dichloroelhane	000107-06-2	U	• ug/L	0.5 1
1,2-Dichioropropane	000078-87-5	U	• ug/L	0.5 1
1,3-Dichlorobenzene	000541-73-1	U	• ug/L	0.5 1
1,4-Dichiorobenzene	00010E-46-7	U	• ug/L	0.5 1
2-Bulanone	000078-93-3	. u	• ug/L	0.5 2
2-Hexanone	080591-78-6	ម	• ug/L	0.5 2
4-Methyl-2-Pentanone	000108-10-1	U	• ug/L	0.5 2
Acetone	000067-64-1	U	• ug/L	0.5 2
Acrylonitrile	000107-13-1	U	• ug/L	0.5 2
Benzene	000071-43-2	4.3	• ug/L	0.5 1
Bramochloromethane	080074-97-5	U	• ug/L	0.5 1
Bromodichloromethane	000075-27-4	ម	• ,ug/L	0.5 1
Bromeform	000075-25-2	U	• ug/L	0.5 1
Bromomethane	000074-83-9	U	* ug/L	0.5. 2
Carbon Disulfide	000075-15- 0	U	• ug/L	0.5 1
Carbon Tetrachloride	000056-23-5	U	• ug/L	0.5 1
Chlarobenzene	000108-90-7	U	• ug/L	0.5 1
Chloroelhane	000075-00-3	U	• ug/L	0.5 2
Chloroferm	000067-68-3	ų	• ug/L	0.5 1
Chloromethane	000074-87-3	U	* ug/L	0.5 1
cls-1,2-Dichloroethene	000156-59-2	17.5	* ug/L	0,5 1
cls-1,3-Dichloropropene	010061-01-5	U	* ug/L	0,5 1
Dibromochloromelhane	000124-48-1	U	• ug/L	0.5 1
Dibromomethane	000074-95-3	U	* ug/t_	0.5 1
Dichlorodillucromethane	000075-71-8	U	• ug/L	0.5 1

* Please refer to Extended Qualifier Report for details.

.

L55388: Page 16 of 32

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc. Project ID: 66511 Sample ID: GW-1 Locator:		ACZ Sam Date Sa Date Re Sample	mpled: ceived;	02 02	5388-0 123106 124106 round V	0:00	
Ethylbenzene	000100-41-4	12.3		*	ug/L	0.5	1
lodomelhane	000074-88-4		U	٠	ug/L	0.5	1
m,p-Xylene	001330 20 7		U	•	ug/L	0.5	1
Methylene Chloride	000075-09-2		U	٠	ug/L	0,5	1
o-Xylene	000095-47-6		ម	*	ug/L	0.5	1
Styrene	000100-42-5		U	+	ug/L	0.5	1
Telrachloroethene	000127-18-4		U	٠	ug/i.	0.5	1
Toluene	000108-88-3		U	*	ug/L	0.5	1
trans-1,2-Dichlorosthene	000156-60-5		U	٠	ug/L	0.5	1
Irans-1,3-Dichloropropene	010061-02-6		υ	*	ป g/L	0.5	1
trans-1,4-Dichloro-2-bulene	000110-57-6		u	٠	ug/L	0.5	1
Trichloroalhene	000079-01-5	8.1		٠	ug/L	0.5	1
Trichlerofluoromethane	000075-69-4		υ	٠	ug/L	0.5	1
Vinyl Acelate	000108-05-4		U	*	ug/L	0.5	2
Vinyi Chloride	000075-01-4	4.3		•	ug/L	0.5	2
Surrogate Recoveries							
Bromofluorobenzene	000450-00-4	111.3		٠	%	86	115
Dibromofluoromethane	001868-53-7	86.4		٠	%	86	118
Toluene-dð	002037-26-5	104.6		٠	%	88	110

L55388: Page 17 of 32

ACZ	Laboratorie	s, Inc	
2773 Downhill Drive	Steamboat Springs, CO	80487	(800) 334-5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-2 Locator:

Analysis Method: M8260B GC/MS Extract Method:

Method

Compound							
1,1,1,2-Tetrachlorcethane	000630-20-6		U	*	ug/L	0.5	1
1,1,1-Trichloroethane	000071-55-6		U	*	ug/L	0.5	2
1,1,2,2-Tetrachloroelhane	000079-34-5		U	•	ug/L	0.5	1
1,1,2-Trichloroelhane	000079-00-5		U	٨	ug/L	0.5	1
1,1-Dichloroethane	000075-34-3		U	•	ug/L	0.5	1
1,1-Dichloroelhene	000075-35-4		U	•	ug/L	0.5	1
1,2,3-Trichloropropane	000095-18-4		u	٠	ug/L	0.5	1
1,2-Olbromo-3-chioropropane	000096-12-8		U	•	ug/L	0.5	1
1,2-Dibromoethane	000108-93-4		U	٠	ug/L	0.5	1
1,2-Dichlorobenzene	000095-50-1		U	•	ug/{_	0.5	1
1,2-Dichloroelhane	000107-06-2		U	•	ug/L	0.5	1
1,2-Dichloropropane	000078-87-5		U	•	ug/L	0.5	1
1,3-Dichlorobenzene	000541-73-1		U	•	ug/L	0.5	1
1,4-Dichlarobenzene	000106-46-7		υ	٠	ug/L	0.5	1
2-Butanone	000078-93-3		· U	٠	ug/L	0.5	2
2-Hexanone	000591-78-6		U	•	ug/L	0.5	2
4-Methyl-2-Pentanone	000108-10-1		U	٠	ug/L	0.5	2
Acetone	000067-64-1		Li	•	ug/L	0.5	2
Acrylonitrile	000107-13-1		υ	•	ug/L	0,5	2
Benzene	000071-43-2		U	٠	ug/L	0.5	1
Bromochloromethane	000074-97-5		U	٠	ug/L	0.5	1
Bromodichloromethane	000075-27-4		U	•	ug/L	0.5	1
Bromolorm	000075-25-2		υ	*	ug/L	0.5	1
Bromomethane	000074-83-9		U	٠	ug/L	0.5	2
Carbon Disulfide	000075-15-0		U	*	ug/L	0.5	1
Carbon Tetrachloride	000056-23-5		U	*	ug/L	0.5	1
Chiorobenzene	000108-90-7		U	٠	սց/Լ	0.5	1
Chioroethane	000075-00-3		υ	٠	ug/L	0.5	2
Chieroform	000067-66-3		U	٠	ug/t.	0.5	1
Chloromelhane	000074-87-3		υ	•	ug/L	0.5	1
cis-1,2-Dichloroethene	000156-59-2	29.8		٠	ug/L	0.5	1
cis-1,3-Dichloropropene	010061-01-5		U	•	ug/L	0.5	1
Dibromochloromethane	000124-48-1		u	٠	ug/L	0.5	1

ACZ Sample ID: L55388-02 Date Sampled: 02/23/06 0:00 Date Received: 02/24/06 Sample Matrix: Ground Water

Analyst: jj Extract Date: 03/08/06 22:22 Analysis Date: 03/08/06 22:22 Dilution Factor: 1

REPOR.02.05.05.01

Dichlorodifluoromethane

Dibromomethane

* Please refer to Extended Qualifier Report for details.

000074-95-3

000075-71-8

L55388: Page 18 of 32

0.5

0.5

1

1

ug/L

ug/L

u

IJ

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc. Project ID: Sample ID: Locator:	66511 GW-2		Date Re	mple ID: ampled: eceived: a Matrix:	02 02	5 5388-0 2/23/06 2/24/06 round V	0:00				
Ethylbenzene		000100-41-4		υ	*	ug/L	0.5	1			
lodomethane		000074-88-4		U	٠	ug/L	0.5	1			
m,p-Xylene		001330 20 7		U	*	ug/L	0.5	1			
Melhylene Chloride		000075-09-2		U	٠	ug/L	0,5	1			
o-Xylene		000095-47-6		Ų	•	ug/L	0.5	1			
Styrene		000100-42-5		U	٠	ug/L	0,5	1			
Tetrachloroelhene		000127-18-4		υ	٠	ug/L	0.5	1			
Toluene		000108-66-3		U	*	ug/L	0,5	1			
trans-1,2-Dichloroeth	iene	000156-60-5		U	•	ug/)_	0.5	1			
trans-1,3-Dichloropro	opene	010061-02-5		U	٠	ug/L	0.5	1			
trans-1,4-Dichloro-2-	butene	000110-57-6		L	٠	ug/L	0,5	t			
Trichloroethene		000079-01-5	12		٠	ug/L	0.5	1			
Trichlorofluorometha	ne	000075-69-4		U	٠	ug/L	0,5	1			
Vinyl Acetate	-	000108-05-4		U	*	ug/L	0.5	2			
Vinyl Chloride		000075-01-4		U	•	ug/L	0.5	2			
Surrogate Recoveria	5										
							ing and and and a				
Bramofluorobenzene	ł	000460-00-4	64.4		•	%	86	115			
Dibromofluorometha	ne	001868-53-7	104.2		+	%	8 6	118			
Toluene-d8		002037-26-5	103.7		٠	%	88	110			

L55388: Page 19 of 32

CZ Laboratories,	Inc.
-------------------------	------

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: TB022106-02 Locator:

Analysis Method: M8260B GC/MS

Extract Method: Method ACZ Sample ID: L55388-03 Date Sampled: 02/23/06 0:00 Date Received:

02/24/06 Sample Matrix: Ground Water

Analyst: jj Extract Date: 03/08/06 21:38 Analysis Date: 03/08/06 21:38 Dilution Factor: 1

Compound

			25月27日 1月1日 1月1日		
1,1,1,2-Tetrachloroelhane	000630-20-6	Ų	* ug	/L 0.5	t
1,1,1-Trichloroethane	000071-55-6	U	* ug	/L 0.5	2
1,1,2,2-Tetrachloroethane	000079-34-5	U	* ug	/L 0.5	1
1,1,2-Trichloroelhane	000079-00-5	U	• ug	/L 0.5	1
1,1-Dichloroethane	000075-34-3	U	• ug	/L 0.5	1
1,1-Dichloroethene	000075-35-4	ប	• មច្ឆ	/L 0.5	1
1,2,3-Trichloropropane	000096-18-4	U	* ug	/L 0.5	1
1,2-Dibromo-3-chioropropane	000095-12-8	U	* ug	L 0.5	1
1,2-Dibromoethane	000106-93-4	U	• ug	/L 0.5	1
1,2-Dichlorobenzene	000095-50-1	u	• ug	/L. 0.5	1
1,2-Dichloroethane	000107-06-2	U	• ug	/L 0.5	1
1,2-Dichloropropane	000078-87-5	U	• ug	/L 0.5	1
1,3-Dichlerobenzene	000541-73-1	U	* ug	/L 0.5	1
1,4-Dichlorobenzene	000106-46-7	U	• ug	/L 0.5	1
2-Butanone	000078-93-3	Ŭ	• ug	/L 0.5	2
2-Hexanone	000591-78-6	u	* ug	/L 0.5	2
4-Methyl-2-Pentanone	000108-10-1	U	• ug	IL 0.5	2
Acetone	000067-64-1	U	• ug	/L. 0.5	2
Acrylonlirile	000107-13-1	U [·]	• ug	/L 0.5	z
Benzene	000071-43-2	U	• ug		1
Bromochloromethane	000074-97-5	U	• ug	L 0.5	1
Bromodichloromethane	000075-27-4	· U	• ug	n. 0.5	1
Bromoform	000075-25-2	u	• ug	/L 0.5	1
Bromomethane	000074-83-9	U	ំ មព្វ		2
Carbon Disuifide	000075-15-0	U	* ug	AL 0.5	1
Carbon Tetrachloride	000056-23-5	U	* ปg		1
Chlorobenzene	000108-90-7	U	* ug		t
Chloroaihane	000075-00-3	U	• ug		2
Chloroform	000067-66-3	U	* ug		1
Chioromethane	000074-87-3	ប	_	/L 0.5	1
cis-1,2-Dichloroethene	000155-59-2	U	• ug		1
cls-1,3-Dichloropropene	010061-01-5	U	* ug		1
Dibromochloromethane	000124-46-1	U	* ug		1
Dibromomethane	000074-95-3	U	• ug		1
Dichlorodifiuoromethane	000075-71-8	- U	* ug		1

REPOR.02.06.05.01

* Please refer to Extended Quelifier Report for details.

L55388: Page 20 of 32

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc. Project ID: Sample ID: Locator:	66511 TB022106-02		Date Re	mple ID: ampled: sceived: Matrix:	02 02	5 5388-0 2/23/06 2/24/06 round V	0:00	
Ethylbenzene		000100-41-4		υ	•	ug/L	0.5	1
lodomethane		000074-88-4		U	٠	ug/L	0.5	1
m,p-Xylene	L	001330 20 7		u	٠	ug/L	0.5	1
Methylene Chloride		000075-09-2	4.5		٠	ug/L	0.5	t
o-Xylene		000095-47-6		U	*	ug/L	0.5	1
Styrene		000100-42-5		υ	٠	ug/L	0.5	1
Tetrachloroethene		000127-18-4		U	•	ug/L	0.5	1
Toluena		000168-88-3		U	٠	ug/L	0.5	1
trans-1,2-Dichloroeti	lene	000156-60-5		U	٠	ug/L	0.5	1
trans-1,3-Dichloropre	opene	010061-02-6		U	•	ug/L	0.5	1
trans-1,4-Dichloro-2-	-butene	000110-57-6		U	٠	ug/L	0.5	1
Trichloroethene		000079-01-6		U	•	ug/L	0.5	1
Trichlorofluorometha	ne	000075-69-4		u	٠	ug/L	0.5	1
Vinyl Acelate		000108-05-4		U	٠	ug/L	D,5	2
Vinyl Chloride		000075-01-4		U	•	ug/L	0.5	2
Surrogate Recoverie	s							
				Ne Pier				
Bromofluorobenzene	2	000460-00-4	62.5		•	%	86	115
Dibromofluorometha	ne	001868-53-7	97,1		٠	%	86	118
Toluene-dB		002037-26-5	107.1		٠	%	88	110

L55388: Page 21 of 32

Company Contract Cont	Laboratories, Inc. Drive Steemboat Springs, CO 80487 (800) 334-	5493	
Batch	A distinct set of samples analyzed at a specific t	ime	
Found	Value of the QC Type of Interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, In % (except for LCSS, r	ng/Kg)	
LCL	Lower Control Limit		
MDL	Method Delection Limit. Same as Minimum Rep		
PCN/SCN	A number assigned to reagents/standards to Ira	ce to the manufacturer's	certificate of analysis
PQL	Practical Quantilation Limit	hand date the street the	
QC	True Value of the Control Sample or the amount	•	
Rec	Amount of the true value or spike added recover		55, mg/Kg)
RPD Honor	Relative Percent Difference, calculation used for		
Upper UCL	Upper Recovery Limit, In % (except for LCSS,) Upper Control Limit	11910-91	
Sample	Value of the Sample of interest		
SURR	Surrogate	LFM	Laboratory Fortified Matrix
INTS	internal Standard	LEMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
LCSS	Laboratory Control Sample - Soli	MSIMSD	Malrix Spike/Malrix Spike Duplicate
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soli
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water
Blanks	Verifies that there is no	or minimal contaminati	on in the prep method procedure.
Control Sar	notes Verifies the accuracy of	f the method induction (ha prop proceduro
	······································	n die menioa, motoong i	are prep processes.
Duplicates	-	f the instrument and/or (• • •
Duplicates Spikes/For	Verißes the precision o	· -	method.
•	Venißes the precision of lified Matrix Determines sample matrix	f the instrument and/or i	method.
Spikes/For	Venities the precision of lifed Matrix Determines sample matrix Analyte detected in daily blank	f the instrument and/or i	method.
Spikes/For B H	Venities the precision of Iffied Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time.	f the instrument and/or a atrix interferences, if any	method.
Spikes/For B H J	Verifies the precision of lifed Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value between	f the instrument and/or of atrix interferences, if any even MDL and PQL	method. ,
Spikes/For B H J R	Verifies the precision of lifed Matrix Determines sample mathematical Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other	of the instrument and/or of alrix interferences, if any even MDL and PQL er spike in the set felt with	method.
Spikes/Fort B H J R T	Verifies the precision of lifed Matrix Determines sample mathematical Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted	of the instrument and/or of atrix interferences, if any even MDL and PQL ar spike in the set felt with ad because sample conc	method.
Spikes/For B H J R T U	Verifies the precision of lifed Matrix Determines sample matching Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample cons a indicated MDL	method. , hin the given limits. centrations are less then 10k the MDL.
Spikes/Fort B H J R T U V	Verifies the precision of lifed Matrix Determines sample matching Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentration	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample cond a indicated MDL centration is 10 times high	method. , hin the given limits. centrations are less than 10k the MDL. gher than blank concentration
Spikes/For B H J R T U V W	Verifies the precision of lifed Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample cond Poor recovery for Silver quality control is accepted	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample cond a indicated MDL centration is 10 times high	method. , hin the given limits. centrations are less than 10k the MDL. gher than blank concentration
Spikes/For B H J R T U V W X	Verifies the precision of lifed Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample cond Poor recovery for Silver quality control is accepted Quality control sample is out of control.	If the instrument and/or of atrix interferences, if any each MDL and PQL ar spike in the set felt with ad because sample cond a indicated MDL cantration is 10 times high ted because Silver often	method. , him the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride.
Spikes/For B H J T U V W X Z	Verifies the precision of Ified Matrix Determines sample matrix Analyle delected in daily blank Analysis exceeded method hold time. Analyle concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample componence of the sample is out of control. Poor spike recovery is accepted because sample	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample cond a indicated MDL contration is 10 times high ted because Silver often le concentration is four t	method. , him the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride.
Spikes/For B H J R T U V W X Z P	Verifies the precision of Ified Matrix Determines sample matrix Analyle detected in dally blank Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentration detected because sample concentration differs from second detected Analyte concentration differs from second detected detected at the Analyte concentration differs from second detected detected at the Analyte concentration differs from second detected detected detected at the Analyte concentration differs from second detected detected detected detected detected detected because sample Analyte concentration differs from second detected d	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with a because sample cond a indicated MDL cantration is 10 times high ted because Silver often the concentration is four t otor by more than 40%.	method. , hin the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride.
Spikes/For B H J R T U V W X Z P E	Verifies the precision of lifed Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentration difference (RPD) accepted Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample Analyte concentration differs from second detected Analyte concentration is estimated due to result	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample consis- a indicated MDL cantration is 10 times high ted because Silver often le concentration is four t stor by more than 40%. i exceeding calibration more than solution and the set of the	method. , hin the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride.
Spikes/For B H J R T U V W X Z P E M	Verifies the precision of Ified Matrix Determines sample matrix Analyle detected in dally blank Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentration detected because sample concentration differs from second detected Analyte concentration differs from second detected detected at the Analyte concentration differs from second detected detected at the Analyte concentration differs from second detected detected detected at the Analyte concentration differs from second detected detected detected detected detected detected because sample Analyte concentration differs from second detected d	If the instrument and/or of atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample consis- a indicated MDL cantration is 10 times high ted because Silver often le concentration is four t stor by more than 40%. i exceeding calibration more than solution and the set of the	method. , hin the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride.
Spikes/For B H J R T U V V W X Z P E M	Verifies the precision of lifed Matrix Determines sample and Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample come Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample Analyte concentration differs from second detect Analyte concentration is estimated due to result Analyte concentration is estimated due to matri	If the instrument and/or of atrix interferences, if any ean MDL and PQL or spike in the set felt with ad because sample cond a indicated MDL cantration is 10 times high ted because Silver often le concentration is four t for by more than 40%. I exceeding calibration may a interferences.	method. , , , , , , , , , , , , , , , , , , ,
Spikes/For B H J R T U V W X Z P E M (1)	Verifies the precision of Ified Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample componence of control is accepted Poor recovery for Silver quality control is accepted because sample control. Poor spike recovery is accepted because sample Analyte concentration differs from second detected Analyte concentration is estimated due to result Analyte concentration is estimated due to matrix EPA 600/4-83-020. Methods for Chemical Analyte	If the instrument and/or of atrix interferences, if any ean MDL and PQL ar spike in the set felt with ad because sample cond a indicated MDL contration is 10 times high ted because Silver often the concentration is four t stor by more than 40%. It exceeding calibration may interferences.	method. , him the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride. Imes greater than spike concentration. ange. es, March 1983.
Spikes/For B H J R T U V V W X Z P E M (1) (2)	Verifies the precision of Ified Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample component of the sample is out of control. Poor recovery for Silver quality control is accepted because sample component is accepted because sample component of the sample is out of control. Poor spike recovery is accepted because sample component of the sample is out of control. Poor spike recovery is accepted because sample control is accepted because sample control is accepted because sample analyte concentration differs from second detected analyte concentration is estimated due to result Analyte concentration is estimated due to matrix EPA 600/4-83-020. Methods for Chemical Analer EPA 600/4-90/020. Methods for the Determinal	If the instrument and/or of atrix interferences, if any een MDL and PQL ar spike in the set fell with ad because sample cond- a indicated MDL cantration is 10 times high ted because Silver often le concentration is four t stor by more than 40%. I exceeding calibration may interferences.	method. , bin the given limits. centrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride. imes greater than spike concentration. ange. es, March 1983. nds in Drinking Water (i), July 1990.
Spikes/For B H J R T U V W X Z P E M (1) (2) (3)	Verifies the precision of Determines sample mathematical determines sample mathematical detected in daily blank Analysis exceeded method hold time. Analysis exceeded method because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample cond Poor recovery for Silver quality control is accepted Quality contreol sample is out of control. Poor spike recovery is accepted because samp Analyte concentration differs from second detect Analyte concentration is estimated due to result Analyte concentration is estimated due to mathe EPA 600/4-83-020. Methods for Chemical Ana EPA 600/4-90/020. Methods for the Determina EPA 600/R-92/129. Methods for the Determina	If the Instrument and/or of atrix interferences, if any even MDL and PQL or spike in the set fell with ad because sample cond- a indicated MDL cantration is 10 times high ted because Silver often the concentration is four t ator by more than 40%. I exceeding calibration ra- x interferences.	method. , hin the given limits. contrations are less than 10k the MDL. gher than blank concentration precipitates with Chloride. imes greater than spike concentration. ange. es, March 1983. nds in Drinking Water (i), July 1990. inds in Drinking Water (i), July 1990.
Spikes/For B H J R T U V W X Z P E M (1) (2) (3) (5)	Verifies the precision of Determines sample matrix Analyle detected in daily blank Analysis exceeded method hold time. Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was enalyzed for but not detected at the High blank data accepted because sample control Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample Analyte concentration differs from second detect Analyte concentration is estimated due to result Analyte concentration is estimated due to matri EPA 600/4-83-020. Methods for Chemical Ana EPA 600/4-90/020. Methods for the Determina EPA SW-846. Test Methods for Evaluating Sol	If the instrument and/or of atrix interferences, if any each MDL and PQL or spike in the set fell with ad because sample cons- a indicated MDL cantration is 10 times high ted because Silver often le concentration is four to the because Silver often exceeding calibration may interferences.	method. , him the given limits. contrations are less than 10k the MDL. precipitates with Chloride. Imes greater than spike concentration. ange. es, March 1983. Inds in Drinking Water (i), July 1990. with Update III, December, 1996.
Spikes/For B H J R T U V W X Z P E M (1) (2) (3) (5) (5)	Verifies the precision of lifed Matrix Determines sample matrix Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample cond Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample Analyte concentration differs from second detected Analyte concentration is estimated due to result Analyte concentration is estimated due to matrix EPA 600/4-83-020. Methods for Chemical Analyte EPA 600/4-90/020. Methods for the Determinal EPA 600/R-92/129. Methods for the Determinal EPA SW-846. Test Methods for Evaluating Sol Standard Methods for the Examination of Wate	if the instrument and/or a atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample cons- a indicated MDL cantration is 10 times high ted because Silver often le concentration is four the stor by more than 40%. I exceeding calibration may a interferences.	method. , him the given limits. centrations are less than 10k the MDL. precipitates with Chloride. Imes greater than spike concentration. ange. es, March 1983. nds in Drinking Water (I), July 1990. mids in Drinking Water (II), July 1990. With Update III, December, 1996. edition, 1995.
Spikes/For B H J R T U V W X Z P E M (1) (2) (3) (5)	Verifies the precision of Determines sample matrix Analyle detected in daily blank Analysis exceeded method hold time. Analysis exceeded method hold time. Analyte concentration detected at a value betwe Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was enalyzed for but not detected at the High blank data accepted because sample control Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample Analyte concentration differs from second detect Analyte concentration is estimated due to result Analyte concentration is estimated due to matri EPA 600/4-83-020. Methods for Chemical Ana EPA 600/4-90/020. Methods for the Determina EPA SW-846. Test Methods for Evaluating Sol	If the instrument and/or a atrix interferences, if any een MDL and PQL or spike in the set fell with ad because sample cond- a indicated MDL cantration is 10 times high ted because Silver often le concentration is four the stor by more than 40%. I exceeding calibration may interferences.	method. , him the given limits. centrations are less than 10k the MDL. precipitates with Chloride. Imes greater than spike concentration. ange. es, March 1983. nds in Drinking Water (i), July 1990. Inds in Drinking Water (ii), July 1990. With Update III, December, 1996. edition, 1995.

REPIN03.11.00.01

L55388: Page 22 of 32

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, inc.

Project ID: 66511

ACZ Project ID: L55388

M8260B GC/MS

Volatile Organics by GC/MS WG203412

LCSW	Sample ID: WG203412LCSW	PCN/S	CN: SCN	0002165		Analyzed:	03/08/06 20:10
是的時期的主要的目的	的影响中的影响。这些影响是是			ere ere er			
1,1,1-TRICHLOROETHANE	Û	8.78	មg/L	109.8	70	130	
1,1,2,2-TETRACHLOROETHA	NE B	8.71	ug/L	108.9	70	130	
1,1,2-TRICHLORDETHANE	8	8.62	ug/L	107.8	70	130	
1,1-DICHLOROETHANE	8	7.66	ug/L	95.8	70	130	
1,2-DICHLOROBENZENE	в	8.08	ug/L	101.0	70	130	
1,2-DICHLOROETHANE	8	7.57	ug/L	94.6	70	130	
1,2-DICHLOROPROPANE	8	7,97	ug/L	99,6	70	130	
1,3-DICHLOROBENZENE	8	7.63	ug/L	95.4	70	130	
1,4-DICHLOROSENZENE	6	7.63	սց/Ն	95.4	70	130	
BROMODICHLOROMETHANE	8	8.53	ug/L	106.6	70	130	
BROMOFORM	8	7.05	ug/L	88.1	70	130	
CARBON TETRACHLORIDE	8	8.1	ug/L	101.3	70	130	
CHLOROBENZENE	8	8.65	ug/L	108.3	91	121	
CHLOROFORM	B	7.15	ug/L	89.4	70	130	
CIS-1,3-DICHLOROPROPEN	Ξ. 9	7,66	ug/L	95.8	70	130	
DIBROMOCHLOROMETHANE	÷ 8	B.5	ug/L	106.3	70	130	
METHYLENE CHLORIDE	8	7.22	ug/L	90.3	70	130	
TETRACHLOROETHENE	8	8.25	ug/L	103.1	70	130	
TRANS-1,2-DICHLOROETHEI	NE 8	7.48	ug/L	93.5	70	130	
TRANS-1,3-DICHLOROPROP	ENE 8	7,16	ug/L	89.5	76	130	
TRICHLOROETHENE	8	7.92	ug/iL	99.0	87	135	
BROMOFLUOROSENZENE (surt)		- %	58.3	87	113	NI
DIBROMOFLUOROMETHAN	Ξ (suπ)		%	92.6	89	108	
TOLUENE-D8 (sun)			Ж	110.1	92	107	St

LCSWD	Sample ID:	WG203412LCSWD	PCN/SC	N: SCN	0002165		Anal	yzed:	03/08/06 20:54
网络帕拉斯帕尔斯									
1,1,1-TRICHLOROETHANE		B	6.33	ug/L	104,1	70	130	5.3	30
1,1,2,2-TETRACHLOROETHA	NE	8	7.8	սց/Լ	97.5	70	130	11	30
1,1,2-TRICHLOROETHANE		8	8.32	սց/և	104.0	70	130	3.5	30
1,1-DICHLOROETHANE		a	7.32	ug/L	91.5	70	130	4.5	30
1,2-DICHLOROBENZENE		8	7.83	បច្ច/រុំ_	97.9	70	130	3.1	30
1,2-DICHLOROETHANE		8	7.76	սը/Լ	97.0	70	130	2.5	30
1.2-DICHLOROPROPANE		8	8.26	սց/Լ	163.3	70	130	3.6	30
1,3-DICHLOROBENZENE		8	7.35	ug/L	91.9	70	130	3.7	30
1,4-DICHLOROBENZENE		8	7.35	ug/L	91.9	70	130	3.7	30
BROMODICHLOROMETHANE	i	8	9.41	ug/L	117.6	70	130	8.8	30
BROMOFORM		a	7.86	ug/L	98,3	70	130	10,9	30
CARBON TETRACHLORIDE		8	8.17	սց/Լ	102.1	70	130	0.9	30
CHLOROBENZENE		6	6.53	ug/L	106.6	91	121	1,5	3
CHLOROFORM		8	7.03	ug/L	87.9	70	130	1.7	30
CIS-1,3-DICHLOROPROPENI	-	8	8.12	ug/L	101.5	70	130	5.8	30
DISROMOCHLOROMETHANE		8	8.77	υg/L	109,6	70	130	3,1	30
METHYLENE CHLORIDE		В	7.37	սգ/L	92.1	70	130	2,1	30

REPOR.01.06.05.01

L55388: Page 23 of 32

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511

ACZ Project ID: L55388

TETRACHLOROETHENE	8	B.61	ug/L	107.6	70	130	4,3	30	
TRANS-1,2-DICHLOROETHENE	8	7.3	ug/L	91.3	70	130	2.4	30	
TRANS-1,3-DICHLOROPROPENE	8	6.6	ug/L	85.0	70	130	5.2	30	
TRICHLOROETHENE	8	8.65	սց/Լ	105.1	87	135	8.6	3	
BROMOFLUOROBENZENE (Surr)			%	60,4	87	113		5	
DIBROMOFLUOROMETHANE (surr)			%	92.0	89	108			
TOLUENE-D8 (surr)			%	115.5	92	107			
PBW Sample ID:	WG203412PBW					Anal	yzed:	03/08/0	6 19
1.1,1,2-TETRACHLOROETHANE		U	սց/Լ		-1	1			
1,1,1-TRICHLOROETHANE		ប	ug/L		-2	2			
1,1,2,2-TETRACHLOROETHANE		U ,	ug/L		-1	1			
1,1,2-TRICHLOROETHANE		U	ug/L		-1	1			
1,1-DICHLOROETHANE		U	ug/L		-1	1			
1,1-DICHLOROETHENE		U	ug/L		-1	1			
1,2,3-TRICHLOROPROPANE		U	ug/L		-1	1			
1,2-DIBROMO-3-CHLOHOPROPANE		U	ug/L		-1	1			
1,2-DIBROMOETHANE		U	ug/L		-1	1			
1,2-DICHLOROBENZENE		U	ug/L		-1	1			
1,2-DICHLOROETHANE		U	սց/Լ		-1	1			
1,2-DICHLOROPROPANE		U	ug/L		-1	1			
1,3-DICHLOROBENZENE		U	ug/L		-1	1			
1,4-DICHLOROBENZENE		U	սց/ե		-1	1			
2-BUTANONE		u	ug/L		-2	2			
2-HEXANONE		U	ug/L		-2	2			
4-METHYL-2-PENTANONE		U	ug/L		-2	2			
ACETONE		U	սց/Լ		-2	2			
ACRYLONITRILE		u	նց/է		•2	2			
BENZENE		บ	ug/L		-1	1			
BROMOCHLOROMETHANE		U	ug/L		-1	1			
BROMODICHLOROMETHANE		ប	ug/L		-1	1			
BROMOFORM		U	ugÆ		-1	1			
BROMOMETHANE		· U	սց/Լ		-2	2			
CARBON DISULFIDE		U	սց/Ն		-1	1			
CARBON TETRACHLORIDE		· μ	սց/է		-1	1			
CHLOROBENZENE		Ŀ	- ug/L		-1	1			
CHLOROETHANE		U	ug/L		-2	2			
CHLORGFORM		U-	ug/L		-1	1			
CHLOROMETHANE		U	ug/L		-1	1			
CIS-1,2-DICHLOROETHENE		U	ug/L		-1	1			
CIS-1,3-DICHLOROPROPENE		U	ug/L		-1	1			
DIBROMOCHLOROMETHANE		υ	ug/L		-1	1			
OBROMOMETHANE		U	ug/L		-1	1			
DICHLORODIFLUOROMETHANE	*	U	ug/L		-1	1			
ETHYL BENZENE		U	սց/Լ		-1	1			
IODOMETHANE		U	ug/t.		-1	1			
M,P-XYLENE		- U	-g/t.		-1	1			
METHYLENE CHLORIDE		U	49/L		-1	1			

REPOR.01.06.05.01

L55388: Page 24 of 32

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-5493

.

Kleinfelder, Inc.

Project ID: 66511

ACZ Project ID: L55388

O-XYLENE	ប	սց/և		-1	1	
STYRENE	บ	ug/L		-1	1	
TETRACHLOROETHENE	บ	ւրը/L		-1	1	
TOLUENE	ť	ug/L		-1	1	
TRANS-1,2-DICHLOROETHENE	U	սց/ե		-1	1	
TRANS-1,3-DICHLOROPROPENE	U	ug/L		-1	•	
TRANS-1,4-DICHLORO-2-BUTENE	U	ug/L		-1	1	
TRICHLOROETHENE	u U	ug/L		-1	4	
TRICHLOROFLUOROMETHANE	U	ug/L		-1	•	
VINYL AGETATE	U	սց/Ն		-2	2	
VINYL CHLORIDE	Ð	ug/L		-2	2	
BROMOFLUOROBENZENE (sun)	_	**** **	65.5	- 86	115	N1
DIBROMOFLUOROMETHANE (SUR)		%	101.8	86	118	141
TOLUENE-D8 (sun)		%	107.0	88	110	

L55388: Page 25 of 32

ACZ Laboratories, Inc. 2773 Downhill Drive Steemboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

ACZ Project ID: L55388

88-01	WG203412	1,1,2,2-Telrachloroelhane	MB2608 GCMS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80008.
		1,1-Dichloroelhane	ME250B GCMS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80008.
		1,2,3-Trichloropropane	M8260B GC/MS	NI	See Case Nanative.
		1,2-Dibromo-3-chloropropane	M8260B GC/MS	N1	See Case Narrative.
		2-Bulanose	M62608 (SC/MS	N1	See Case Namalive.
		2-Hexanone	M8260B GC/MS	N	See Case Narrative.
			M8260B GC/MS	Wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 8000B.
		4-Methyl-2-Penlanono	M82608 GC/MS	Nt	See Case Namative.
		Acelone	M8260B GC/MS	NI	See Case Narralive.
			M8260B GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 8000B.
		Acrylonitrite	M82608 GC/MS	NI	See Case Narralive.
		Carbon Disullide	M8260B GC/MS	Wi	The % RSO for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80005.
		m,p•Xytene	M8260B GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80008.
		Mothylane Chloride	M82608 GC/MS	Wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as opecified in EPA method 8000B.
		c-Xylene	M82508 GC/MS	Wt	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 6000B.
		trans-1,4-Dichloro-2-buterie	M8260B GC/MS	N1	See Case Namative.
		Trichlorosthene	M8260B GC/MS	RJ	LCS/LCSD RPD exceeded the method or taboratory co limit. Recovery met method acceptance criteria,

L55388: Page 26 of 32

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

ACZ Project ID: L55388

11000		<u>praka kendonak pan</u> gai			
1.55388-02	WG203412	1,1,2,2-Telrachloroethane	M8260B GC/MS	W	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 80008.
		1,1-Dichlorosinane	M8260B GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.
		1,2,3-Trichloropropane	M8260B GC/MS	N1	See Case Namative.
		1,2-Dibromo-3-chloropropane	M8260B GC/MS	N1	See Case Namalive.
		2-Bulanone	M8260B GC/MS	Nt	See Case Narrative,
		2-Nexanone	M8260B GCMS	N1	See Coso Narralive.
			M8250B GC/MS	Wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the catibration met the 15% criteria as specified in EPA method 80008.
		4-Melhyl-2-Pentanona	M8260B GCMS	NŤ	See Case Nanalive.
		Acelone	M6260B GCAMS	N1	See Case Narrative.
			M8260B GC/MS	Wł	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.
		Acrylonitrile	M8260B GC/MS	N1	See Case Nanalive.
		Bromolluorobenzene	M82508 GC/MS	М	See Case Narrative.
		Carbon Disullide	M82608 GC/MS	Wt	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 80008.
		m,p-Xylane	M8260B GCMS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.
		Methylene Chloride	M82608 GC/MS	Wi	-
		o-Xylane	M8260B GCMS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in 6PA method 80008.
		Irans-1,4-Dichloro-Z-butene	M8250B GC/MS	N1	See Case Nerrative,
		Trichloroelhene	M8260B GC/M5	Ri	LCS/LCSD RPD exceeded the method or taborstory control limit. Recovery met method acceptance criteria.

en serencial

L55388: Page 27 of 32

Appendix F

Subsurface Investigation for Mesa Valley Springs January 2007

January 17, 2007 Kleinfelder Project Number: 77810

Engineering Solutions & Design, Inc. 4848 Tramway Ridge, NE, Suite 222 Albuquerque, New Mexico 87111

Attention: Mr. Jack Chappelle

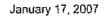
Subject: Subsurface Investigation for Mesa Valley Springs Property Existing Landfill Consolidation Project Colorado Springs, Colorado

Mr. Chappelle:

This letter transmits 3 copies of our subsurface investigation for the above referenced property. Our services consisted of a subsurface exploration, laboratory testing, and preparation of the attached report.

We appreciate this opportunity to be of service to you, and look forward to future endeavors. If you have any questions regarding this report or need additional information or services, please contact our office.

Respectfully submitted,


KLEINFELDER, INC.

John E. Hunyadi, E.I.T. Staff Geotechnical Engineer

William J. Barreire, P.E. Senior Geotechnical Engineer

JEH/JMS/hg

Enclosures

KLEINFELDER Expect More*

SUBSURFACE INVESTIGATION FOR MESA VALLEY SPRINGS PROPERTY EXISTING LANDFILL CONSOLIDATION PROJECT COLORADO SPRINGS, COLORADO

Sohn E, Hunyadi, E.I.T. Staff Geotechnical Engineer

William Senior 🖏 ineer and the second

January 17, 2007

Copyright 2006 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited. Contact Kleinfelder, Inc., if use or copying is desired by anyone other than the Client and for the project identified above.

TABLE OF CONTENTS

PAGE

1	INTR 1.1 1.2 1.3	GENER PROJE	DN AL CT DESCRIPTION SE AND SCOPE	1
2	FIELI 2.1 2.2	FIELD I	FIGATION AND LABORATORY TESTING NVESTIGATION ATORY TESTING	4
3	SITE 3.1 3.2 3.3	SURFA GEOLO	IONS CE GY RFACE GROUNDWATER	6 6 6
4	RES 4.1 4.2	LANDFI 4.1.1 4.1.2	INVESTIGATION LL CONSOLIDATION PROJECT SUPPORT CAPABILITY OF ON-SITE MATERIALS RESULTS OF PERMEABILITY TESTING INARY GEOLOGIC/GEOTECHNICAL CONSIDERATIONS STRUCTURE FOUNDATIONS FLOOR SYSTEMS ANTICIPATED PAVEMENT SUBGRADE MATERIAL DRAINAGE EARTHWORK OPERATIONS CORROSION TESTING RESULTS	8 8 9 10 10 11 11
5	LIMI	TATIONS	*****	14

APPENDICES

- A Vicinity Map and Boring Location Plan
- B Boring Logs
- C Laboratory Test Results

1 INTRODUCTION

1.1 GENERAL

This report presents the results of Kleinfelder's subsurface investigation performed at the Mesa Valley Springs Property in Colorado Springs, Colorado. An attached Vicinity Map (Figure A-1) shows the general location of the subject site.

In addition to presenting the results of our subsurface investigation, this report includes our preliminary opinions relating to the geotechnical aspects of project design and construction. The preliminary opinions stated in this report are based on the subsurface conditions found at the locations of our exploratory borings at the time our exploration was performed for this and the previous investigation. They also are subject to the provisions stated in the report sections titled Additional Services and Limitations. Our findings, and preliminary opinions should not be extrapolated to other areas or used for other projects without our prior review. Furthermore, they should not be used if the site has been altered, or if a prolonged period has elapsed since the date of the report, without Kleinfelder's prior review to determine if they remain valid.

1.2 PROJECT DESCRIPTION

Based on conversations with Engineering Solutions & Design, Inc. (ESD) representatives, we understand that the existing landfill must be consolidated to allow more area for future development. The exact type and layout of future development is not explicitly known at this time, but we understand that it will involve residential housing, roadway, and general infrastructure construction.

1.3 PURPOSE AND SCOPE

The purpose of our services was two-fold: '

 To evaluate on-site materials for suitability for support and containment of the landfill consolidation project. Specifically, we performed subsurface explorations to evaluate on-site soil/bedrock type and condition, and performed onsite/downhole permeability tests on in-situ materials as well as laboratory permeability testing of remolded on-site materials.

Our opinion as to the suitability of the on-site materials to physically support the loads of the landfill are provided herein. The results of our permeability testing are provided as well. This information is provided solely for the purpose of aiding others in the design of the landfill consolidation project.

- 2) To provide preliminary opinions related to development of the site including:
 - a. Geotechnical/Geologic Issues
 - i. Expansive clay soils.
 - ii. Slope stability issues (to be addressed under a separate geologic hazard evaluation).
 - b. Preliminary opinions related to design and construction of various features of the development as follows:
 - i. Design/construction of structure foundations.
 - ii. Design/construction of roadway pavements.
 - ili. Considerations related to earthwork operations.
 - iv. Providing results of limited corrosion testing performed on the onsite subgrade materials.

Kleinfelder's scope of services included:

- A review of selected published geologic and geotechnical data pertinent to the project site;
- A visual reconnaissance to observe surface and geologic conditions at the project sites and to locate the exploratory borings;
- Identification of utilities in the public right-of-way through the one-call Utility Notification Center of Colorado (UNCC);
- Drilling of ten (10) exploratory borings at the proposed site;
- Laboratory testing of selected samples obtained during the field exploration to evaluate relevant physical and engineering properties of the soil;
- Evaluation and engineering analysis of the field and laboratory data collected to develop our preliminary opinions related to site soils;
- Preparation of this report, which includes:

- A vicinity map and site plan showing the approximate location of the site and borings.
- Logs of the test borings.
- Results of the laboratory tests.
- Preliminary opinions pertaining to feasibility of the proposed development, including impacts of geotechnical and geologic features on the proposed project.

2 FIELD INVESTIGATION AND LABORATORY TESTING

2.1 FIELD INVESTIGATION

We performed our field investigation in two phases. The first phase was performed on November 30, 2006 and included drilling a total of six (6) exploratory borings at various locations throughout the proposed site. The second phase was performed on January 3 and 4, 2007 and included drilling a total of four (4) borings. The second phase involved down-hole pressure meter testing to obtain permeability values of in-place soil/bedrock units. The locations of all exploratory borings are indicated in the Boring Location Plan (Figure A-2).

Phase I borings were advanced to depths ranging from approximately 20 to 35 feet below the existing ground surface using a truck-mounted CME-55 drill rig equipped with a 3-inch outside-diameter, continuous-flight, solid-stem auger. Phase II borings were advanced to similar depths using a track-mounted CME-55 drill rig equipped with both a mud-rotary bit and a continuous-flight, solid-stem auger. Drive samples were taken with a standard split-spoon sampler and a modified California sampler. The number of blows of a 140 pound hammer falling 30 inches were recorded for each drive sample. Boring elevations were estimated from the topographic map provided by ESD.

Appendix B to this report includes the individual boring logs describing the subsurface conditions encountered within our borings at the site. A legend to the boring logs summarizing the notes and the Unified Soil Classification System (USCS) used to describe the soils is located at the beginning of Appendix B. The lines defining boundaries between soil and rock types on the logs are based upon drill behavior and interpolation between samples, and are therefore approximate. Therefore, the transition between soil and rock types may be abrupt or may be gradual.

2.2 LABORATORY TESTING

Laboratory tests were performed on selected soil samples to estimate their relative engineering properties. The following tests were performed in general accordance with the standards set forth by the American Society for Testing and Materials (ASTM):

Description and Identification of Soils (Visual-Manual Procedure);

January 17, 2007

- Classification of Soils for Engineering Purposes;
- Particle-Size Analysis of Soils;
- Liquid Limit, Plastic Limit, and Plasticity Index of Soils;
- In-place moisture content and unit weight determination;
- One-Dimensional Swell or Settlement Potential of Cohesive Soils;
- R-Value of Compacted Soils;
- Maximum Laboratory Density (Proctor);
- Permeability of remolded soils;
- Corrosion Testing.

Results of the laboratory tests are included in Appendix C of this report. Selected test results are also shown on the boring logs included in Appendix B.

3 SITE CONDITIONS

3.1 SURFACE

The Mesa Valley Springs Property has highly varied topography with hills and valleys separated by as much as approximately 130 feet in elevation. The general surface drainage pattern is to the south. Additionally there is a large streambed near the southern and western edges of the property boundary. The streambed was running several inches deep at the time of our investigation. The surface is covered in prairie grass and some trees, with foliage becoming denser near the streambed.

3.2 GEOLOGY

Prior to drilling, the geology of the site was evaluated by reviewing geologic maps, including the Geologic Map of the Colorado Springs Quadrangle, El Paso County, Colorado (Carroll & Crawford, 2000). The mapping indicates the soils underlying the proposed site consist of colluvial materials deposited during the middle Pleistocene to late Pleistocene. The colluvial materials are comprised of gravelly to silty sand. Pierre shale deposited during the Upper Cretaceous was encountered. Additionally, landfill material and mapped landslides are shown in the mapping.

3.3 SUBSURFACE

The subsurface profile encountered in our borings generally consisted of a thin layer of topsoil overlying weathered claystone overlying Pierre Shale Bedrock, as described in more detail below:

Weathered Claystone

The top of the weathered claystone was encountered below the thin layer of topsoil, between approximately 1 and 2 feet below existing ground surface. The weathered claystone bedrock was generally sandy, light brown to brown, slightly moist, and medium hard to hard in consistency. Ferric staining and fracturing were also encountered in this zone.

Pierre Shale Bedrock

The top of the bedrock (Pierre Shale Formation) was encountered below the weathered claystone or topsoil at depths between approximately 1 and 20 feet below the ground

surface and extended to the maximum boring depths. The Pierre Shale Formation in this location consists of a sandy claystone. The bedrock encountered was very hard, dry to slightly moist, fissile, and dark gray in color.

The boring logs, contained in Appendix B, should be reviewed for more detailed descriptions of the subsurface conditions encountered at each of the boring locations explored.

3.3.1 GROUNDWATER

No free groundwater was encountered during our subsurface investigation. Based on our experience in this general area and similar geologic conditions, it is not uncommon to find groundwater seepage through fractures and joints in the bedrock at random locations and elevations within the strata.

Soil moisture levels and groundwater levels commonly vary over time and space depending on seasonal precipitation, irrigation practices, land use, and runoff conditions. These conditions and the variations that they create often are not apparent at the time of the field investigation. Accordingly, the soil moisture and groundwater data in this report pertain only to the locations and times at which exploration was performed. They can be extrapolated to other locations and times only with caution.

4 RESULTS OF INVESTIGATION

4.1 LANDFILL CONSOLIDATION PROJECT

4.1.1 SUPPORT CAPABILITY OF ON-SITE MATERIALS

The undisturbed weathered claystone and Pierre Shale bedrock units are medium hard to very hard in consistency and will be able to support the weight of the consolidated landfill provided no additional construction is planned on the landfill itself. Similarly, properly moisture conditioned and compacted fill consisting of on-site materials that can be broken down into a soil-like mass will provide suitable support for the landfill materials.

4.1.2 RESULTS OF PERMEABILITY TESTING

Processed soil samples were remolded to 95% density of a standard Proctor density and +3% of optimum moisture content and run in a triaxial compression permeability machine. Downhole tests were performed using a packer type pressure meter system in the representative native soil/bedrock units to quantify flow through potential fractures and joints in the formations. The results of the permeability tests are as follows:

Soil Type & Test Conditions	Location & Depth [feet]	Dry Density [pcf] & Moisture Content [%] of Processed Samples	Percent Passing No. 200 and Plasticity Index (PI)	Permeability [cm/s]
Sandy Claystone – Downhote/In-Situ	B-2 @ 15 – 21'			Head Pressure 30 psi = 1.18×10^{-6} Head Pressure 25 psi = 3.83×10^{-7}
 Sandy Claystone - Processed	B-1 & B-5 Combined @ 10'	96.2 pcf @ 26.2%	-200 = 64.7% P] = 32	4.3 × 10 ^{-a}
Pierre Shale – Downhole/In-Situ	B-2 @ 21 - 30'			Formation did not take any water to accuracy of test method
Pierre Shale - Processed	B-1, B-8, & B-9 Combined @ 20'	101.9 pcf @ 21.3%	-200 = 81% Pl = 35	2.2 x 10 ⁻⁷

4.2 PRELIMINARY GEOLOGIC/GEOTECHNICAL CONSIDERATIONS

Potential geologic impacts to the proposed development will vary depending upon which portion of the site is selected for development and the type of development

proposed. We believe the following geologic constraints may impact the proposed development:

- The existence of relatively shallow expansive bedrock;
- Poor long-term pavement subgrade support.
- Slope stability issues related to steep topography. The City of Colorado Springs Zoning Map indicates that the subject site is part of the hillside overlay zone. Additionally, several mapped landslides exist in the vicinity of the subject site. Placement of earth fills during overlot grading, construction of parking lots, and other improvements located near the steeper slopes on the site will likely require measures to preserve the stability of the improvements. Slope stability issues should be addressed once a preliminary layout of the facility is available. A Geologic Hazard Study will be required by the City of Colorado Springs to address these issues and will be performed as a separate study and presented under separate cover.
- Possible groundwater seepage within fractures and seams of the bedrock, although no free groundwater was encountered in our borings.
- Seasonal perched groundwater at the bedrock/soil interface.

While some of the above geologic constraints will ultimately depend on final site development plans and proposed site grading, expansive soil/bedrock or potentially expansive bedrock will be present regardless of development/grading plans. Mitigation of expansive soil/bedrock and groundwater may be accomplished through standard construction techniques to some degree.

Further discussion concerning geotechnical related issues are provided in the following sections of this report.

4.2.1 STRUCTURE FOUNDATIONS

Due to the presence of moderately to highly expansive clay soil and claystone bedrock at relatively shallow depths at this site, mitigation to limit damaging differential movement to the structures will be required. A common foundation system that is used locally to mitigate such issues includes a drilled pier and grade beam foundation system. The drilled piers would extend through the weathered claystone material, and

would anchor in the underlying Pierre Shale bedrock. The piers may also need to be designed to impose minimum deadload pressures in order to resist potential uplift forces of expansive bedrock zones. As an alternative, removal of the problematic soils and replacement with more suitable material that would result in supporting foundations on a significant mat of non-expansive structural fill is a possibility. Depending on the nature of the actual materials encountered, removal and replacement of 3 to 10 feet of material below foundations is common, depending on the magnitude of potential swell and swell pressures.

4.2.2 FLOOR SYSTEMS

Similar to foundations on this site, expansive soils will likely be encountered at or near slab elevations. With these types of conditions, it is common practice to over-excavate the problematic soils to depths on the order of 3 to 5 feet and replace this material with an appropriate structural fill. If highly expansive soils are identified, over-excavation and replacement of up to 10 feet is possible to properly mitigate potential movement. As an alternative, and generally considered to be the more reliable alternative, to the deeper over-excavation/replacement option, construction of a structural floor system (crawlspace type system) may be considered. This is particularly common when a drilled pier/grade beam foundation system is utilized as overexcavation of the problematic soils beneath slabs and replacement with non or low expansive soils is eliminated.

4.2.3 ANTICIPATED PAVEMENT SUBGRADE MATERIAL

A total of three (3) borings (designated B-4, B-5, and B-6) were performed in the proposed southern extension of Centennial Boulevard to evaluate potential pavement subgrade conditions. The pavement subgrade soil at this site is anticipated to consist mainly of sandy claystone. An Hveem stabilometer test (R-Value) was performed on a bulk soil sample comprising the average upper 10 feet of soil obtained in borings B-4, B-5, and B-6. The resulting R-value was less than 5. Therefore, a resilient modulus (M_R) of less than 3,025 psi was calculated from the appropriate AASHTO R-Value conversion formula. These subgrade support values would be used in pavement thickness calculations. The low R-value of the on-site soils indicates that mitigation will be required to provide proper subgrade support for the planned roadway. This typically involves scarifying, moisture conditioning, and recompacting the subgrade. Thicker units of both base course and asphalt concrete pavement will be required for pavement subgrades that consist of these types of soil and bedrock.

Pavement design should be performed based on the City of Colorado Springs Standards Specifications for the above material and the anticipated traffic load.

4.2.4 DRAINAGE

The collection and diversion of surface drainage away from all pavement areas is extremely important to the satisfactory performance of pavement. Drainage design should provide for the removal of water and snow from paved areas and prevent the wetting of the subgrade soils. Possible water sources include but are not limited to storm runoff, irrigation of landscaping adjacent to the pavement, snow melt, and localized groundwater seepage. Landscaping adjacent to the pavements requiring supplemental watering should be avoided.

4.2.5 EARTHWORK OPERATIONS

It is likely that heavy-duty earth-moving equipment may be desired during grading, excavation, or trenching operations in areas where shallow, very hard bedrock is encountered. While we do not expect significant problems related to groundwater during construction, it is possible that some groundwater seepage may be encountered in isolated areas depending on the final grading planned. If groundwater seepage is encountered during earthwork operations, our office should be notified to evaluate the situation and provide any necessary recommendations.

Use of on-site soils and weathered claystone as overlot grading fills will require special consideration. Generally speaking, these types of materials will require the addition of a significant amount of water to facilitate compaction and reduce long-term swell potential. Typical recommendations for target moisture contents of compacted fills will range from -1 to +4% of optimum depending on the application.

Due to the nature of these materials, significant mixing will be required to obtain uniform moisture conditioning. Use of equipment to properly scarify, moisture condition, and mix water into these materials will be important. Use of an agricultural disc is common to aid in the mixing process. Moisture conditioning will also result in slick conditions that can be problematic for conventional earth moving equipment. Therefore, consideration should be given to use of low ground pressure and tracked equipment where feasible.

4.2.6 CORROSION TESTING RESULTS

The results of these analytical laboratory testing are presented in Appendix C of this report and are summarized below:

Sample Location and Depth (Feet)	pH Value	Resistivity (uOhms)
B-4 @ 4' (Sandy Claystone)	8.4	410
B-8 @ 0-25' (Pierre Shale)	7.4	790

pH value and Resistivity Tests Results

Water Soluble Sulfate Test Results

Sample Location and Depth (Feet)	Water Soluble Sulfates (percent)	
B-4 @ 4' (Sandy Claystone)	0.129	
B-8 @ 0-25' (Pierre Shale)	0.162	

The concentrations of water-soluble sulfates measured on subsurface soils submitted for testing ranges from 0.129 to 0.162 percent. In accordance with ACI Building Code 318, the requirements for concrete exposed to sulfate – containing solutions are presented in following table.

Requirements For Concrete Exposed to Sulfate-Containing Solutions

Sulfate Exposure	Water soluble sulfate (SO ₄) in soil, percent by weight	Cement Type
Negligible	0.00 to 0.10	
Moderate	0.10 to 0.20	II, IP(MS), IS(MS), P(MS),I(PM)(MS), I(SM)(MS)
Severe	0.20 to 2.00	V
Very Severe	Over 2.00	V plus pozzolan

The concentration of water-soluble sulfates measured on subsurface soils submitted for testing represents a moderate degree of sulfate attack on concrete exposed to the native soils. As our experience in this type of geologic unit would indicate highly variable sulfate contents, we recommend a final geotechnical study include additional testing prior to recommending concrete type.

January 17, 2007

5 LIMITATIONS

Recommendations contained in this report are based on our field observations and subsurface explorations, limited laboratory tests, and our present knowledge of the proposed construction. It is possible that soil conditions could vary between or beyond the points explored. If soil conditions are encountered during construction that differ from those described herein, we should be notified immediately in order that a review may be made and any supplemental recommendations provided. If the scope of the proposed construction, including the proposed loads or structural locations, changes from that described in this report, our recommendations should also be reviewed.

We recommend that a final geotechnical investigation be performed for this project once the final site selection has been performed, and the development/construction plans have been prepared to better refine the following conclusions and opinions and to provide "design-level" geotechnical recommendations. A "design-level" report would require additional borings and laboratory testing once the final site layout, final grading plans (cut and fill depths), type of building construction, and estimated building loads, etc., are known.

We have prepared this report in substantial accordance with the generally accepted geotechnical engineering practice as it exists in the site area at the time of our study. No warranty, either express or implied, is made. The recommendations provided in this report are based on the assumption that an adequate program of tests and observations will be conducted by Kleinfelder during the construction phase in order to evaluate compliance with our recommendations. Other standards or documents referenced in any given standard cited in this report, or otherwise relied upon by the author of this report, are only mentioned in the given standard; they are not incorporated into it or "included by reference", as that latter term is used relative to contracts or other matters of law.

This report may be used only by the Client and only for the purposes stated within a reasonable time from its issuance, but in no event later than one (1) year from the date of the report.

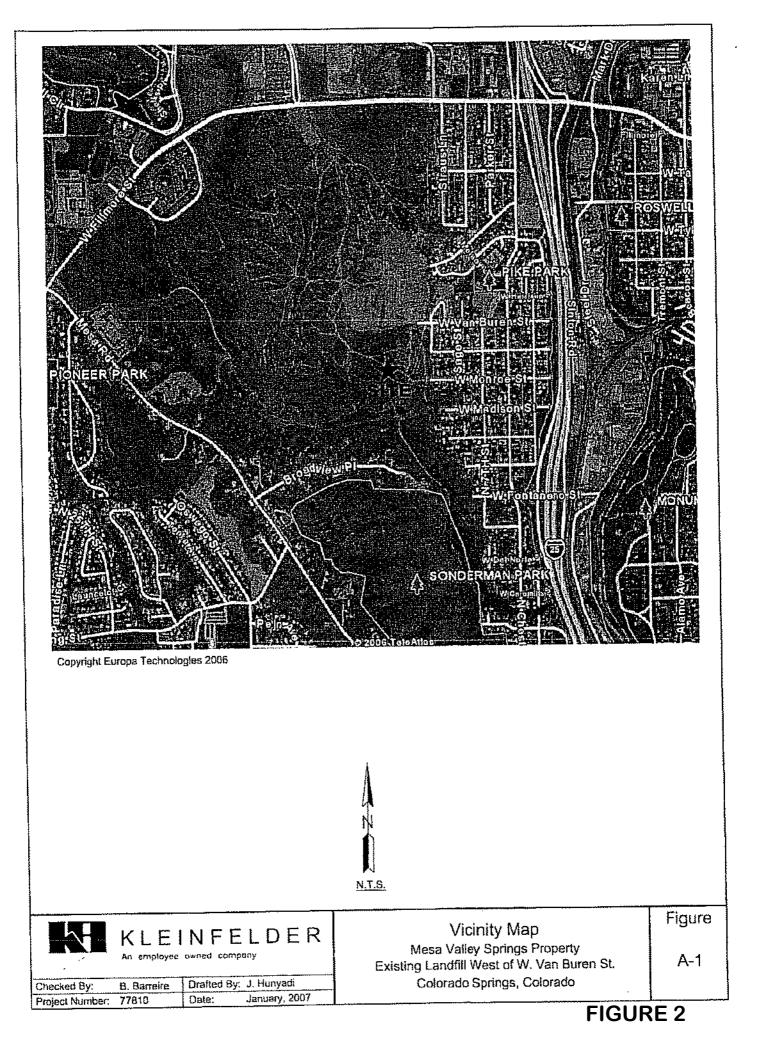
Land or facility use, on and off-site conditions, regulations, or other factors may change over time, and additional work may be required with the passage of time. Based on the

intended use of the report, Kleinfelder may recommend that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by Client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and Client agrees to defend, indemnify, and hold harmless Kleinfelder from any claim or liability associated with such unauthorized use or non-compliance.

Kleinfelder has conducted subsurface exploration and provided recommendations for this project. We recommend that Kleinfelder be given the opportunity to provide final design for this project, if required. In the event Kleinfelder is not, at a minimum, retained to review the final project plans and specifications to evaluate if our recommendations have been properly interpreted, we will assume no responsibility for misinterpretation of our recommendations.

We recommend that all earthwork during construction be monitored by a representative from Kleinfelder, including site preparation, installation of piles, and placement of structural fill and trench backfill. The purpose of these services would be to provide Kleinfelder the opportunity to observe the actual soil conditions encountered during construction, evaluate the applicability of the recommendations presented in this report to the soil conditions encountered, and recommend appropriate changes in design or construction procedures if conditions differ from those described herein.

January 17, 2007



KLEINFELDER Expect More'

APPENDIX A

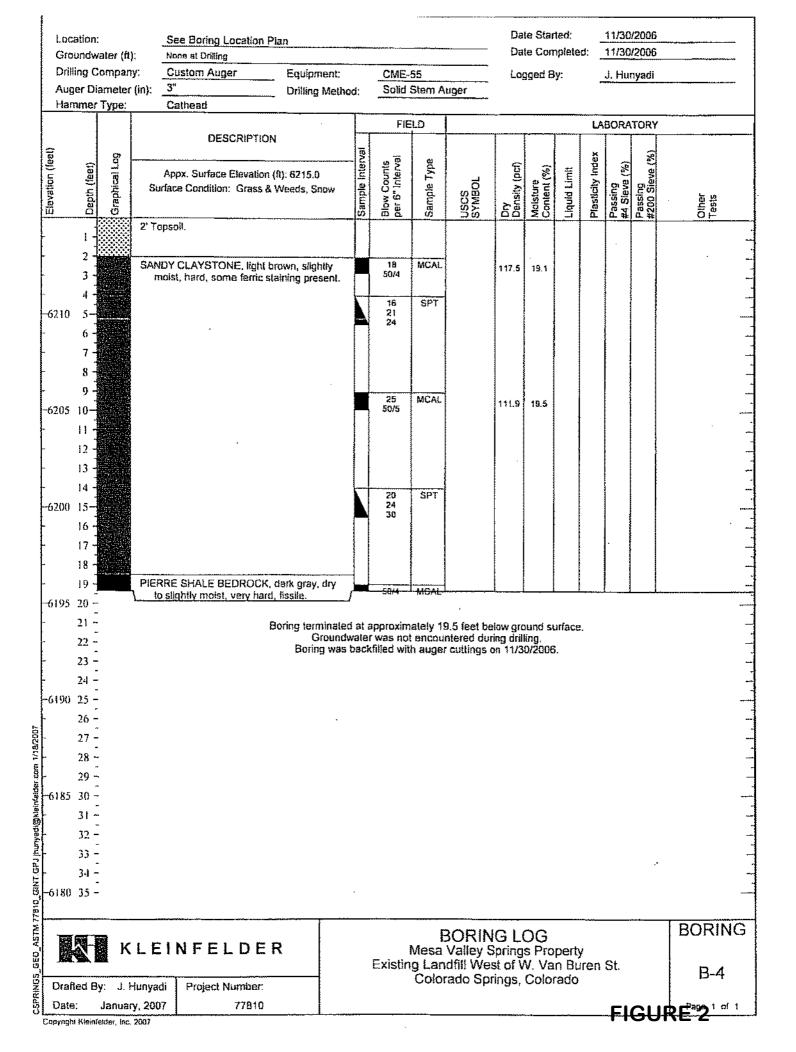
Vicinity Map and Boring Location Plan

.

Topographic Map provided by ES&D. (December, 2006)

KLEINFELDER Expect More'

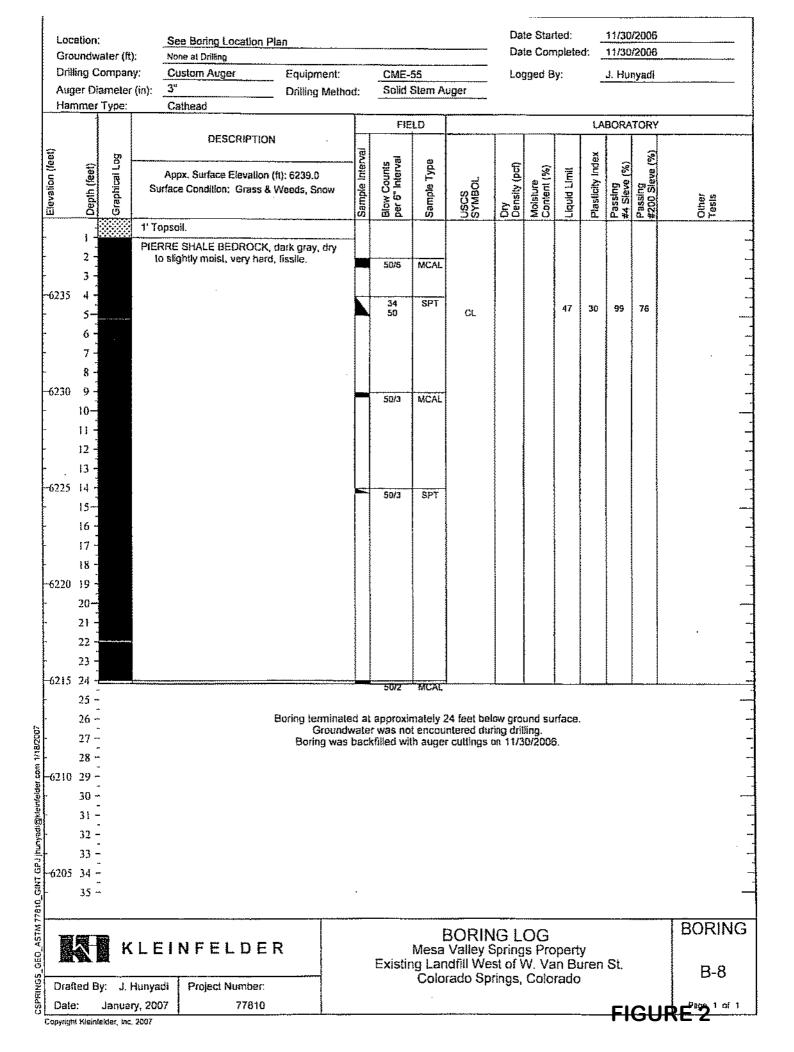
APPENDIX B


.

Boring Logs

1	Her:			0-						_								Dal	le Sta	rted:		11/30	1/200	6		
Loca Grou		ater (ft)	:			oring Drilli		cation	i Ma	n		·				·····		Dal	te Cor	nplete	ed:	11/30	/200	6	······	
		ompan				m Au				Equipr	nent:		CMI	E-5	5			Log	jged E	3y:		J. Hu	nyad	i		
	-	ameter		3"							, Metho	d:			item Au	iger	<u> </u>		• •	-	•					
		Type:	-	Са	ihe	ad																				
													F	IEI	LD						L/	80R/	TOR	Y		
<i>~</i>						ÐI	asc	RIPT	ON												_			2		
Elevation (feet)	Depth (feet)	Graphical Log	Su): 6223.(/eeds, S		Sample Interval	Blow Counts per 6" interval		Sample Type	USCS SYMBOL		Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing		Other Tests	
<u></u>	-		2' To	IDSO	1							10	ā a	4	<u>ده</u>	20	-	<u>00</u>	20	13	<u> </u>	0_#	<u>a</u> ;	•	<u> </u>	_
	1-		2 10	4000	•••																					-
	2		SAN		71 A	VST	ONI		three	iwn, slig	allu	+		_	SHELBY					ł						-
-6220	3-		त	ioist.	ha	rd, s	ome	e lerric	: stai	ning pre	esent.															-
	4 -												17		SPT											-
	S												27 32			CL				45	27	100	71			
	6																									
	7-																									-
-6215	8 -																									-
	9-												32		MCAL			121.8	14.9							
	10-												50/3					16.1.0	17.2							
	н-																Į									-
	12 -																									-
-6210	13 -																									-
-	14 -											H	22		SPT											-
	15-												22 50													
•	16 -																									-
	17 -																									-
-6205	18 -																						-			-
-	19 -												50/5		MCAL			125.3	14.B	1						
_	20-		DIG	205	SH	A1 5	139		<u>ж</u> ч	ark gray	, dor	-											1			
-	21 -									lissile.	, ury										ļ		ļ			~
-	22 -																~~~~~									-
-6200	23 -																									-
: -	24 -																									-
-	25-																									
-	26 -																[1				1		-
-	27 -																		1							-
-6195	28 -																									-
-	29 -		L										30/3	_	WCAL-			131,3	_{13,6}	<u> </u>	<u> </u>		<u> </u>			
-	30 -	-																								•
	31 -	-							Bo	oring ter	rminate Ground	d at	approx	ún	ately 2	9.5 feel stered	t bei	ow gr	ound : Nor	surfac	e.					-
	32 -	-								Bori	ng was	bac	kfilled	witi	h auge:	r cutting	gs o	ng un n 11/3	ung. 30/200)6.						-
-6190	33 -	-											•													-
-	34 -	-																								-
-	35 -	-																								
											-1						··								<u> </u>	<u></u>
		- -						_ ·								BOR									BORI	NG
		留 K	ĹĿĔ	: 1	N	FE	: L	. D I	EF	Ċ			Evia	-14.	Mesa	Valle	y S	pring	js Pr	oper	ty					
										•	-			ગાદ	ig Lan Colo	rado (Spr	inas	vv. v Cole	an d oradi	urer D	ા ઉદ્યં.		ļ	B-1	i
		By: J.			P	rojec		umbei									- 1-1				-				F	
L		Janua Jelder, Inc		17				7781	0	·····												F	G	UŔ	؛ E 2	of 1

Local Grou	ndv	wate		1	None	Botir at Dri	lling												C)ate	e Star e Corr	nplete	-	1/4/; 1/4/;	200)7				
Drillir Auge					Spec 3"	tiun	i Exp	lorai	lion		uipme Illing N		d.	_	ME-9	i5 .otary			L	.ogi	ged B	y:	-	J. H	μn	yadi	···· ······			
Ham			-	···· –		matio	<u> </u>				mai in	VILLEIO	u,			,														
															FIE	LD							Ľ	BOR	AT	ORY		_		
=						Ę	DESC	RIP	TION				-													(
Elevation (feet)	Depth (feet)									ft): 61 Weed	78.0 Is, Sno	w	Sample Intervat	Blow Counts	per 6" Intervai	Sample Type		SYMBOL	Dqy	Density (pci)	Moisture Content (%)	Liguid Límit	Plasticity Index	Passing	#4 5/6VE [76]	Passing #200 Sieve (%)		Other	Tests	
6175	1 2 3 4 5- 6 7 8			bro me	own, I ediUπ	slighi	lly mi d, Ve	oist,v artice	vealt Il frac	iered stures	to gray to ; press	-									•									
	9															SPT	-		:						****					
	10- 11												N	6 7 8	3															_
6165	12																													
	13 14																													
	15- 16																													_
	17													1	7	SPT	-													-
6160														1	6 4															
	19 20-	-		to	stigh	tly m	oist, '	veły	hard		gray, c le. Up																			-
	21 22			18	" slig	ihtly v	veali)erei	t,																					
6155		-																												
	24	-												6 0/	4,5	EP7			<u> </u>	_	·			<u> </u>						
	25 26	-							F	loring	j lerm	inate	d at	annh	oxim	atelv	24 5	feet b	elowi	aro	and s	urfac	p.							
	27	-									Gr	round	wate	ir was	s no	t enco ith au	unte	ed du	Jring d	frilli	ing.									
-6150		-															-													-
	29 30	-																												
	31	~																												
	32	-																												
-6145		-																												
-	34 35	-																												
		-																												
			к	LE	IN	IF	EL	. D	E	R				Ex	istir	Mesa Ig La	a Va	illey	NG Sprin	ngs	s Pro	oper an B	ty urer	ı St.					RIN	G
Draft	ed	By:	J. H	unyad	li {	Proje	act N	lumt	er.		\neg										Colo							ŧ	3-2	
Date			nuary		i				310																1	21		Ēž	5 ^{1 of}	1
Copyright	Kie				i	•••••	·····				. <u> </u>													Г	11	35	71			


Gre		ater (ft):	-	See E None i	et Drilli	ng									. D	ate	e Star e Corr	iplete	d: _	1/4/2 1/4/2	007	
Au		отралу ameter (Type:	-	Spec 3" Autor		Explo	vatior		quipment rilling Me		بسعسم	ME-	55 Rolary		_ L:	ođć	ged B	y:	-	J. Hu	nyadi	18-1119-97-197-1119-1111-1
		1160.		TIGIO	14110				*******			FIE	LD						ĻA	BORA	TORY	
-					Di	ESCR	IPTIC)N		-						T						
Elevation (feet)	(Depth (feet)	Graphical Log	Sur	face C	onditi	on: C	irass i		ds, Snow	Sample Interval	Blow Counts	per 6" Interval	Sample Type	USCS SYMBOL	Dry Descin Jord	Ind Australia	Molsture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other Tests
-6185	6 -		br	DY CL own, s rric sta	lightiy	/ mol	st, me	brown edium	to gray hard, som	le	1	1 2 4	SPT									
6180	7 - 8 - 9 - 10 - 11 - 12 - 13 -																					
-6175	15 16 17 18 19 20 21 21 22 23		PIER 10	RE Sł	HALE ly mol	BED st, ve	ROCK ry ha	(, dark rd, fiss	gray, dry lle.		2	8	SPT									
	24 -										5	}/4	- <u>687</u> -									
• •	25			·				Borin	g lermina Grou Boring '	ndwale	r wa	s nai	encou	i.5 feet b ntered du er cutting	Jrina đ	rillia	na.	uface	3.			
615	33 - 34 - 5 35 -	-																				
		к	LE	IN	FE	EL	DE	R			Evi	istir	Mesa	BORII Valley dfill We	Sprin	as	s Pro	pert	y Iren	St		BORIN
Dra	ifted B	ly: J. H Januaŋ			Projec		nber: 7810				ш Х	1311	Color	ado Sp	orings	νν 5, C	Color	rado	11 C()		-	B-3

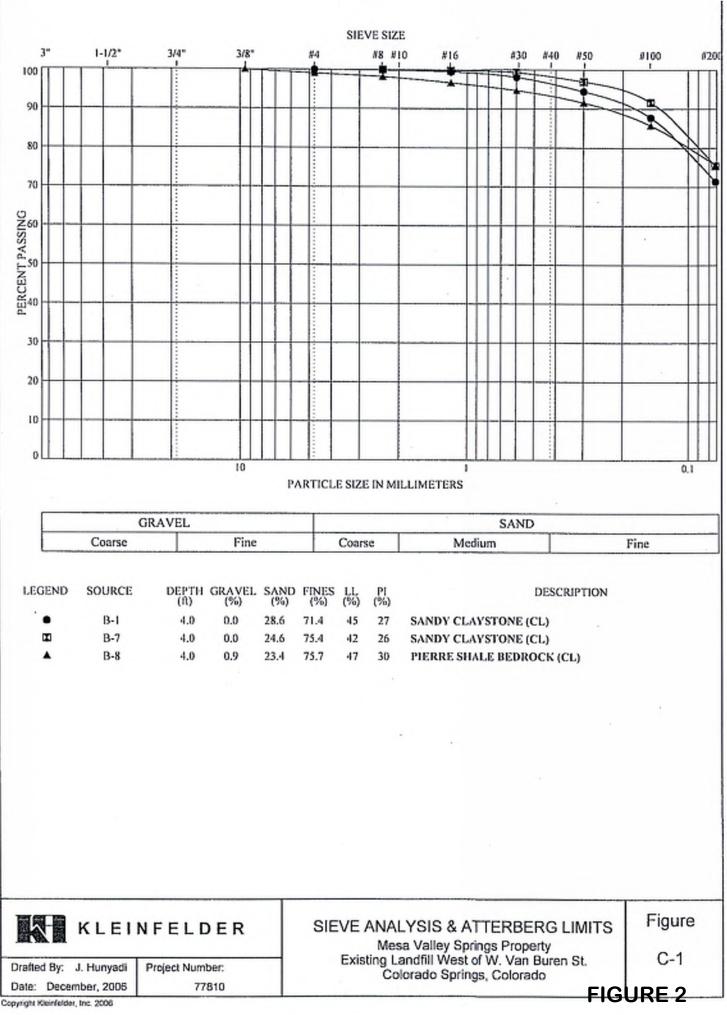
Location			See Boring Location	Plan	_					te Sta		-		2006	
Groundv			None at Drilling						Da	te Con	npiece	a: -	11/30	/2006	
Drilling (Custom Auger	Equipment:		CME			Lo	gged B	y:		J. Hu	nyadi	
Auger D	iameter	(in):	3"	Drilling Meth	od:	Solid	Stem A	uger							
Hammer	r Type:		Cathead												
			DESCRIPTIO			Fil	ELD					LA	BORA	TORY	
2	_		DESCRIPTIO	54	-							*			
Depth (feet)	Graphical Log	Su	Appx. Surface Elevation Inface Condition: Grass &		Sample Inlerval	Blow Counts per 6" Interval	Sample Type	USCS	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other Tests
205 1		1' To	opsall.						-						
205 1 -		SAN	DY CLAYSTONE, light	brown, slightly	11										
2 -		п	noisi, hard, some ferric :	staining present.	1	31 36	MCAL								•
3 -						36									
4 -					H	25	SPT								
5-						25 35	SPI								
200 6	188				п	50/5									
	A CALL														
7.															
8 -	道路路														
9.					4	29	MCAL								
10-						50/4	more		119.9	15.3					
95 11 -	國國														
2															
12 -	調整														
13 -	Areat lanear	PIE	RRE SHALE BEDROCK	dark grav dou	- 1										
14 -		t	o slightly moist, very har	d, fissile.	H		SPT								
15-						10 30	1 SPT								
						50/5									
90 16 -	1														
17 -	-														
18 -															
19 -						sint.	1000								
20-	-					50/4	MCAL								
85 21 -															
22 -															
23 -															
24	-														
25-															
80 26															
	-														
27	-														
28															
29	-					50/5	SPT								
30	-														
75 31	2			Dedag too 1			and all the		-						
	-			Boring terminate Ground	water	was or	nately 29 d encour	9.5 feet b ntered du	uring dra	ling.	urface	2.			
32	-			Boring was	back	filled wi	th auger	cuttings	on 11/3	0/2006	3.				
33	-														
34	-														
35	-														
															DODIN
	-			-			E	BORI	NG L	OG					BORING
	K	LE	EINFELDE	R			Mesa	Valley	Spring	s Pro	pert	у			
						Existin	ng Lan	dfill We	est of V	N. Va	in Bu	Iren	St.		B-5
Drafted B	By: J.I	Hunya	di Project Number:				Color	rado Sp	prings,	Colo	rado				0-0
Date:	-														-
vate.	Januar Makter, Inc.	-	// //610										FI	GUE	EP2 1 of 1

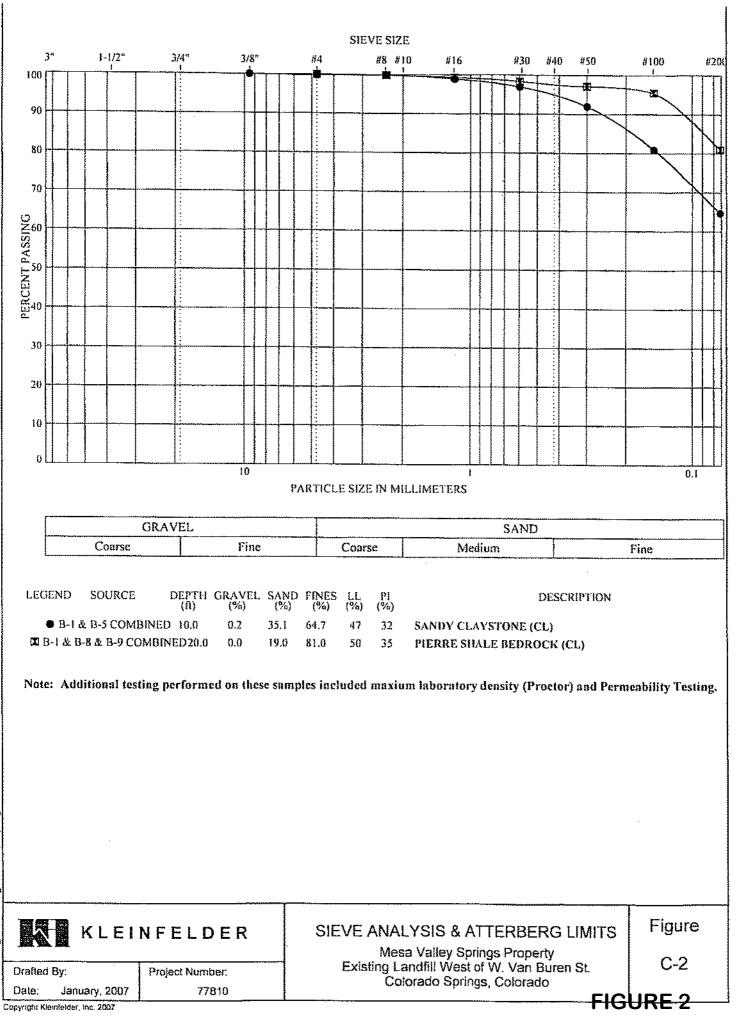
	undw	ater (ft)		See Bori None at D	rilling								ite Sta ite Cor		•	1/3/2 1/3/2		
		ompan		Spectrur 3"	n Explora	ation	Equipmen		CME			L.O	gged 8	ły:	-	J. Hu	nyadi	·····
		ameter Type:	(in);	Automat			Drilling Me	thod:	Solid	Stem A	luger							
	T	· , , , , , , , , , , , , , , , , , , ,		Autoriat	<u></u>					<u> </u>	1							
					DESCRIF	אחודי			۱۲ 	ELD			·	1	<u>مر</u>	BOR	TORY	
el)		En			0000111	non		п										
Elevation (feel)	Depth (feel)	Graphical Log	Sur		ilion: Gri	355 8 W	eeds, Snow	Sam	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sleve (%)	Other Tests
- •	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Sand sti	ly Lean Cl líf.	.AY (CL),	, light br	own, moist,											
6155	3 4 4									SPT								
	5-1		SAND	DY CLAYS	TONE, I	ght brow	wn, slightly		6 6									
-6150	, 1 8 - 9 -		ha	oist lo mai Ird, same esenl.	si, wealh ferric stai	iered lo ning an	medium d gypsum											
- 1	- 10								6 6 7	SPT								
6145]	12 + 13 - 14 -																	
ł	- 15 16 -								10 11 14	SPT								
6140-1	17 - 18 - 19 -		PIERI	RE SHALI	E BEDRO)CK, dai hard, fis	rk gray, dry											
2	20 21 -					·			50/2	SPT								
6135 2	22 23 - 24 -									-								
2	25 26																	
6130 2	-																	
3	19 - 10 - 11 -					Bo	ring termina	ated at i	50/1 approxir	SPT	9 feet bel	ow grou	und su	face.	1	I	ŧ	
3 6125 3	12 -						Grour	ıdwater	was no	t encour	ntered dur er cuttings	rina driil	ina.					
	14 - 15 -			·														
		lк	LEI	INFE	ELD	ER		 1		Mesa	SORIN Valley S	Spring	s Proi	perty	(()	 St		BORING
Draftec Date:			-	1 -	# Numbe 7781				~~10011	Color	ado Spi	ings,	color	ado	ien			B-6
pyright Ki		anuary		<u> </u>	110		İ									_EI	GU	

	ation: undw	: vater (ft)	n	See Boring Locali None at Drilling	on Plan				···		ite Star ite Con		-		/2006 /2006	
		ompan	-	Custom Auger	Equipment:		CME	-55		Lo	gged B	ly:		J. Hu	nyadi	
-		ameter	(in):	3"	Ddilling Meth	iod;	Solid	Stem A	uger							
Man	nmer	Type:		Cathead		. 1										
				DESCRIP	TION	-	13 				}	-		BORA	TORY	
(jag		g				val	-						×		ঞ	
cievalion (leel)	Depth (feel)	Graphical Log		Appx. Surface Eleva	lion (fl): 6226.0	Sample Interval	Blow Counts per 6" interval	Sample Type		Dry Density (pcf)	(%)	ā	Plasticity Index	8	Passing #200 Sleve (%)	
Adlar	С Ц	phíc	Su	rface Condition: Gras	ss & Weeds, Snow	aldi	3 <u>5</u>	Bid	S BOL		ture	d Li	licity		흘뿛	<u>م</u>
5	Dep	0a				Sam	Blow	E	USCS SYMBOL	2 G	Moisture Content (%)	Liquid Limit	last	tass Sass	^{ass}	Other Tests
5225	1			psoil.						-	~~~		<u> </u>	LL +F	11. 12	
	2-		SAN	DY CLAYSTONE, Ig	ht brown, slightly								[
	3-		111	oist, hard, some ferr	ic staining present.		25 35	MCAL								
	4 -															
	5						16 18 24	SPT	CL.			42	26		75	
220	6 -						24									
	7 -															
	8-															
	9- 10						30 50	MCAL								
215	10-						50									
<i></i>)	12 -															
	13 -															
	14 -															
	15~						14 20 24	SPT								
210	16 -						24									
	17 -											1				
	18 -															
	19 -		PIER	RE SHALE BEDRO	CK, dark grav. drv	-										
٦Ŋe	20-		to	slightly moist, very t	ard, fissile.										Í	
205	21 - 22 -														ł	
	23															
	24 ~							l								
	25-						50/4	MCAL	-	121	13.9					
200	26 -															
	27 -							[ł		
	28 -													Ē	1	
	29 -				•											
) De	30															
195	31 - 32 -															
	33 -										ļ				Ì	
	34 -															
	35 -						50/2	501						l	ł	
90	36 -				Boring terminal	ed at	approxin	nately 3	t feet bel	ow grou	ind sur	face.				
	37 -				Ground Boring was	water	was no	t encoun	tered dur	ting drill	ing.					
	38 -				County was	JOLA	ange wii	n Eugei	កកញ្ចាភិភ្លេង (an 11/39	w2000					
	39 -															
	40 -					-										
															<u> </u>	
			, r-	INFELS				. В	ORIN	IG L(ЭG					BORIN
		K	LE	INFELD	=K		- Eviatia	Mesa \	/alley S	Spring	s Pro	perty	1	.		
							CXISUN	y cano Color:	ifill Ŵe: ado Spr	st Of V tinns	v. Vai Color	n Bu ado	ren :	St.		B-7
Draft		r: J.H		1 -	r.				ado ohi	ားမျှခ, '	000	auQ				
Date:		January	, 2007	7 7781	o									-	GU	RF ⁹⁹ 7 of

Loca					oring Loc	ation Pl	au						te Star te Con		-		/2006		
		ater (ft) ompany	-	None at			Gardeneer		~~~~	er					-				
			-	3"	n Auger		Equipment:).	CME	Stem A		LO	gged B	sy:	-	J. អម	nyadi		·····
		ameter		Cathea		·	Drilling Met	10d:	Sena	Stem A	uger								•
110(3)	u + 1021	Туре: 		040165	<u></u>				,,,,	ELD						000.0	TOOX		
					DESCE	RIPTION			1-14			·····	. <u> </u>	r –		BUKA	TORY		
F					ucour	NE HON		7						l	×				
	- 20	Graphical Log						Sampte Interval	Blow Counts per 6" interval	đ		6	5	3.1	Plasticity Index	8			
	Ē	3					N): 6206.0 Needs, Snow	6 14	inte Litte	μ	님	6	e #	5	Ā	р Б	a la		
	Depth (feel)	da	- Lithe		Junion. C	21633 OF 1	veeds, onow	Ē	16". 1	Sample Type	USCS SYMBOL	nsit	nler	Liquid Limit	stic	Sin	Ci Ssin	le.	22
i .	_ <u> </u>	<u>ō</u>						Sa	<u> </u>	Sa	s) s	58	Maisture Content (%)	3	ä	57	Passing #200 Sieve (§	Other	ů
5205	. 1		1' Toç																
200	<u>_</u>		SAND	Y CLA	YSTONE	, light br	own, siightly												
	2 -		ma	oist, har	d, some	terric sla	uning present.		10	SPT		ł							
	3 -								11 1 5										
	47								14	MCAL		107.4							
	5-								28			107.1	20.3						
200	6 -																		
	7 -											}							
	8 -																		
	9 -																		
									12 17	SPT									
	01								30]						
5195	11 -		PIER	RE SHA	VLE BED	ROCK, (dark gray, dry												
	12 -		. ło	siighliy	moisl, ve	ery hard,	fisslie.												
	13 -																		
	14 -								50/3	MCAL									
	15-								50/3	MGAL									
5190	-																		
	-																		
	17 -															İ.			
	18 -																		
	19 -						:	F	50/3	SPT									
	20-																		
5185	21 -														İ 👘	-			
	22 -														ļ				
	23 -													[
	24 -													}	1	. I			
														1					
	25-																		
6180																			
	27 -											ļ							
	28 2																		
	29 -				<u> </u>				5013	MCAL			L]	<u> </u>				
	30 -	-																	
6175		-				Ë	loring termina	ted at	approxin	nately 2	9.5 leet h	elow or	ound s	urfac	e.				
	32 -					-	Groun	idwate	r was no	ot encou	ntered du	ıring dri	liing.						
		-					Boring wa	is bac	kniled w	th auge	r cuttings	on 11/3	\$0/200	6.					
	33 -	-																	
	34 -	-																	
	35 -	-																	
													,						
-		-								ş	BORIN	VG I	06					BOF	115
a		K	LE	ENE	FEL	DEF	२			Mesa	Vallev	Sprind	js Pri	pped	ty				
	9								Existi	ng Lar	Valley Idfill We	est of	W. Va	an Bi	uren	St.			0
Draß	ed P	by: J.I	Junvar	j Pr	oject Nu	mber				Colo	rado Sp	rings,	Cold	orado	>				-9
Date		Januar		1		7810												D	1 -
Vals	•	19019	2007	<u>' </u>		1010	L			·	·····	<u> </u>				-FI	GH	₽Ę ₽₽	1 13

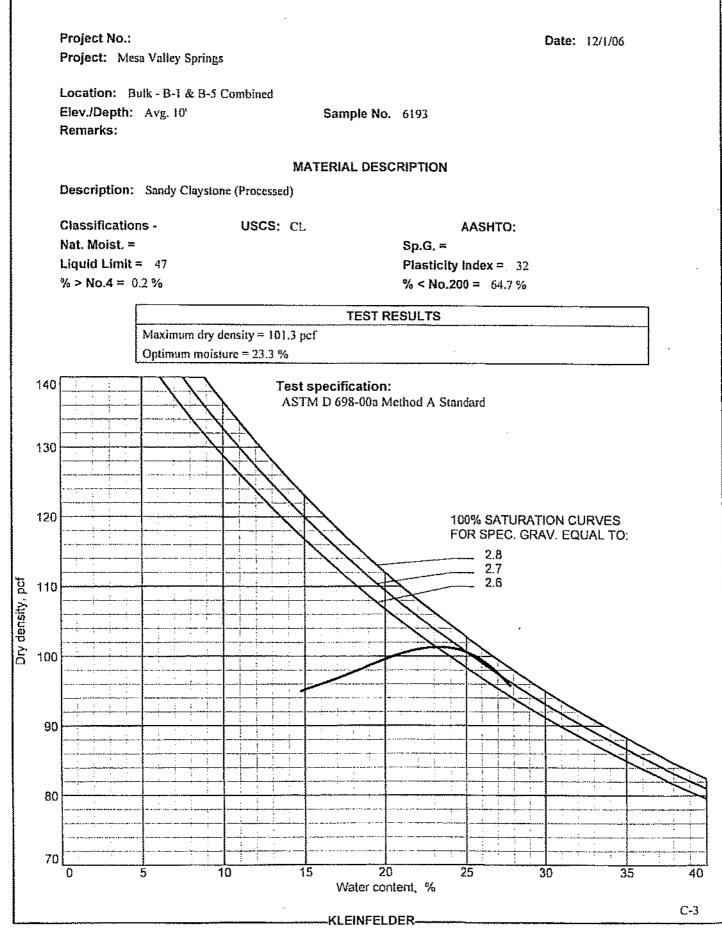
	ation:	ater (ft)		See Boring Location Pl	an						te Star te Con		-	1/3/20		
Drill Aug	ing C er Dia	ompany ameter Type:	y:	None at Drilling Spectrum Exploration 3" Automatic	Equipment: Drilling Metho	od:	CME- Solid	55 Stern A	uger		gged B		-	J. Hu		
T HAT		1940.		Automatic			FIE	LD					LA	BORA	TORY	
Elevation (feet)	Depth (feet)	Graphical Log		DESCRIPTION Appx. Surface Elevation (face Condition: Grass & V		Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Maisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sleve (%)	Passing #200 Sieve (%)	Other Tests
<u> </u>	-	Ŵ	1" To	psoil.		0	m ā,	ion I	50	00	20	5	ā	6.9	<u> </u>	OF
-6190	2 3		SAN	DY CLAYSTONE, light br oist, hard, some ferric sta	own, slightly Ining present.											
	5						20 20 18	SPT								-
-6185	8-9-						20 20	SPT			4					
	11 - 12 - 13 -						20									
-6180	14 - 15 - 16 - 17 -						31 40 50/4	SPT								-
-6175 -	18 - 19 - 20 - 21 -						28 25 32	SPT								-
-6170	22 - 23 - 24 - 25 -															
	26 -		PIER	RE SHALE BEDROCK, o slightly moist, very hard,	dark gray, dry fissile.											
-6165	29 - 30 - 31 - 32 - 33 -			В	oring terminate Ground Boring wa	water	was no	l encour	ntered du	iring dril	ling.		r.			
-6160 -	34 - 35 -															-
1315A		-		INFELDEF	2		Existir	Mesa ng Lan	BORIN Valley dfill We rado Sp	Spring est of V	s Pro V. Va	n Bu	Iren	St		BORING B-10
Date	_	y: J.H Januar sider, Inc.				_		Color	auo op	nings,	000	200		FIG	GUF	RE*21 at 1

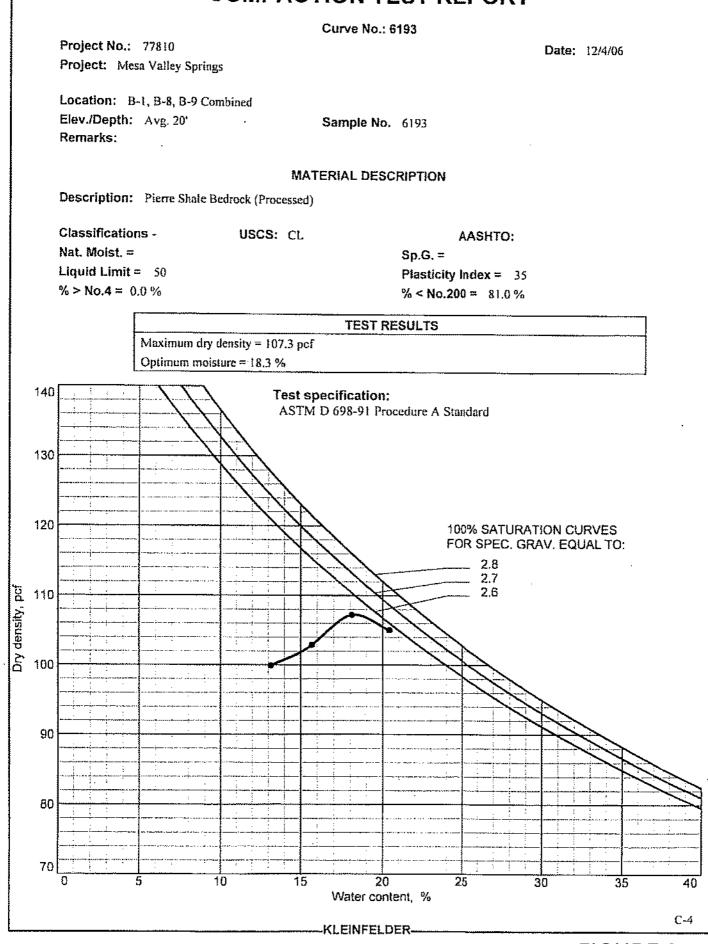

KLEINFELDER Expect More*


APPENDIX C

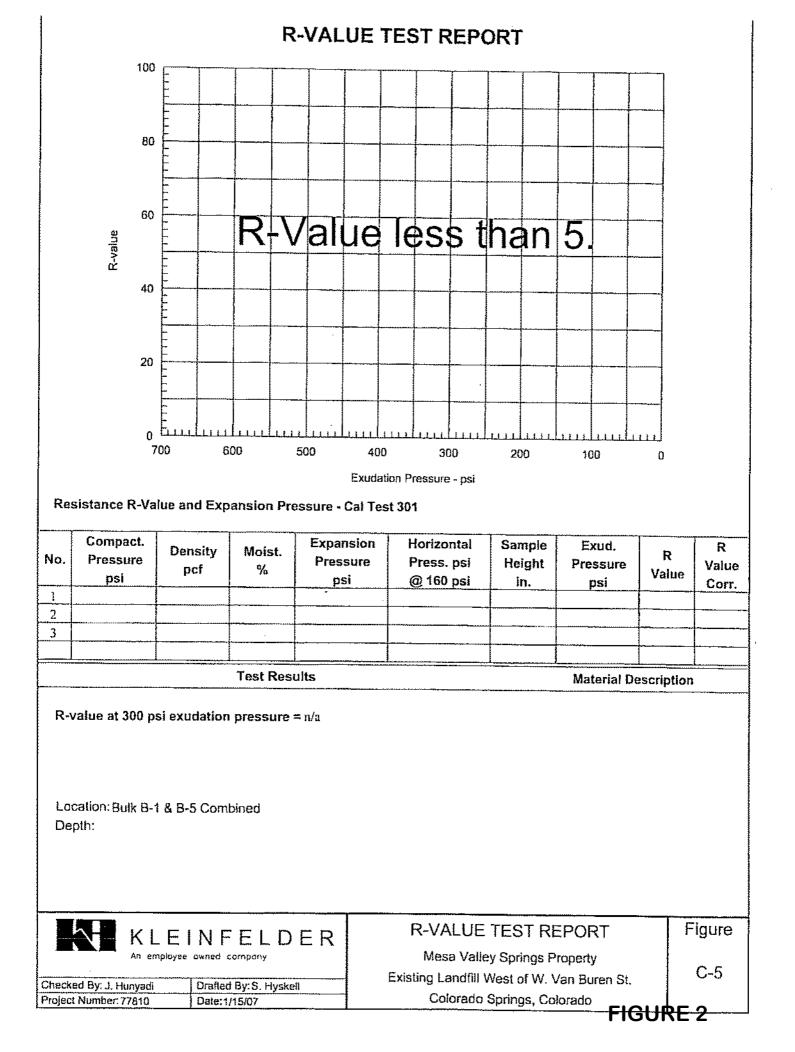
•

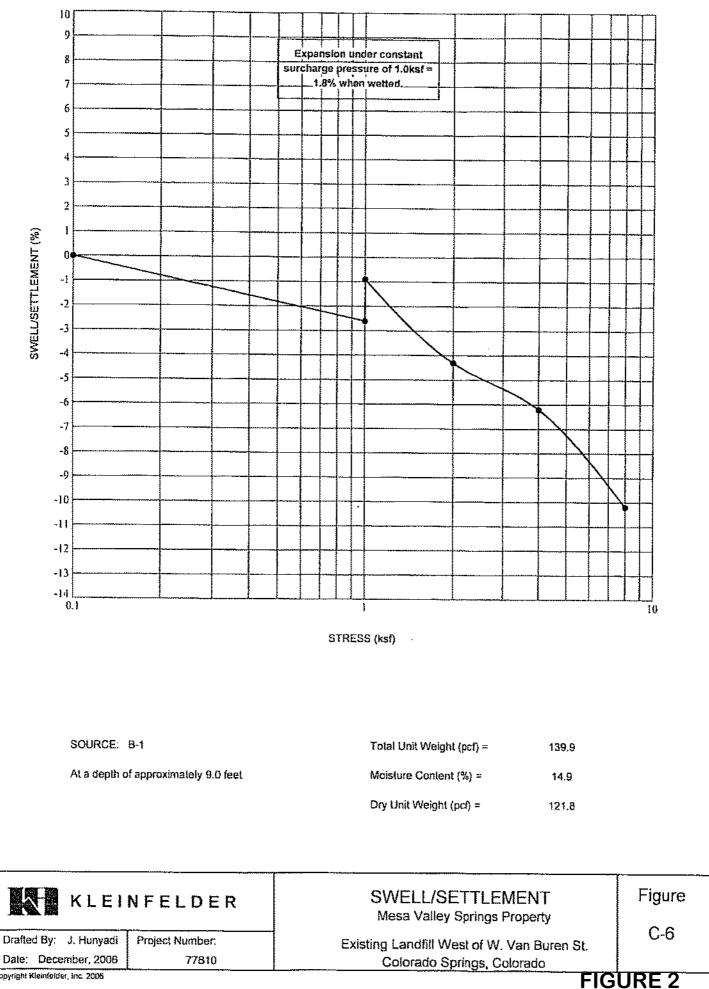
Laboratory Test Results


FIGURE 2


CSPLABSIEVE_ASTM 77810_GINT.GPJ Inuryadi@xleinfeider.com 1/18/2007

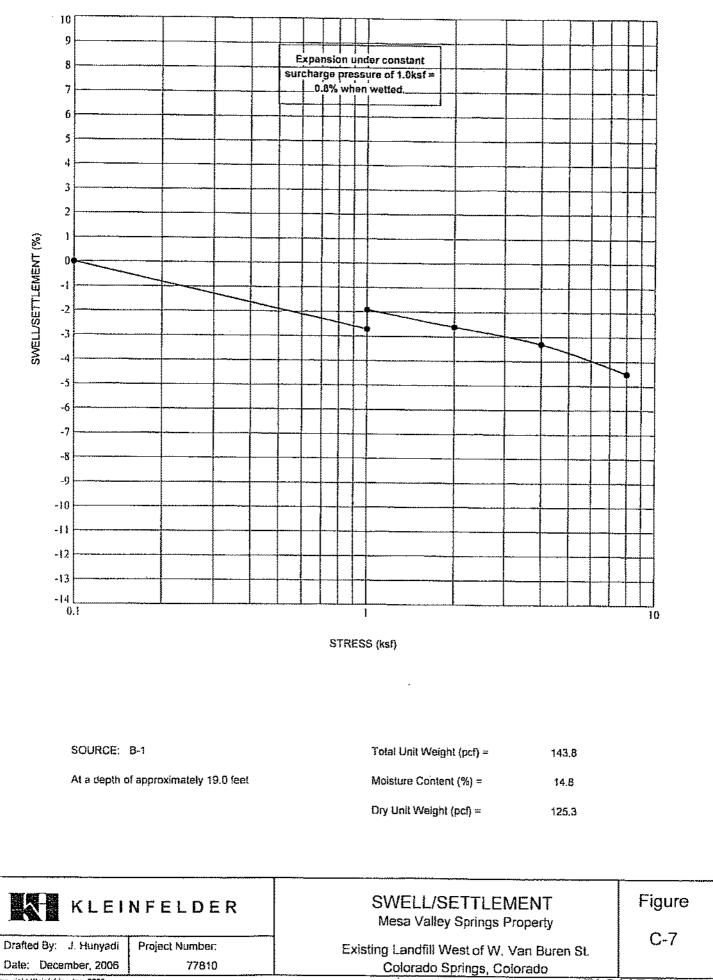
COMPACTION TEST REPORT



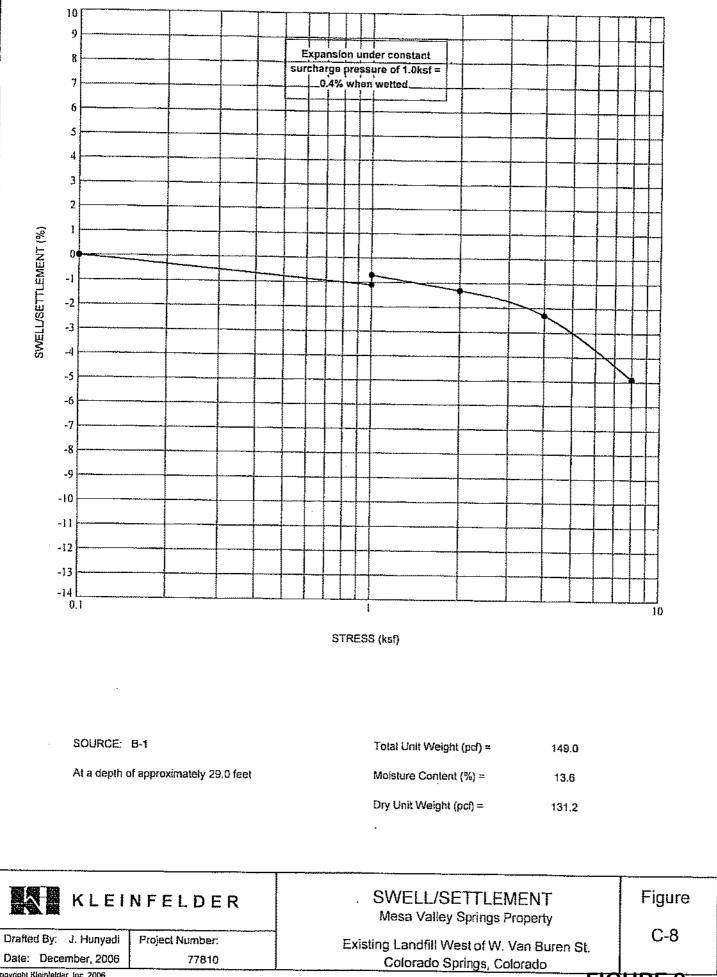

FIGURE 2

COMPACTION TEST REPORT

FIGURE 2



T.GPJ [hunyed]做kielnfeider.com 12/27/2005


ZCONSOLID 778*

Copyright Kleinfelder, Inc. 2005

FIGURE 2

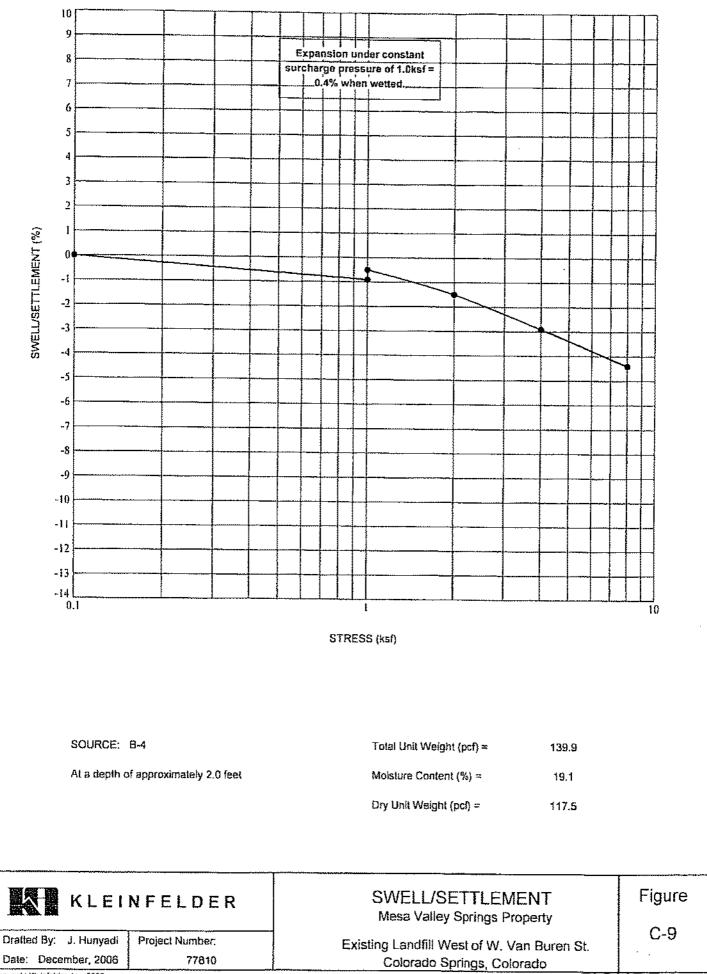

ZCONSOLID 778*

FIGURE 2

T.GPJ jhunyadi@kielnfelder.com 12/27/2006

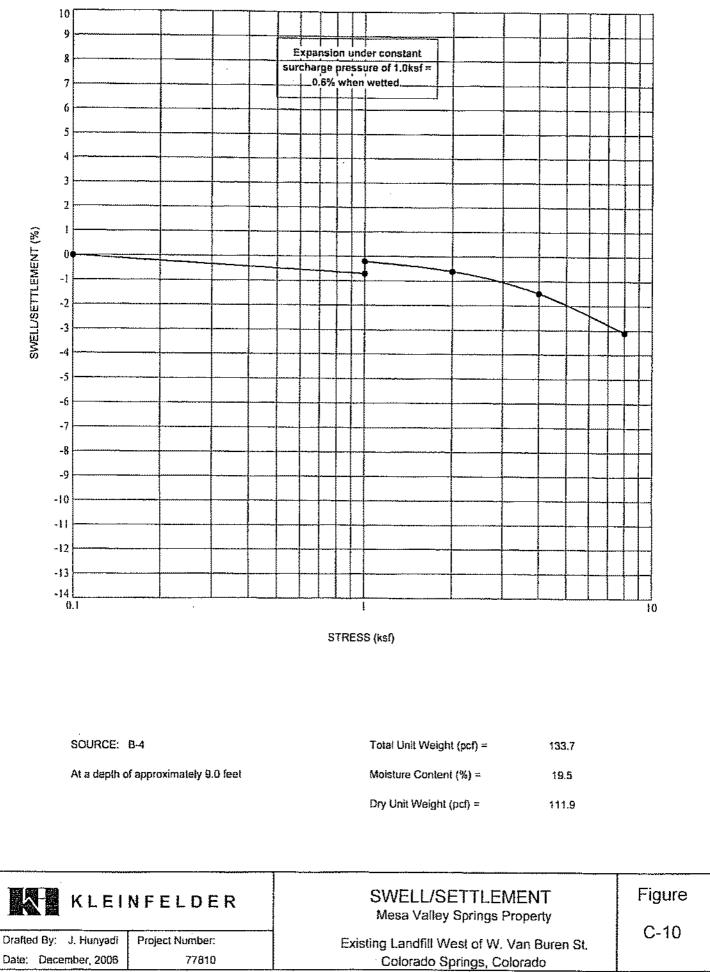
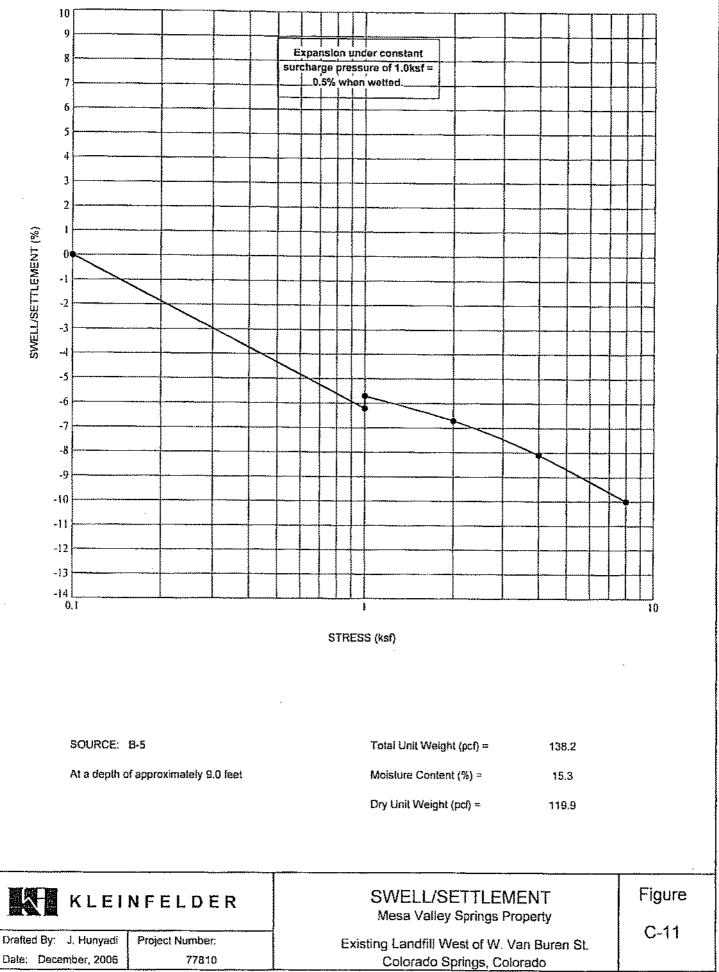
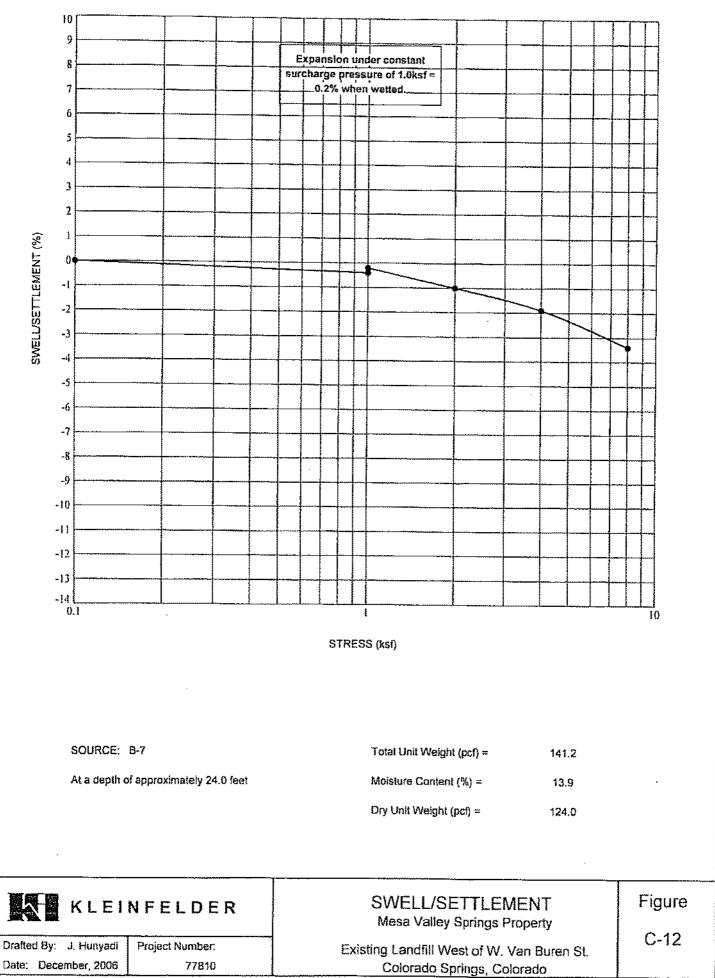

ZCONSOLID 7781

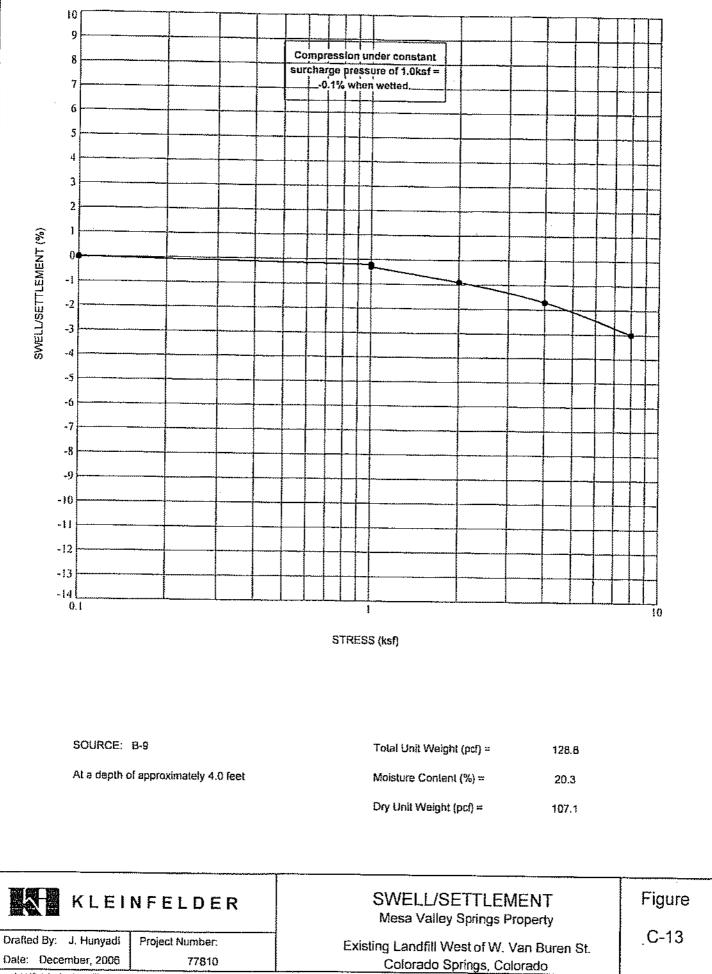
FIGURE 2


11.GPJ jhunyadi@klekrielder.com 12/27/2005

ZCONSOLID 778*


FIGURE 2

2CONSOLID 778*


FIGURE 2

ZCONSOLID 778*

FIGURE 2

ZCONSOLID 778-

FIGURE 2

ZCONSOLID 778*

1110 Elkton Drive, Seite A Colorado Springs, CO 80907 (719) 503-9595 FAX (719) 593-9911 www.jestamericainc.com

13 December, 2006

John Hunyadi Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs, CO 80919

RE: n/a Work Order: A612012

Enclosed are the results of analyses for samples received by the laboratory on 12/04/06 15:34. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tom Fowler QA Manager/Lab Director

CA ELAP Certificate # 2000

Page 1 of 7

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919	Project: n/a Project Number: 77810 Project Manager: John Hunya	di.	1 12/04/06 00:00	A612012 Reported: 12/13/06 12:43
	ANALYTICAL REPORT FOR SAMPI	.es		
Semple ID	Laburatory ID	Mairix	Date Sampled	Date Received
B4@4'	A612012-01	Soil	12/04/06 00:00	12/04/06 15:34
B8 Combined	A612012-02	Soil	12/04/06 00:00	12/04/06 15:34

.

The results in this report apply to the samples analyzed in occordance with the chain of custody document. Unless otherwise stated, results are reported on a wei weight basis. This analytical report must be reproduced in its entirely.

Page 2 of 7

.

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project Na Project Ma	rojeci: n/a amber: 778 mager: John					A612 Repor 12/13/06	ivd:
		TestAmeric		•					
Analyie	Result	Reponing Linu	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
B4@4' (A612012-01) Soll Sample	d: 12/04/06 00:00 Receiv	red: 12/04/06 15:	:34		· · ·			<u> </u>	
քի	8.4	0.0	pH Units	1	AL60405	12/04/06 13:44	12/04/06	EPA 9045B	
Resistivity	410	0.0	uOhnas	N	A1.60406	12/04/06 16:03	12/04/06	EPA 9845C	
B8 Combined (A612012-02) Soil	Sampled: 12/04/06-00:00	Received: 12/04	1/06 15:34						
p31	7.4	0.0	րիկ Սոյէս	1	AL60405	12/04/06	12/04/06	ЕРА 9045В	~~~~
Resistivity	790	0.0	uOluns		AL60406	12/04/06 16:03	13/04/06	ЕРА 9045С	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Utdess otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced to its entirety.

Page 3 of 7

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project Nu		10 a Hunyadi				A6120 Report 12/13/06	ted:
		General Ch TestAmer	-					<u></u>	
······	·,	Reporting						·····	
Analyle	Result	Limit	Units	Dilation	Datch	Prepared	Analyzed	Method	Notes
84@4' (A612012-01) Soil Sampled: 12/04/06 00:0	0 Receiv	red: 12/04/06 15:2	14	·····					
Sulfate	1290	200	uig/kg	20	6121-124	12/09/06	12/11/06	SW846 9056	
BS Combined (A612012-02) Soil Sampled: 12/04/	06 00:00	Received: 12/04/	06 15:34						
Sulfate	1620	200	mg/kg	20	6121424	12/09/06	12/11/06	SW846 9056	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Page 4 of 7

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project N	Project: n/a lumber: 778 anager: Joh	10					Hept	2012 oried: 16 (2:43
		hem Prej stAmerio		-	-	o l				
Analyte	Acsult	Reporting Limit	Ųnia	Spike Level	Source Acsult	14ILEC	SHEC Limiu	kpd	RPD Limiu	Notes
atch AL60405 - Wet Chem prepa	ration / EPA 9045B									
Puplicate (AL60405-DUP1)	Source: A612	011-01		Prepared &	Analyzed:	12/04/06				
¥f	8,30	0.0	pH Uniss		8.3			0	20	
latch AL60406 - Wet Chem prepa	ration / EPA 9045C									
Duplicate (AL60406-DUP1)	Source: A612	012-02		Prepared &	: Analyzed:	12/04/06				
Lesistivity	810	0,0	uOhms		790			2	20	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Unless allorwise stated, results are reported on a wet weight basis. This analytical report whist be reproduced in its entirety.

Page 5 of 7

.

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project Ni		ı 810 hn Hunyadi					A61; Repo 12/13/0	eted:
<u> </u>	General C	hemistry	Param	eters - Qu	ality C	ontrol				
		TestAme	rica - N	ashville, ʻ	ΓN					
Anolyte	Result	Reporting Limit	Units	Spike Level	Source Result	*4REC	%REC Limits	RPD	RPD Limit	Notes
Batch 6121424 - METHOD PREP / SW84	6 9056									
Blunk (6121424-BLK1)				Prepared:	12/09/06	Analyzed: 1	2/10/06			
Sulfaie	ND	10.0	ing/kg			·····				
Laboratory Control Sample (6121424-BSI)				Prepared:	12/09/06	Analyzed: U	2/10/06			
Sulfiste	151	10,0	៣ម្ន/នៃអ្ន	150		101	90-110			
Duplicate (6121424-DUP1)	Source: NPL	1130-01		Prepared:	12/09/06	Analyzed: E	2/10/06			
Sulfate	27.9	10.0	mµ/kg		22.1			23	20	F
Matrix Spike (6121424-MS1)	Source: NPL	0718-01		Prepared:	12/09/06	Analyzed: 12	2/10/06			
Suffare	288	10.0	mg/kg	150	164	83	80-120			<u> </u>
Mutrix Spike Dup (6121424-MSD1)	Saurce: NPL	8718-01		Prepared: 1	12/09/06	Analyzed: 13	2/10/06			
Sulfac	248	10.0	mµ/kg	150	164	56	80+120	15	20	N

.

TestAmerica - Colorado Springs

.

The results in this report upply to the samples analyzed in accordance with the chain of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Page 6 of 7

1110 Elkton Drive, Sube A Calorado Springa, CO 80907 (719) 593-9595 FAN (719) 593-9911 www.testingericaine.com

	er - C/S Drive, Unit 115 Springs CO, 80919	Project: n/a Project Number: 77810 Project Manager, John Hunyadi	A612012 Resourcest: 12/13/06 12:43
		Nates and Definitions	
R2	The RPD exceeded the acceptance limit.		
M2	The MS and/or MSD were below the acc	ceptance limits due to sample matrix interference. See Blank Spike (LC	S).
DET	Analyse DETECTED		
ND	Analyte NOT DETECTED at or above the rep	noting limit or MDL, if MDL, is specified	
NR	Not Reported		
dry	Sample results reported on a dry weight basis		
RPD	Relative Percent Difference		

TestAmerica - Colorado Springs

.

The results in this report apply to the samples analyzed in accordance with the chain of costudy document. Unless otherwise stated, results are reported on a wot weight basis. This analytical report must be reproduced in its entitety.

.

Page 7 of 7

Appendix G

Assessment Report Mesa Valley Landfill Investigation 2018

August 23, 2018 Kleinfelder Project No.: 20191069.001A/CSP18L83172

Mr. Jack Chappelle, P.E. Engineering Solutions & Design, Inc. 51 Corporate Woods 9393 West 110th Street, Suite 500 Overland Park, Kansas 66210 mailto:jack@esdworks.com

SUBJECT: Assessment Report Mesa Valley Landfill Investigation 2018 Colorado Springs, Colorado

Dear Mr. Chappelle:

This letter presents the results of our geotechnical and environmental investigation performed for the existing Mesa Valley Landfill, southwest of the intersection of Centennial Drive and West Van Buren Street in Colorado Springs, Colorado.

Purpose and Scope

The purpose of our geotechnical study was to further explore and evaluate the subsurface conditions at the existing landfill. To meet the intended purpose, we completed the following scope:

- Review of selected geologic and geotechnical data
- Preliminary site visit to locate the borings and assess access
- Notification of Utility Notification Center of Colorado (CO 811)
- Subsurface exploration consisting of the surveying, drilling and logging of 19 borings to bedrock or a maximum depth of 50 feet
- Installation of 7 gas monitoring wells
- Installation of 3 groundwater monitoring wells and associated permitting
- Gas monitoring and collection of groundwater samples
- Groundwater and methane laboratory testing
- Report preparation

Our services excluded collection of geotechnical soil or bedrock samples, geotechnical laboratory testing, and groundwater monitoring well abandonment.

Field Investigation

Our field exploration program was performed using track-mounted and all-terrain drilling rigs equipped with 4-inch solid continuous flight augers. The approximate boring locations are shown in Figure 1. Actual surveyed boring coordinates are attached. Samples were collected at regular intervals using standard penetration test (SPT) samplers. As directed, no soil samples were removed from the site for laboratory testing. The exploration was directed by a qualified representative of the geotechnical engineer who logged the subsurface profile. Upon completion of drilling, borings not used for groundwater or gas monitoring were backfilled with grout.

Page 1 of 4

August 23, 2018

KLEINFELDER 4815 List Drive, Unit 115, Colorado Springs, CO 80919 p | 719.632.3593 f | 719.632.2648

At 7 boring locations, temporary 1-inch PVC wells were installed in the 4-inch diameter boreholes at a depth of 15 feet for the purpose of landfill gas monitoring. The methane wells were constructed with 10 feet of 0.010-inch slotted screen and sufficient riser to reach approximately 2 feet above the ground surface to allow for future sampling. The slotted screen was surrounded with 10/20 silica sand to two feet above the screen. Bentonite was placed in the annular seal from the top of the filter pack to the ground surface.

Three groundwater monitoring wells were constructed using factory cleaned 2-inch diameter, PVC well casing with 20 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC pipe was surrounded with 10/20 silica sand. A 2- to 3-foot bentonite annular seal was placed at the top the filter pack. Grout was placed atop the bentonite annular seal to the ground surface. The State of Colorado groundwater well permit and construction logs are attached.

Boring logs, including well construction details, are attached.

Subsurface Conditions

A summary of the subsurface conditions encountered at the exploration locations is presented in the following table.

Boring ID	Boring Depth (feet)	Depth of Cover (feet)	Depth to Bedrock (feet)	Well Type	Groundwater Depth (feet) ¹
B-16	41.5	20	41	Methane	27
B-17	45.5	20	45	none	35
B-18	46.5	15	45	Methane	28
B-19	46.5	20	45	none	20
B-20	26.5	15	36	Methane	19
B-21	16.5	st #r	10	none	NGWE
B-22	11	**	3	none	NGWE
B-23	21.5	5	14	Methane	NGWE
B-24	11.5	**	5	none	NGWE
B-25	21.5	10	17	none	NGWE
B-26	11.5	**	5	Methane	NGWE
B-27	21.5	**	5	none	NGWE
B-28	11.5	**	5	none	NGWE
B-29	11.5	**	5	Methane	NGWE
B-20 B-30	21	**	5	none	NGWE
B-31	36.5	**	10	Methane	NGWE
B-32	31	5	30	none	NGWE
GW-1	46.5	35	45	Groundwater	31 (18.86)
GW-2	51.5	5	45	Groundwater	23 (18.52)
GW-2 GW-3	36.5	5	35	Groundwater	29 (19.87)

Notes:

** No debris encountered to maximum depth of boring 1. At completion of drilling, (7/25/18)

NGWE = no groundwater encountered

Page 2 of 4

KLEINFELDER 4815 List Drive, Unit 115, Colorado Springs, CO 80919 p | 719.632.3593 f | 719.632.2648

FIGURE 2

Groundwater and Methane Sampling and Testing

On July 25, 2018, Kleinfelder collected measurement of methane (CH₄), hydrogen sulfide (H₂S) and oxygen (O₂) using a 4-gas monitor at the seven methane wells installed on the site. Methane and depressed oxygen levels were detected in wells B20 and B23; therefore, air samples were collected from the wells and submitted to an accredited laboratory for methane analysis. Analytical results show methane concentrations of 82.4% by volume in the sample collected from B20 and 0.399% by volume in the sample collected from B23.

Depth to groundwater was measured and groundwater samples collected approximately one week following drilling. Three casing volumes were removed from each well and general waterquality parameters (e.g., temperature, pH, and electrical conductivity) were collected and documented. A groundwater sample was collected from each well and sent to ACZ Laboratories, Inc. in Steamboat Springs, Colorado under standard chain of custody procedures. The groundwater samples were analyzed for the following constituents:

- Antimony
- Arsenic
- Barium
- Beryllium
- Cadmium
- Calcium-dissolved
- Chromium
- Cobalt
- Copper
- iron
- Lead
- Magnesium-dissolved
- Manganese-dissolved
- Nickel
- Potassium-dissolved
- Selenium
- Silver
- Sodium-dissolved
- Thallium
- Vanadium
- Zinc

The results of the groundwater laboratory testing are attached.

LIMITATIONS

Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of services on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of services was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report are beyond the scope of our services and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since such detailed

Page 3 of 4

August 23, 2018

KLEINFELDER 4815 List Drive, Unit 115, Colorado Springs, CO 80919 p | 719.632.3593 f | 719.632.2648 FIGURE 2

services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at 303.327.6601.

Respectfully submitted,

KLEINFELDER, INC.

Ken the

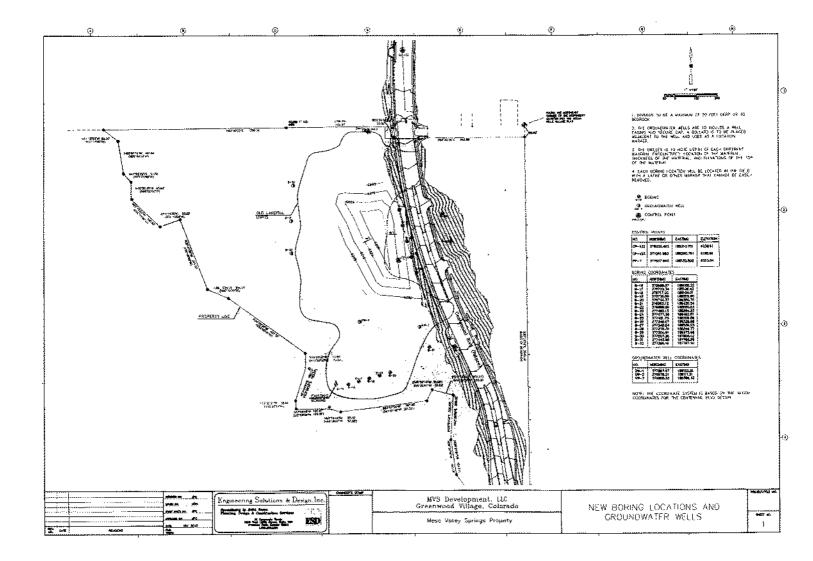
J. Kevin White, PE Principal Professional

Attachments:

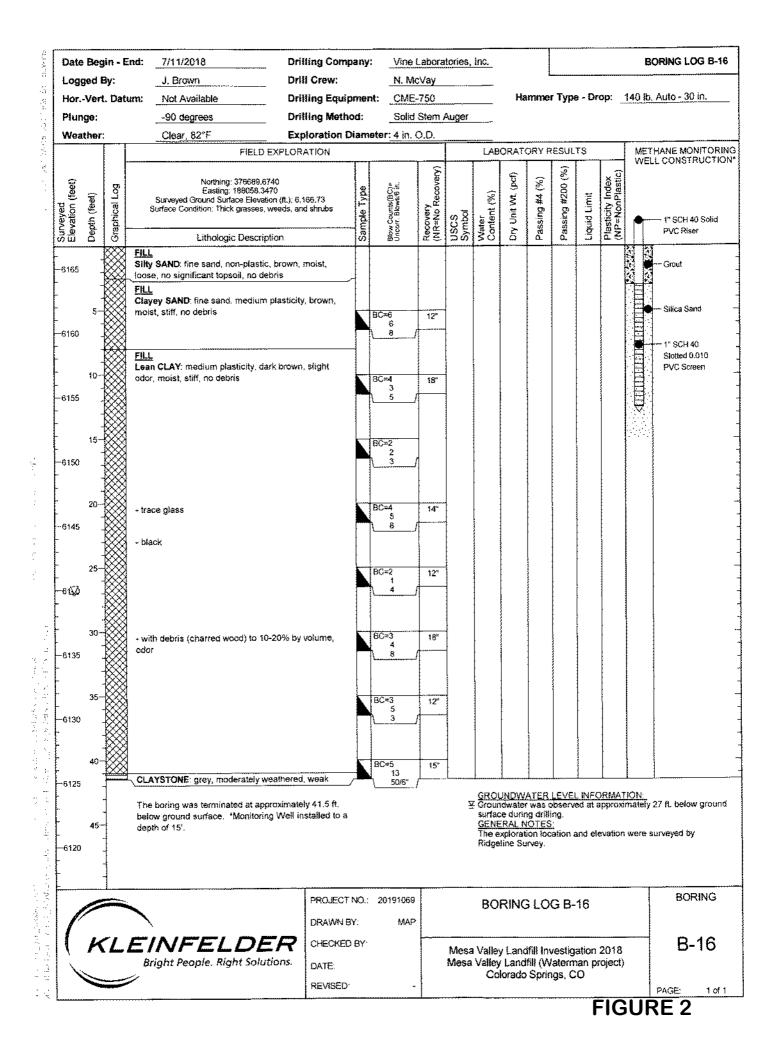
Figure 1, New Boring Locations **Boring Coordinates** Groundwater Well Permit Boring and Well Construction Logs Methane Test Results

Groundwater Test Results

BG World

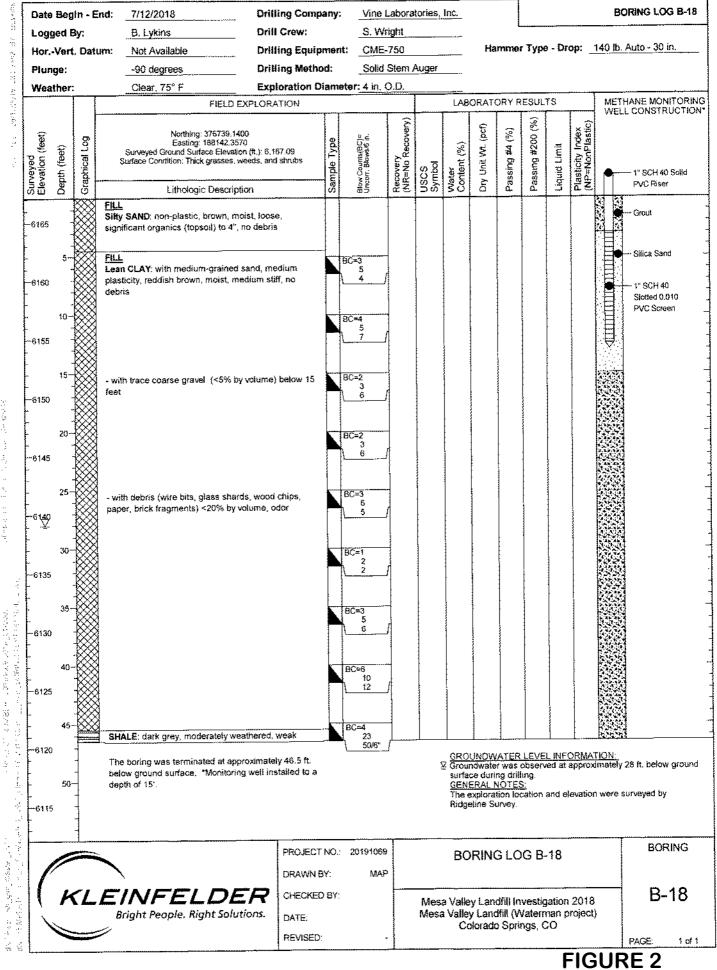

Brad A. Woodard, CPG Senior Project Manager

20191069.001A /CSP18L83172 © 2018 Kleinfelder

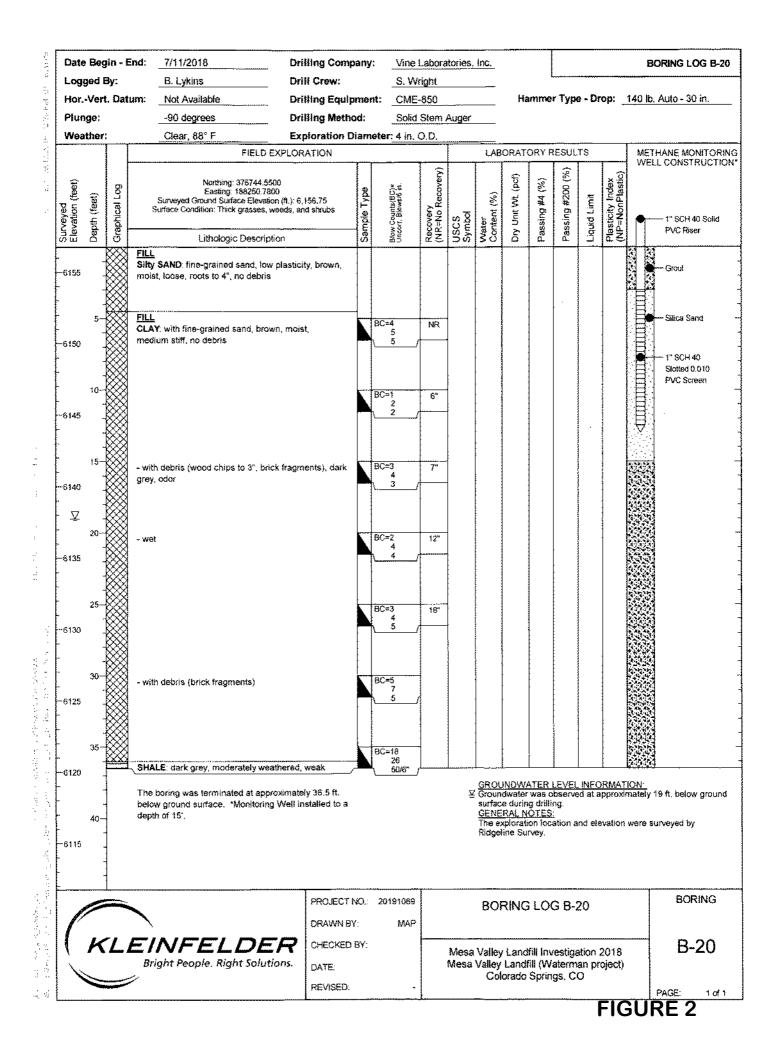

Page 4 of 4

August 23, 2018

KLEINFELDER 4815 List Drive, Unit 115, Colorado Springs, CO 80919 p | 719.632.3593 f | 719.632.2648 FIGURE 2

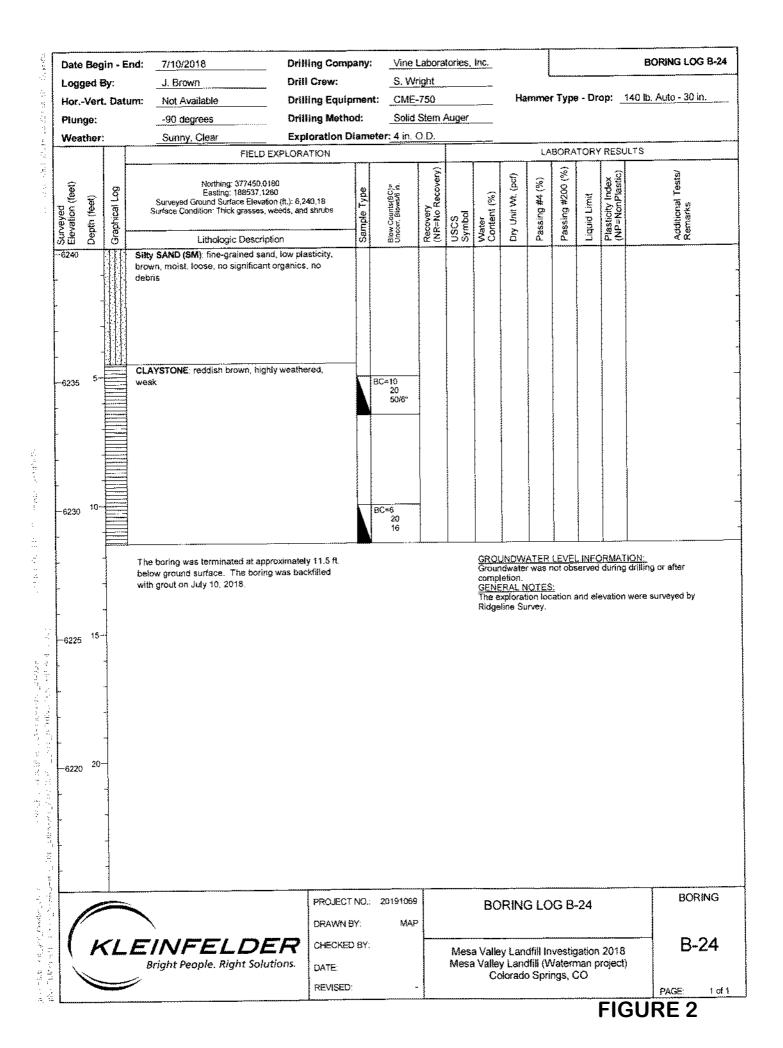

	DIV. 2 RECEIVED
GWS-51 NOTICE OF INTENT TO CONSTRU	CT MONITORING HOLE(S)
02/2017 Please type or print legibly in black or blue ink or fil	le online, dwrpermitsonline@state.co.us
State of Colorado, Office of the State Er Denver, CO 80203 Phone 303-866	Igineer 1313 Sherman St, Room 821, WARER RESOLUCE
beiver, co 80203 Phone 503-000	CONGINEED
Well Owner Name(s): MVS Development, LLC	
Address: P. O. Box 27560, Albuquerque, NM 87125	Township 14 IN IS, Range 67 DE IW, PM
Phone: (505) 553-4218	County: El Paso
Email: waterman@watermaninc.net	Subdivision: Filing:
Landowner's Name: MVS Development LLC	Site/Property Address SW OI Cellerinia Diva
Please check one and complete as indicated including contact info:	and Van Buren Street, Colorado Spring, CO GPS Location in UTM format if known:
Water Well Dritler Licensed in Colorado - Lic. No.	Set GPS unit to true north, datum NADB3, and use meters for
Professional Engineer Registered in Colorado - Reg. No. 50163	the distance units, Zone 12 or Zone 13.
Professional Geologist per C.R.S. 23-41-208(b)	Easting 38.85764444 Northing -104.843214
Other - anyone directly employed by or under the supervision of a licensed	# of Monitoring Holes to be constructed in Section:
driller, registered professional engineer or professional geologist	Estimated Depth 50 Ft., Aquifer 30
Contact / Company Kleinfelder	
Address 4815 List Drive, 115	Purpose of Monitoring Hole(s) groundwater
City, State & Zip Colorado Springs	samping, level
Phone (720) 660-5825	07/12/2018
Email jkwhite@kleinfelder.com	Anticipated Date of Construction: 07/12/2018
Print Name: Kevin White	Date Notice Submitted: 07/09/2018
Signature or enter full name here: Kevin White	(Must be at least 3 days prior to construction)
ACKNOWLEDGEMENT FROM STAT	
FOR OFFICE USE 58184 - MH DIV. 2 WD 0 Bas MD CONDITIONS OF MONITORING HOL A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the da pumping shall not exceed a total of 200 hours unless prior written approva testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during testing 3) All work must comply with the Water Well Construction Rules, 2 CCR 44 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Cons completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be	ONLY PROCESSED BY KF DATE ACKNOWLEDGED 7018 LE ACKNOWLEDGEMENT IT SHALL BE AVAILABLE AT THE DRILLING SITE. Instruction of monitoring & observation hole(s). Internotice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during b) is responsible for obtaining permit(s) and complying with all rules ng. 02-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be dividual must submit the completed forms to this office within 60 r submitted on Well Yield Test Report (GWS-39).
FOR OFFICE USE 58184 - MH DN	ONLY PROCESSED BY KF DATE ACKNOWLEDGED 7018 LE ACKNOWLEDGEMENT IT SHALL BE AVAILABLE AT THE DRILLING SITE. Instruction of monitoring & observation hole(s). It is obtained from the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during b) is responsible for obtaining permit(s) and complying with all rules ing. 02-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be dividual must submit the completed forms to this office within 60 r submitted on Well Yield Test Report (GWS-39). a plugged and sealed within eighteen (18) months after thin 60 days of plugging & sealing. The above MH d address must be provided on all well permit application(s), well
FOR OFFICE USE 58184 - MH DrvWDLOBasMD CONDITIONS OF MONITORING HOL A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the da pumping shall not exceed a total of 200 hours unless prior written approva testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during testing 3) All work must comply with the Water Well Construction Rules, 2 CCR 44 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Cons completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted with acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATE permanent dewatering system, if constructed in accordance with the Wate	ONLY PROCESSED BY KF DATE ACKNOWLEDGED 7018 LE ACKNOWLEDGEMENT IT SHALL BE AVAILABLE AT THE DRILLING SITE. Instruction of monitoring & observation hole(s). Inte notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during b) is responsible for obtaining permit(s) and complying with all rules ng. 02-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be dividual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). a plugged and sealed within eighteen (18) months after thin 60 days of plugging & sealing. The above MH d address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a ter Well Construction Rules and policies of the State Engineer.
FOR OFFICE USE <u>58184</u> - MH <u>DN.</u> <u>A</u> <u>WD</u> <u>10</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HOL</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the da pumping shall not exceed a total of 200 hours unless prior written approva testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s and regulations pertaining to the discharge of fluids produced during testing 3) All work must comply with the Water Well Construction Rules, 2 CCR 44 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Const completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted with acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATE permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 C THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO TO DWRpermitsonline@state.co.us.	ONLY PROCESSED BY KF DATE ACKNOWLEDGED <u>J</u> (<u>J</u> (<u>J</u>) LE ACKNOWLEDGEMENT IT SHALL BE AVAILABLE AT THE DRILLING SITE. Instruction of monitoring & observation hole(s). Internation of monitoring & observation hole(s). Internation of monitoring permit(s) and complying with all rules is obtained from the State Engineer. Water diverted during is responsible for obtaining permit(s) and complying with all rules ing. 02-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be dividual must submit the completed forms to this office within 60 is submitted on Well Yield Test Report (GWS-39). a plugged and sealed within eighteen (18) months after thin 60 days of plugging & sealing. The above MH d address must be provided on all well permit application(s), well FR WELL, except for purposes of remediation (recovery) or as a ter Well Construction Rules and policies of the State Engineer. DAYS, PLEASE WRITE "NO HOLES CONSTRUCTED" ON A COPY OF HE DIVISION OF WATER RESOURCES AT
FOR OFFICE USE <u>58184</u> - MH <u>DN.</u> <u>A</u> <u>WD</u> <u>10</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HOL</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the da pumping shall not exceed a total of 200 hours unless prior written approva testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during testia 3) All work must comply with the Water Well Construction Rules, 2 CCR 40 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Cons completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted with acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATE permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 C THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO THE DWR permitsonline@state.co.us. THIS ACKNOWLEDGEMENT OF NOTICE DOES NOT INDICA	ONLY PROCESSED BY KF DATE ACKNOWLEDGED 7018 LE ACKNOWLEDGEMENT IT SHALL BE AVAILABLE AT THE DRILLING SITE. Instruction of monitoring & observation hole(s). It is notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during b) is responsible for obtaining permit(s) and complying with all rules ing. 02-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be dividual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). It plugged and sealed within eighteen (18) months after thin 60 days of plugging & sealing. The above MH di address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a ter Well Construction Rules and policies of the State Engineer. DAYS, PLEASE WRITE "NO HOLES CONSTRUCTED" ON A COPY OF HE DIVISION OF WATER RESOURCES AT INTE THAT WELL PERMIT(S) CAN BE APPROVED.
FOR OFFICE USE <u>58184</u> - MH <u>DN.</u> <u>A</u> <u>WD</u> <u>10</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HOL</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the da pumping shall not exceed a total of 200 hours unless prior written approva testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s and regulations pertaining to the discharge of fluids produced during testing 3) All work must comply with the Water Well Construction Rules, 2 CCR 44 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Const completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted with acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATE permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 C THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO TO DWRpermitsonline@state.co.us.	ONLY PROCESSED BY KF DATE ACKNOWLEDGED 7018 LE ACKNOWLEDGEMENT IT SHALL BE AVAILABLE AT THE DRILLING SITE. Instruction of monitoring & observation hole(s). It is notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during b) is responsible for obtaining permit(s) and complying with all rules ing. 02-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be dividual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). It plugged and sealed within eighteen (18) months after thin 60 days of plugging & sealing. The above MH di address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a ter Well Construction Rules and policies of the State Engineer. DAYS, PLEASE WRITE "NO HOLES CONSTRUCTED" ON A COPY OF HE DIVISION OF WATER RESOURCES AT INTE THAT WELL PERMIT(S) CAN BE APPROVED.

		jin - E		Drilling Com	pany:		Labora	tories,	Inc.						BORING LOG B-
Logę	-	-	J. Brown	Drill Crew:		<u>N. M</u>						-			
		. Datu		Drilling Equi	•					Ha	mme	г Тур) - On	ор: _	140 lb. Auto - 30 in.
Plun	-		-90 degrees	Drilling Meth			Stem /	Auger							
Wea	ther	: 	Partly Cloudy	Exploration	Diamet	er: 4 in.	0.D.	<u> </u>				DOD			
			FIELD	EXPLORATION			<u> </u>				1.A	Y	TORY	RESU	дтs Г
Elevation (feet)	Depth (feet)	Graphical Log	Northing: 376712.0 Easting: 188104.6 Surveyed Ground Sufface Eleval Surface Condition: Thick grasses,	560 ion (ft.): 6,166.45	Sample Type	Błow Counts(BC)≂ Uncorr, 8love/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
퉨	Dep	l est	Lithologic Descri	stion	San	Blow	Rec (NR	US(Syn	N S S	ē	Pas	Pas	Liq	El d'	Adc Rer
6165			FILL Silty SAND: fine sand, low plastic no odor, moist, loose, no significa (topsoil), no debris			~_¢									· · · · · · · · · · · · · · · · · · ·
8160	- - - 10-		- with clay, trace fine gravel			C=6 5 6)::4	11**								
3155	- - - 15-		FILL SAND with Clay: coarse sand, tra medium plasticity, brown, no odor dense, no debris				11"								
6150	-		- loose below 15 fest			4	8''								
i 145	20-		FILL Lean CLAY: medium plasticity, bi moist, stiff, trace debris (glass an		В	C=2 4 7	18"								
5140	25		- with debris (wood, plastic) 15-2 odor	5% by volume, no	B	C=3 4 3	11"								
6135	30- - -		- very stiff		B	C=5 7 11	18"						-	-	
6 1 30	35				B	C=15 13 11	8"								
6125	40-					C=18 23 32	18"							-	
6120 6115	45- - 50-		The boring was terminated at app below ground surface. The borin with grout on July 11, 2018,		 <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	C <u>≂50/6"</u>	, -		Groun surfac Groun surfac <u>GENE</u> The e	e durin dwater e at the RAL N	was d ig drilli was d e end o OTES ion loc	observ ing. observ of drilli	ed at a ed at a ng.	ipproxi ipproxi	1 <u> JQN:</u> mately 35 ft, below grou mately 35 ft, below grou were surveyed by
/		1	\	PROJECT		20191069 MAP			BO	RING	6 LO	G B-	17		BORING
(K		EINFELDE Bright People. Right Solu	tions. CHECKER	D 8Y:				Valley Valley Col		fill (W	atem	ian pr		B-17
				REVISED	r;	-									PAGE: 1 o


A REAL PROPERTY OF A REAL PROPERTY.

e estado de la delita de la dice trade contre guidenad est and the second and any the

* 100,000 V i.


Date	Beg	gin - E	End:	7/11/2018	Drill	ling Comp	any:	Vine I	.abora	tories,	Inc.						BORING LOG 8-
Logg	jed	By:		B. Lykins	Drill	Crew:		<u>S. Wr</u>	ght				-				
Hor	Ver	t. Dat	ยกา:	Not Available	Drill	ling Equip	men	t: <u>CME</u> -	850			На	mmei	г Туре	e - Dro	op: _	140 lb. Auto - 30 in.
Plun	ge:			-90 degrees	Drill	ling Metho	od:	Solid	Stem	Auger							
Weat	ther	: 		Clear, 90° F		loration D	iame	ter: 4 in. (D.D.	3	<u></u>						
				FÆL	D EXPLORA	ATION				 	,		LA		TORY	RESU	JLTS
Elevation (feet)	Depth (feet)	Graphical Log	5	Northing: 376766 Easting: 188185 Surveyed Ground Surface Elev Surface Condition: Thick grasse	.1310 vation (ft.): 6,11 is, weeds, and	86.96 ishrubs	Sample Type	Blow Ceunts(BC)= Uncorr. Biows\â lo.	Recovery (NR≖No Recovery)	USCS Symbol	water Content (%)	Dry Unit Wi. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
ភ័ណី	ð		FILL	Lithologic Desc	ription		100	ភ្នំភ្នំ	άč	⊃∽	50	<u> </u>	<u>a</u>	<u>a</u> .		<u>a. e</u>	<u> </u>
6165	•		Silty	SAND: fine-grained sand, t, loose, roots to 4", no deb		y, brown,											
6160	5-			CLAY: with coarse sand, i ish brown, moist, medium :				BC=4 6 ∫									Drill rig grinding at 5 feet
6155	t0-							BC=3 5 5 /						· · ·			
6150	15-							BC=1 2 1 ∫								-	-
⊻ 6145	20-			CLAY: high plasticity, black soft, debris (glass, wood) t				BC≖1 2 2									
6140	25-		- wit	h debris (wood chips to 2" i	in length, pla	astic)		BC≓6 3 j									
6135	30-							BC=2 2 3									
6130	35-		- wit	h debris (glass shards) to !	5% by volum	e, odor		BC=3 3 3									
-6125	40							BC=3 6 7									
	45		SH/	LE: dark grey, moderately	weathered, v	weak		BC=22 37	 	1							1
-6120 -6115	50		belo	boring was terminated at a w ground surface. The bor grout on July 11, 2018.	approximatel ring was bac	y 46,4 ft. ckfilled		50/5"		Ā	surfac <u>GENE</u> The e	e durin RAL N	ng drill IOTES ion loc	ing.			FI <u>ON:</u> mately 20 ft, below grou) were surveyed by
Ø			-			PROJECT DRAWN B		20191069 MAP			BO	RINC	GLO	G B-	19		BORING
(k	٢L		INFELD right People. Right Sol		CHECKED DATE:				Mesa Mesa	Vailey Valley Co	y Land / Land lorado	f翻 (W	atern	nan pi	2018 roject)	B-19
	~					REVISED:		-					•	-			PAGE: 10

Date	Be	gin	- Er	nd:	7/11/201	18			Drill	ing Com	pany	: <u>Vin</u>	e Labora	tories,	Inc.						80	RING LOG B-
Logg	3ed	By:			K. White	<u>}</u>			Drill	Crew:		N. 1	AcVay				-		_			
Hor	-Ve	rt. D	atu	m:	Not Avai	ilable			Drilli	ing Equi	pmei	nt: <u>CM</u>	E-750			Ha	mme	r Турн	e - Dr	op:	140 lb. A	uto - 30 in.
Plun	ge:				-90 degr	rees			Drilli	ing Meth	iod:	Soli	d Stem	Auger								
Wea	the	r:			Clear, 8	1°F			Expl	oration I	Diam	eter: 4 in	. O.D.									
			-				FI	ELO EX	PLORA	TION	···· • • • • • • • • • • • • • • • • •			[·		LA	BORA	TORY	RESU	JLTS	
Surveyed Elevation (feet)	Depth (feet)	Granhical Lon		s	Surveyed Gr Grace Cond	Easlir round S lition: Th	ng: 188 urface I nick gra	sses, we) (ft.): 6,18 eds. and	18.94 shrufos	l Sampie Type	ßlow Coumis(8C)≂ ปตcon. Btowsiñ in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wr. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		Additional Tests/ Remarks
25	å	Ē	5					escriptio			Se	85	<u>జిక</u>	ဘိတ်	ζũ	à	ě.	<u>ă</u>	<u> </u>	ā€	Easy drilli	
					SAND (SM				non-pla	stic,			ł								Casy Gran	112
6185 	5	and the second se Second second									BC≂5 5 5	12"										
- 6180	10			CLÂ weat	YSTONE: ç hered, wea	greyish ak, (Lei	browr an Cla	n, moist y, medi	, highly um plast	icity)		BC=9 17 23	15"									
- 6175	15			-dari	k grey		·					BC=12 21 29	16"									
6170	2			belo	boring was w ground s grout on J	surface	. The	boring	was bac	y 16,5 ft, kfilled				_i	comp GENI The e	letion. FRAI 1	NOTE: tion lo	s.			d dritting o	or after rveyed by
-6165	5							<u>.</u>		PROJEC		: 201910 M.			BC	RIN	GLC)G B	-21			BORING
	-	</td <td></td> <td></td> <td>INF right Peo</td> <td></td> <td></td> <td></td> <td></td> <td>DRAWN CHECKE DATE: REVISE(</td> <td>ed By:</td> <td></td> <td>-</td> <td>Mes Mesa</td> <td>a Valle 3 Valle Co</td> <td>y Lan y Lani bloradi</td> <td>dfill (V</td> <td>Vaterr</td> <td>man p</td> <td>2018 roject</td> <td>)</td> <td>B-21</td>			INF right Peo					DRAWN CHECKE DATE: REVISE(ed By:		-	Mes Mesa	a Valle 3 Valle Co	y Lan y Lani bloradi	dfill (V	Vaterr	man p	2018 roject)	B-21
1													<u> </u>								SUR	-MOE: 10

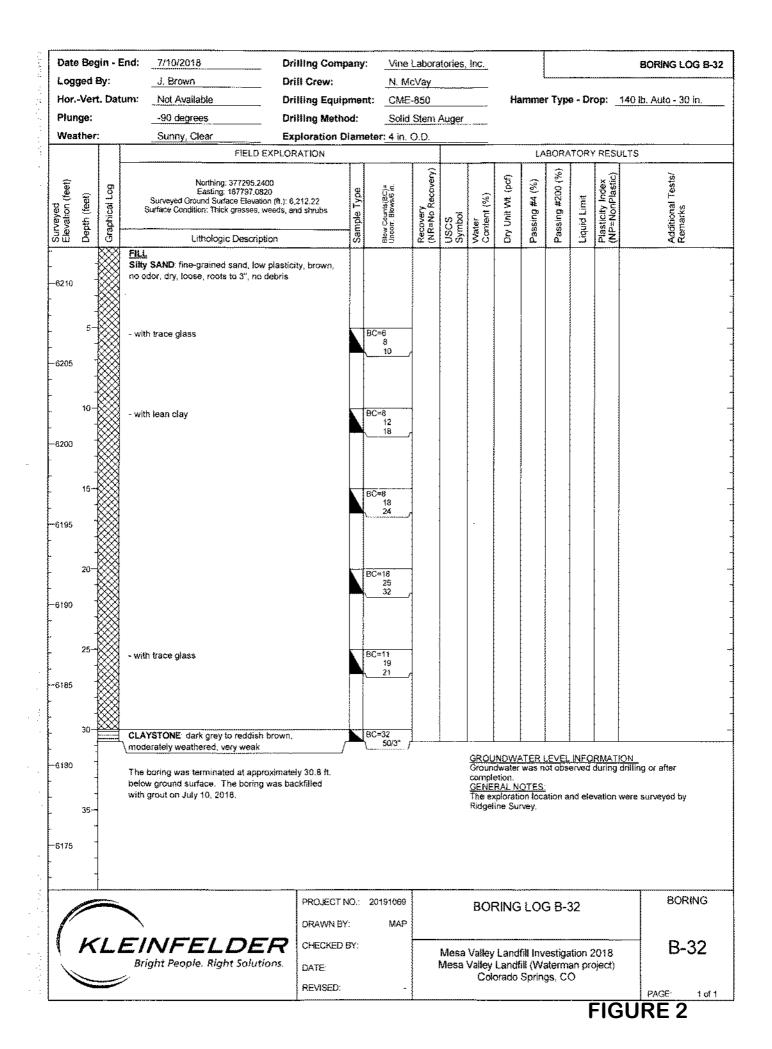
21 (A 12)	Date	Beg	jin - E	ind: <u>7/11/2018</u>	Drilling Comp	any:	Vine I	.abora	ories,	Inc.						BORING LOG B-	22
	Loge	jeđ ł	By:	K. White	Drill Crew:		N. Mc	Vay				L					
50 8	Hor	-Veri	. Dat	um: Not Available	Drilling Equip	ment:	CME-	750			Ha	mmer	Туре	- Dro	op:	140 lb. Auto - 30 in.	
10 - 10 - 14 - 14 - 14 - 14 - 14 - 14 -	Plun	ge:		-90 degrees	Drilling Metho	od:	Solid	Stem /	luger								
7	Wea	-		Clear, 83°F	Exploration D	iamet	er: 4 in. (D.D.									
					XPLORATION							ŁA	BORA	TORY	RESU	ILTS	
ġ.	Elevation (feet)	Depth (feet)	Graphical Log	Northing: 376846.674 Easting: 188572.999 Surveyed Ground Surface Elevation Location Offset: ~30 ^o east due to and overhead powerk Surface Condition: Sparse grasses, v Lithologic Descripti Silty SAND (SM): fine-grained sand brown, moist, loose, no significant o	0 h (ft.): 6,197.10 steep stope reeds, and shobs con con tow plasticity,	Sample Type	Blow Counts(BC)⊭ Uncorr. Blows/6 In.	Recovery (NR≭No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks	
L	6195			no debris, no odor CLAYSTONE: dark grey to reddish i moderately weathered, weak, moist medium plasticity)	brown, (Lean Clay,												
	-6190	5-				B	C+12 19 22	16"									
	-6185	10-		The boring was terminated at approbelow ground surface. The boring with grout on July 11, 2018.	oximately 11 ft. was backfilled	В	C=32 50/6*	14"		compl GENE The e	etion. RAL N	IOTES	:			<u>ION:</u> drilling or after were surveyed by	
and the second second of the second second second second second second second second second second second second	6180 -	15-	·····														
and the particular particular of the second s	- 6175 -																
A THE AND A	1				PROJECT DRAWN 8	9Y:	20191069 MAF			во	RIN	3 LO	G B-	22		BORING	
an a suite an an an an an an an an an an an an an			<l ==</l 	EINFELDE Bright People. Right Solut					Mesa Mesa	a Valle Valley Co	y Lan y Lanc lorado	ifill (M	/atern	nan pi CO	roject)) PAGE: 1	off
				·····										F	۶IG	SURE 2	

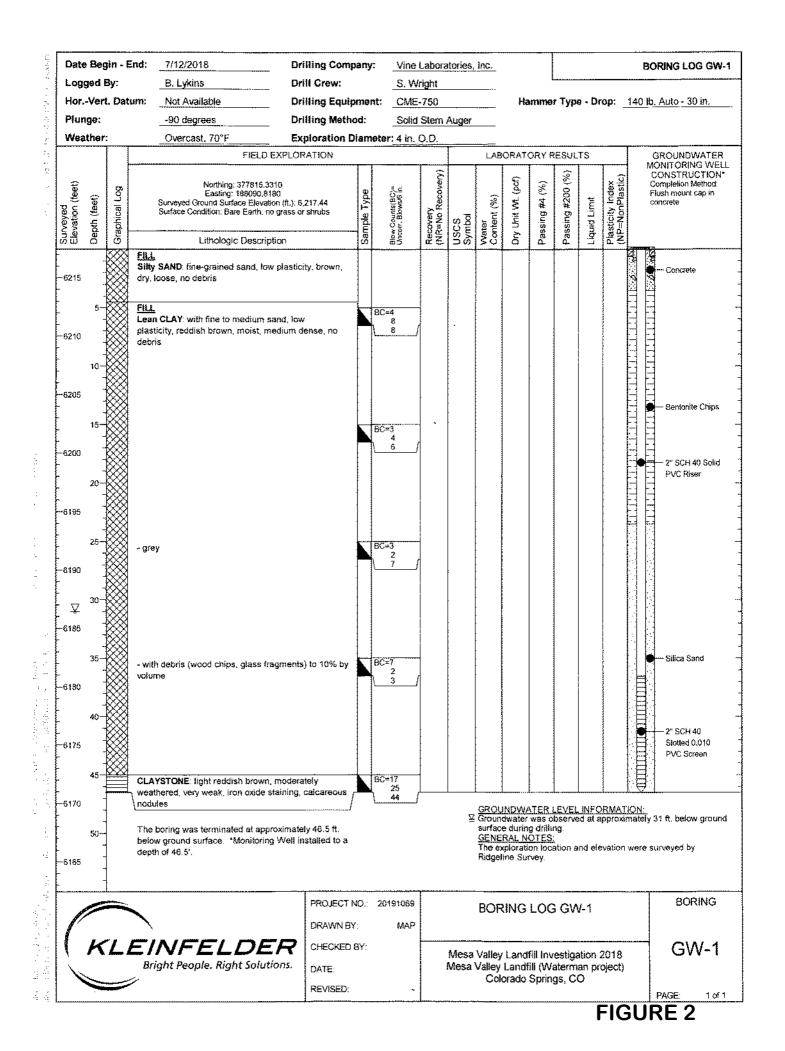
Date B	legi	in - E	End:	7/11/2018	Dril	ling Comp	any	: Vine I	_abora	tories,	ínc.						E	ORING LOG B-23
Logge	d 8	iy:		B. Lykins	_ Dril	I Crew:		<u>N. M</u>	Vay									
HorVe	ert.	. Dat	um:	Not Available	Dril	ling Equip	me	nt: <u>CME</u>	850			Ha	Imme	r Type	e - Dr	op:	140 lb	, Auto - 30 in.
Plunge	9:			-90 degrees	Dril	ling Metho	xd:	Solid	Stem /	Auger								
Weath	er:			Ciear, 80° F	Exp	loration D	iam	eter: 4 in. ().D.									<u> </u>
				FIEL	D EXPLORA	ATION	.				i.AB	ORAT		RESUL	TS .			THANE MONITORING
Surveyed Elevation (feet) Depth (feet)	און (יכביו)	Graphica! Log		Northing: 377495 Easting: 188294 Surveyed Ground Surface Elev Surface Condition: Thick grasse	.1460 /ation (ft.): 6,2		Sample Type	Blow Courtist(BC)≞ Uncort, Blows/8 in,	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		— 1" SCH 40 Solid PVC Riser
nen g	ŝ	Gra		Lithologic Desc	ription		San	Chee	Rec	US(Syn	Cor	Ě	Pas	Pas	Ľ	E P		
- 6200 -				SAND: fine-grained sand, I st, loose, significant organic														
	5			n CLAY: brown, moist, very : hing, debris (metal scraps to				BC=3 2 3	13"		-							- Silica Sand
-6195			VOHU	me														1" SCH 40 Slotted 0.010 PVC Screen
1	0		- wi	h calcareous nodules				BC=8 17 20	16"									
-6190	-			YSTONE: reddish brown, hi weak, iron oxide staining	ighly weathe	əred,		BC=10 17	12"		:						V	
-6185	4							20		-								
· 2	- 20-							BC=10 18 22										
- 6180 	T		bek	boring was terminated at a w ground surface. *Monitor th of 15'.						ŀ	Grour compi <u>GENE</u> The e	letion. RAL N	r was i <u>IOTES</u> tion loc	nol obs	served	i during	; drillin	g or after surveyed by
/	/					PROJECT		20191069 MAP			BO	RINC	GLO	G B-	23			BORING
	K	7L		INFELDI right People, Right Sol		CHECKED DATE:				Mesa Mesa	Valley Valley Co	y Land / Land łorado	ifill (M	/atern	han pi	2018 roject)		B-23
	K	۲ <u>ل</u>				CHECKED				Mesa Mesa	Valley	/ Land	ifill (M	/atern	ian pi O	roject)		R

			End:	7/11/2018	Drilling Comp	any			tories,	inc.				.		BORING LOG E
Logg				B. Lykins	Drill Crew:		<u>S. Wr</u>				ن اء		Turk	. De	nn ?	140 lb. Auto - 30 in.
Hor		t. Dai	tum:	Not Available	Drilling Equip		~~~				Ha	aaamea	туре	; - wr	·h· -	1+0 ID. Auto * 30 iff.
Plun	ge:			-90 degrees	Drilling Meth		Solid		Auger							
Weat	ther	:		<u>Ciear, 80° F</u>	Exploration 0	Diam	eter: 4 in, (<u>).D.</u>								
				FIELD E	XPLORATION	- .	·					LA I		TORY	RESU	JLTS F
Surveyed Elevation (feet)	Depth (feet)	Graphical Log		Northing: 377421.69 Easting: 188309.850 Surveyed Ground Surface Elevati Surface Condition: Thick grasses, v	90 on (fl.): 6,203,77	l Sample Type	Blow Counts(BC)⊨ Uncorr. Btows/5 In.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wi. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
문민	Dep	Gra		Lithologic Descript	ion	Sar	500 800	Rec NF	Syr Syr	\$3	ĥ	а С	Ба	Ę.	άZ	A A
- 	-		bro	<u>L</u> ty SAND (SM): fine-grained sam wn, moist, significant organics i 4 ⁴ , no debris	d, low plasticity, (topsoil) with roots											·
-	5-			· · · · · · · · · · · · · · · · · · ·		-	BC=6	11"		1	1			1		
			Ell Le	L an CLAY (CL): medium plasticit adium stiff, iron oxide staining, n	y, brown, moist, o debris		9 9									
6195	10-		fre	vith medium sand, very soft, deb gments, wood chips to ½" thick lume, odor	ris (brick, glass) to 10-15% by		BC=2 0 1	10"								
-6190	15			LAYSTONE: brownish red, highl eak, iron oxide staining, calcare			BC=1 0 1 BC=10 14 22	10"								
)		b	he boring was terminated at app elow ground surface. The borin fith grout on July 11, 2018.	proximately 21.5 ft. g was backfilled			5		com <u>GEN</u> The	etion.	NOTE	<u>S:</u>			n were surveyed by
	and the second se						.: 20191069 MAT			BC	RIN	GLC)G B	-25		BORIN
	¥	<l< td=""><td></td><td>TINFELDE Bright People. Right Solu</td><td></td><td>D BY</td><td></td><td>-</td><td>Mes Mes</td><td>a Valk a Valk C</td><td>ey Lan Iy Lan olorad</td><td>dfill (V</td><td>Vaterr</td><td>man p</td><td>2018 project</td><td>t)</td></l<>		TINFELDE Bright People. Right Solu		D BY		-	Mes Mes	a Valk a Valk C	ey Lan Iy Lan olorad	dfill (V	Vaterr	man p	2018 project	t)
1					REVISEL	<i></i>		1							=IG	PAGE:

Date Beg	in - E	ind: 7/11/2018	Drilling Com	залу		Labora	tories,	Inc.						BORING LOG B-2
Logged E	šy:	B. Lykins	Drill Crew:		<u>N</u> , N					-		_		
HorVert	. Dat		Drilling Equip						Ha	mme	г Туре	3 - Dr	op: <u>1</u>	40 lb. Auto - 30 in.
Plunge:		-90 degrees	Drilling Meth			Stem .	Auger							
Weather:		Clear, 85° F	Exploration 0)iam	eter: 4 in.	<u>0.D.</u>							·····	
		FIELD	EXPLORATION		Ŧ		ļ,	LAB	ORAT		ESUL			METHANE MONITORI WELL CONSTRUCTION
Elevation (feet) Depth (feet)	Graphical Log	Northing: 377348; Easting: 188328. Surveyed Ground Surface Eleva Surface Condition: Thick grasses	7920 ation (ft.): 6,202.81 , weeds, and shrubs	Sample Type	Błow Cou⊓ts(BC)≓ Unccrr. Błows/6 m.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Đry Unit Wt. (pơf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	+ "SCH 40 Solid PVC Riser
6200 - 		Lithologic Descri Silty SAND: fine-grained sand, ik moist, loose, roots to 4", no debr GLAYSTONE: dark grey to reddi: moderately weathered, very wea	w plasticity, brown, is sh brown, k	80	BC≖16 25 35 BC≖15 26	18"	2 S C	5000	0	a .	G.			Grout Silica Sand 1" SCH 40 Slotted 0.010 PVC Screen
-6190 - -15-		The boring was terminated at ap below ground surface. "Monitori depth of 15".	proximately 11,5 ft. ng Well installed to a		32		1	Groun compl <u>GENE</u> The e	idwatei letion. ERAL N	r was r IOTES ion loc	not obs	erved	_	DN: trilling or after
~6185 20-														
-6180					. 2040400									BORING
(K		EINFELDI Bright People. Right Sol		θY:	: 2019106 MA		Mesa Mesa	a Valle Valle	y Land	dfill In Ifill (M	vestig /atern	ation	2018 roject)	B-26
			REVISED											í

FIGURE 2


Date	Beg	iłn - E	ind:	7/10/	2018				Dri	illing Co	ompa	ny:	Vin	e Labo	rator	ies,	Inc.						BC	RING LOG	8-27
Logg	ed E	3y:		J. Bro	CW/I				Dri	II Crew	:		<u>S. 1</u>	Nright					,						
Hor'	Vert	. Dat	um:	Not A	vailab	oie			Dri	illing Ec	ulpn	ent	CM	E-850				Ha	mme	т Тур	e • Dr	ар: _	140 lb.	Auto - 30 in	
Plung	ge:			-90 d	egree	s			Dr	illing M	ethod	:	Sol	id Ster	n Au	ger									
Weat	her			Sunn	y, Cle	ar			Ex	ploratio	n Dia	met	er: 4 ir	. O.D.											
							FIE	ELD ÉX	PLOF	ATION									Ļ٨	BORA	TORY	RES	JLTS		
Elevation (feet)	Depth (feet)	Graphical Log	s	Surveye urface C	E: Grour	asting: sd Surf	: 1885 face E	04.3950 18.6980 levation ises. we) 1 (ft.): 6	,217.88 nd shrubs		Sample Type	Blow Counts(BC)∺ Uncorr. Blows/6 in.	Recovery	<pre><=N0 Kecovery)</pre>	Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		Additional Tests/ Remarks	
μ E E E E E E	Dep D	6 E			Lith	nologi	ic De	scriptio	n n		-	Sar	Blow	Rec		ŝŝ	So So So	ĥ	Pai	5 G	Ľid	đŽ		Re	
6215	-			SAND: t, very k						ity, brown															
			CLA	YSTON	E: dark	grey	to ree	ddish t	mown,	highly															
	5-			hered, v								E	C≐15 36 48	N	2										
6210	-																					-			
	-										1														
6205	10-		belo	bozing v v groun grout ol	d surf	ace,	The t	t appro boring v	vimat vas ba	ely 10.7 fi ackfilled	<u>.</u>	I.	iC=45 50/2*		₹		comp GENE The e	etion. RAL N	IOTES	<u>s:</u>			ION: drilling were su	or after inveyed by	
	15-	.h																							
-6200																									
	20-																								
-6195																									
/										PROJ			201910 M	69 AP	·		BO	RIN	GLO	G B	-27			BORI	NG
(K	۲ <u>ل</u>		IN ight P						CHEC	KED 8				N	lesa iesa	a Valle I Valle Co	/ Land	dfill In Ifill (M Spri	Vatern	nan p	2018 roject)	B-2	27
										REVIS														PAGE:	1 of 1


Weeter: Clear, 85° Exploration Diameter 4 in O.D. 1 File DEVOLUTION Laboration View 1000000000000000000000000000000000000	Date Beg	ļin - E	nd: 7/11/2018	Drilling Company: Vine Laboratories, Inc.											BORING LOG B-2
Pringe:	Logged E	3y:	B. Lykins	Drill Crew: S. Wright							i,				
Supportion Diameter (4 m, O.D. LaborArtOXY FEDULTS Burgeton Start LaborArtOXY FEDULTS LaborArtOXY FEDULTS LaborArtExpection LaborArtExpection LaborArtExpection LaborArtExpection LaborArtoX	HorVert	. Dat	um: Not Available	Dritting Equip	men	t: <u>CME</u>	-750			Ha	mmei	г Туре	- Dr	op: _	140 lb. Auto - 30 in.
PIELD POPUDATION LADRAYOPY RESULTS 1000000000000000000000000000000000000	Plunge:		-90 degrees	Drilling Methe	od:	Solid	Stem /	Auger							
Non-Next 1727/03/000 Execution The game is an execution by the control that a fail of the platform of the platform of the platform of the control that a fail of the control that a fail of the platform of the control that a fail of the control that a fail of the platform of the control that a fail of the control the control the c	Weather:	:		Exploration D	iame	eter: 4 in.	0.D.								
Subje SAND the paralited sand, low plasticity, brown, dry, no debra, no odor CLAYSTONE date gray to reddish brown, highly CLAYSTONE date gray to r			FIELD F	EXPLORATION							LA	BORA	TORY	RESL	JLTS
Subje SAND the paralited sand, low plasticity, brown, dry, no debra, no odor CLAYSTONE date gray to reddish brown, highly CLAYSTONE date gray to r	veyed vation (feet) oth (feet)	aphical Log	Easting: 188349.68 Surveyed Ground Surface Elevatio	40 an (ff.): 6,201.97	mple Type	w Counts(BC)≖ xirr, Blovis/6 in.	covery R=No Recovery)	sCS mbol	ater intent (%)	y Unit Wt. (pcf)	tssing #4 (%)	assing #200 (%)	guid Limit	asticity index P=NonPlastic)	Iditional Tests/ emarks
Cool of y, no debris, in order dey, no debris, order dey, no debris, order dey, no debris, order dey, no debris, order dey, no debris, order dey, no debris, order dey, no debris, order dey, no debris, order dey, no debris, order dey		Gra	Lithologic Descript	tion	Sai	Une	P. R.	US Syr	∛ខ	ą	đ	6 B	Ë.	d V	ÅÅ Rede
CLAYS INCHE OUR year of because block in myny CLAYS INCHE OUR year of because block in myny CLAYS INCHE OUR year of because block in myny CLAYS INCHE OUR year of because block in myny CLAYS INCHE OUR Year of because block in myny CLAYS INCHE OUR YEAR OF BLOCK INCHEMANNES - with iron code staining The boring was ferminated at approximately 11.5 ft. block year of block in the boring was because block in the boring was block in the bori	- -6200 -			plasticity, brown,							-				
	5			brown, highly		20	18"								
	-6195 -														
															1
													-	1	
-6190 The boring was terminated at approximately 11.5 ft. below ground surface. The boring was backfilled with grout on July 11, 2018. Groundwater was not observed during drilling or after completion. GENERAL NOTES The exploration location and elevation were surveyed by Ridgeline Survey.	10-		- with iron oxide staining			17	18"								
Conditionate as a top for a the provide at the provide at top for a the provide at top for a the provide at top for a the provide at the				1 6		18	<u> </u>	<u> </u>		<u> </u>	<u> </u>		 1	1	ļ
-6185 -6180 -6 8 -6 8 -6 8 -6 8 -6 8 -6 8 -6 8 -6	-6190 ·		below ground surface. The boring	roximately 11.5 ft. 9 was backfilled					Grour compl GENE The e	idwater letion. <u>RAL N</u> xplorat	i was i IOTES	not obs	served	during	drilling or after
-6180 -6180 -6180 	· 15-														
-6180 -6	-6185														
-6180 -6		-													
-6180 -6	-	ł													
PROJECT NO.: 20191069 BORING LOG B-28 BORING KLEINFELDER DRAWN BY: MAP Mesa Valley Landfill Investigation 2018 B-28 Bright People, Right Solutions. DATE: Mesa Valley Landfill (Waterman project) B-28	- 20-														
PROJECT NO.: 20191069 BORING LOG B-28 BORING KLEINFELDER DRAWN BY: MAP Mesa Valley Landfill Investigation 2018 B-28 Bright People, Right Solutions. DATE: Mesa Valley Landfill (Waterman project) B-28	-	-													
KLEINFELDER DRAWN BY: MAP Bright People, Right Solutions. CHECKED BY: Mesa Valley Landfill Investigation 2018 DATE: Colorado Springs, CO Colorado Springs, CO	6180	4													
KLEINFELDER DRAWN BY: MAP Bright People. Right Solutions. CHECKED BY: Mesa Valley Landfill Investigation 2018 DATE: Colorado Springs, CO Colorado Springs, CO	•														
KLEINFELDER DRAWN BY: MAP Bright People, Right Solutions. CHECKED BY: Mesa Valley Landfill Investigation 2018 DATE: Colorado Springs, CO Colorado Springs, CO	.				1 NΩ ·	20191069	, 				~ : ~				BORING
Bright People, Right Solutions. DATE: DATE: Colorado Springs, CO									BU	ALC: N	יננ	ло В	-20		
Colorado Springs, CO	1	<l< td=""><td></td><td>eta ma</td><td>) BY:</td><td></td><td></td><td>Mes Mesa</td><td colspan="5">sa Valley Landfill Investigation 2018 sa Valley Landfill (Waterman project)</td><td>B-28</td></l<>		eta ma) BY:			Mes Mesa	sa Valley Landfill Investigation 2018 sa Valley Landfill (Waterman project)					B-28	
		_	/		i:				Co	olorado	o Spri	ngs, (່ວວ		

Logged By:	nd: B. Lykins	Drilling Compar Drill Crew:		oratories, Inc.				BORING LOG E					
Hor,-Vert, Dat		Drilling Equipm		Wright						ammer Type - Drop: 140 lb. Auto - 30			
Plunge:	-90 degrees	Drilling Method:		d Stem								40 ID. AURO - 30 II	
Weather:	Clear, 85° F	Exploration Dia			Auger		-						
weather:		PLORATION	meter: 4 If	. 0.0.	OPATO	BY RE	RESULTS METHANE MON						
												WELL CONSTRU	
Surveyed Elevation (feet) Depth (feet) Graphical Log	Northing: 377204.6970 Easting: 188372.6060 Surveyed Ground Surface Etevation Surface Condition: Thick grasses, we Lithologic Descriptio	(ft.): 6.202.10 eds, and shrubs	Satriphe 1ype Blow Counts(8C)= Uncorr. Blows/6 m.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP≍NonPlastic)	YCH 40 PVC Riser	
-6200 -	Silty SAND: fine-grained sand, low p dry, loose, no debris, no odor CLAYSTONE: dark grey, highly weath weak		BC=4 8	12*								- Grout	
6195	Weak		10									T SCH 40 Siothed 0.01 PVC Screet	
-6190	 with iron oxide staining, catcareous The boring was terminated at approx below ground surface. "Monitoring V depth of 15'. 	imately 11,5 ft,	8C=11 16 18			Groun Comple GENE The ex	etion. RAL NC	vas not) <u>TES:</u> n locatio	obsei	rved di	uring d		
-6185 -													
-6180 -		PROJECT NO. DRAWN BY:	.: 2019106 MA			BOf	RING	LOG	B-2	9		BORI	
			n.e. (1										

Date Beg		******	_ Drilling Com	pany	21.200111	Labora	nories,	InC.						BORING LOG
Logged E		B. Lykins	Drill Crew:		<u>S. W</u>	-			11.	Hammer Type - Drop: 140 lb, Auto - 30 in.				
HorVert	. Dat		_ Drilling Equi						Ha	mme	r Type	e - Dr	op: _	<u>140 lb, Auto - 30 in.</u>
Plunge:		-90 degrees	Drilling Meth			Stem	Auger							
Weather:		_Clear, 82° F	Exploration I	Dlam	leter: 4 in.	0.D.								
		FIEL	DEXPLORATION					¥		LA	BORA	TOR	Y RESL	JLTS
Surveyed Elevation (feet) Depth (feet)	Graphical Log	Northing: 377607 Easting: 187805 Surveyed Ground Surface Eta Surface Condition: Thick grasse	.0570 /ation (ft.): 6,220.91	L Sample Type	Blow Counts(SC)≓ Uncorr, Blows/6 In.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
	õ	Lithologic Desc	ription	Sar	No No No No	Rec	Syr	ŠÕ	D,Y	ц ц	Pa	Lig	eld av	Add Re
6220		Silty SAND: fine-grained sand, I dry, loose, roots to 3", no debris												
5-	***	CLAYSTONE: dark grey to redd	sh brown, highly		BC=8									
6215		weathered, extremely weak, iror calcareous nodules			12 15					,				
10		- moderatejy weathered, very wa	aak below 10 feet		BC≠12 18 25	101 - 111 - 11 - 11 - 11 - 11 - 11 - 11								
-6205		SHALE: dark grey, moderately v hard, no debris	veathered, very		BC=15 26 50/6*	union contractive procession way the second statements of the								Hard drilling at 16 feet
-6200					BC=26 50/5*									,
- - -		The boring was terminated at a below ground surface. The bori with grout on July 09, 2018.						Comple GENE The ex	etion. RAL N	OTES on loci				ION: drilling or after were surveyed by
					20191069			BO	BORING LO			30		BORIN
(K	L	EINFELDI Bright People. Right Soli	utions. DATE:		MAP		Mesa Mesa	Valley Valley Col	Land Landf orado	ii∦ (Wa	aterm	an pr	2018 oject)	B-30
			REVISED:		-	1								PAGE: 1

Date Be	-	End:	7/09/2018	Drilling Com	рапу		Labora	tories,	Inc.						B	Oring Log B	
Logged	-		B. Lykins	Drill Crew:		<u>S. W</u>	-			Hammer Type - Drop:					440 K 4.4. 00 k		
HorVe		um:	WGS 1984 - Not Available	Drilling Equi				A		Ha	im me	г тур	e - Dr	ល្ងរ:	140 ID.	Auto - 30 In.	
Plunge:			-90 degrees	Drilling Meth			Stern .	Auger									
Weathe	r:		Clear, 84° F	Exploration E	лат	eter: 4 in.	U.D.	1		00.47							
		<u> </u>	FIELD EXP	LORATION		[1		LAB	ORAT	ORY H	1	rs T	r		HANE MONITO	
Surveyed Elevation (feet) Depth (feet)	Graphical Log		Northing: 377444.0160 Easting: 187795.9900 Surveyed Ground Surface Elevation (f Surface Condition: Thick grasses, wee	1.): 6,215.52 3s, and shrubs	Sample Type	Blow Counts(BC)= Uncorr Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	•	— 1" SCH 40 Sol	
	Gra		Lithologic Description	I	San	Blow Chick	Rec	Syn US(Cor Val	Dη	Pas	Pas	Ę	ere d'A		PVC Riser	
6215			/ SAND (SM): fine-grained sand, k vn, dry, loose, roots to 3", no debri				6"									— Grout	
6210 ⁵		Lea	n CLAY (CL): medium plasticity, li	ght grey,		BC≈8	18"						ļ			— Şilica Send	
	Y	mois	st, stiff, no debris			14 16											
10-						22.40										1" SCH 40 Slotted 0,010 PVC Screen	
6205	-		YSTONE: medium to high plastick st, very stiff	ty, grey,		BC=13 20	18"										
													ł		Ų		
												ŀ					
15- 6200		- da	rk grey			BC≈20	18"					[[ł		<u></u>		
			u ·)			36 40						ĺ			1.1.1		
							}		Ē								
6195 ²⁰⁻		- wit	h iron oxide staining			6C≠10	18"						ŀ				
	-					18 18	<u>-</u>	ł					[
	-								ļ				l				
6190 25·						BC≓12 24	18"									— Grout	
						25						l					
	-											}					
20																	
6185	ĮĮĮ	- wit	h calcareous nodules			8C=19 30	18"										
	-					36	1		1								
35				atoly.		BC=40							1		4		
6180	F	<u> </u>	NLE: dark bluish grey, hard, moder thered	arely	┣	BC≈40 \50/5"	11"	1	1		l	l				I	
40 [.] 6175	T T T T T T T T T T T T T T T T T T T	beio	boring was terminated at approxi w ground surface. *Monitoring W th of 15'.						Groun comple <u>GENE</u> The ex Ridgel An iPa	etion. <u>RAL Ni</u> plorati ine Sur	was n OTES on loci rvey. rated (iot obs ation a GPS u	erved ind ele	during vation	drilling were s	or after urveyed by te the exploratio	
	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PROJECT	PROJECT NO.: 20191069				BOI	RING		G B-3	31			BORING	
				DRAWN B	Y:	MAP											
K	KLEINFELDER							hlees	\/a¥=-						B-31		
ц т. Ц	Delete Deeple Dight Colutions			1				iviesa Mesa	a Valley Landfill Investigation 2018 a Valley Landfill (Waterman project)								
		/		REVISED:			Colorado S			prado Springs, CO							
-				LEVISED:	FIGU					PAGE: 1 c							

Date Begin - End: 7/12/2018			Drilling Co				Laboratories, Inc.				BORING LOG				
Logged By		B. Lykins	Drill Crew:		_S. W					Hammer Type - Drop: 140 lb. Auto - 30 in.					
HorVert.	Dat		_ Drilling Eq	•					Ha	me	г Тур	e - Di	rop:	140 lb	. Auto - 30 in
Plunge:		-90 degrees	Drilling Me			Stem.	Auger								
Weather:	1	Overcast, 66° F	Exploration	n Dian	neter: 4 in.	<u>O.D.</u>	Ŧ							1	
	-	FIEL(EXPLORATION		.	1	<u> </u>	LAB	ORAT	ORY F		T\$ T	1		GROUNDWA ONITORING
Surveyed Elevation (feet) Depth (feet)	Graphical Log	Northing: 376999 Easting. 188129; Surveyed Ground Surface Elev Surface Condition: Thick grasse:	3640 ation (ft.): 6,185.68	Sample Type	Blow Counts(BC)≍ Uncorr. Blows/6 .ir.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		CONSTRUCT Completion Meth Jush mount cap oncrete
	ő	Lithologic Descr	iption	Sar	LINCO	Rec Rec	Syn	S Va	ĥ	Pas	Pas	Ē.	a d		
-6185 _		FILL Silty SAND: fine sand, low plasti loose, roots to 4 ^e , no debris	city, brown, maist,												
-6180 5- 		FILL SAND with Clay: fine to medium brown, moist, very soft, debris (v 20% by volume		•	BC=2 1 3										
-6175 -					8C=t 1 2	-									
-6170 - -6170 - -		- with debris (concrete chunks to	1.5" diameter)		BC≍3 5 5										
6165 20-					BC=2 2 6										← Bentonite Cl 2" SCH 40 S PVC Riser
6160 25		FILL Lean CLAY: dark grey to black, r debris (metal scraps, wood chip 1.5" dismeter cleas shards) to 1	s, concrete chunks t	10	8C=5 5 6										
-6155		1.5" diameter, glass shards) to :	20% by volumé		BC=4 3 3										
-6150 -															
-6145 -					BC=7 3 20										
-6140		CLAYSTONE: dark grey, highly v iron oxide staining	veathered, weak,		BC=4 6 11										Silica Sand 2" SCH 40 Slotted 0.014 PVC Screen
6135 50		- moderately weathered			BC≈8 14 23 /										
-6130 -		The boring was terminated at ap below ground surface. "Monitori depth of 51.5".	, ,	а			포	Groun surfac <u>GENE</u> The ex	e durin RAL N	was o g drillin OTES: on loca	bserve ng.	id at a	pproxi	mately	23 ft. below gr urveyed by
			DRAWN		20191069 MAP			BOR	ING	LOG	GN	/-2			BORIN
		EINFELDE Bright People. Right Solu					Mesa Mesa	Valley	Landi Landf orado	ill (Wa	sterm	an pro	2018 oject)		GW-
						L						-	-1-		PAGE:

Date Begin - End: 7/12/2018 Logged By: B. Lykins							Vine Laboratories, Inc.								BO	RING LOG
	-	•	B. Lykins	Drill Crew:			Vright					-				
		rt. Da	WARDEN PROTOCOLOGICAL CONTRACTOR CONTRA	Drilling Equ	•		<u>E-750</u>			Ha	imme	rtyp	e - UI	rop:	140 lb.	Auto - 30 ir
Plun	-		-90 degrees	Drilling Met			ow Ster	n Auge	¥							
Wea	the	r: T	Clear, 80° F	Exploration	Dian	neter: 4 in	0.D.	1	<u></u>							
			FIELD	EXPLORATION		T		<u> </u>		IORATI	ORY F	1	TS	·	M	ROUNDWA
Surveyed Elevation (feet)	Depth (feet)	Graphical Log	Northing: 376987,5 Easting: 188389,2 Surveyed Ground Surface Eleval Surface Condition: Thick grasses,	310 ion (ft.): 6,191.33	Sample Type	Blow Courts(BC)≓ Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	assing #200 (%)	Eiquid Limit	Plasticity Index (NP=NonPlastic)	C G FI K	ONSTRUCT ompletion Methoush mount cap uncrete
n E E	Ğ	g	Lithologic Descrip	otion	San	Clace	Rec	Syn	S Mar	ĥ	Pas	Pas	, iqu	Pla:		
	5-		FILL Sitty SAND: fine sand, low plastic loose, roots to approximately 4", r					-								— Concrete
- 6185 - -	_		FILL Lean CLAY: medium plasticity, re molst, soft, debris (wood chips, gl 15% by volume			8C=3 5 3	л									Bentonite Ch
- 6180 - -	10-		- odor			8C=3 10 15										2" SCH 40 S PVC Riser
- 6175 -	15-		- with debris (trace metal scraps)			BC#3 5 6										
- - 6170 -	20-		FILL Fat CLAY: high plasticity, dark bro iron oxide staining	own, moist, soft,		BC≠1 3 3										
- - 6165 - - ∑	25-		- with debris (wood chips) to 5% t	oy volume		BC=2 2 6						97-947				Silica Şənd
- + - -6160 - -	30-		CLAYSTONE: reddish brown, hig very weak, Iron oxide staining	ly weathered,		BC=2 3 6										- 2" SCH 40 Stotted 0.010 PVC Screen
- 6155	35-	_	SHALE: dark bluish grey, modera \ weak	tely weathered,	_ \	BC=28 50/6"		1				<u></u>				
- - - 6150 -	40-		The boring was terminated at app below ground surface. *Montorin depth of 36.5'.		\$			Ā	Groun surfac <u>GENE</u> The e	dwater e durin RAL N	was o g drilli OTES on loci	bserve ng.	ed at a		nately 2	9 ft. below gn Irveyed by
				DRAWN	BY:	20191069 MAF			BOF	RING	LOG	G GV	V-3			BORIN
•			EINFELDE Bright People. Right Solut	1				Mesa Mesa	Valley Valiey Col	r Land Landf orado	iil (W	aterm	an pr	2018 oject)		GW-
				I												RE 2

Form No. GWS-31 02/2017	1313			For	Office Use O	inly		
					keystate.testas	-		
	t Number: 58184-A ell Designation: GV		Receipt I	Number:		-		
	Name: MVS Devel					-		
	on Street Address		Albauquerg	NA NA 8712	5	-		
	S Well Location (re					77815.3310		
					N or S , Range		w 🗖.	P.M.
County: _					, Lot, Block			
1.0.00.000.000.000.000					12/2018 Drilling Meth	-		
	Aquifer Name : _	17.44 10				th Completed:		feet
9. Advance No	tification: Was N	otification Reg			n? Yes No, Date N			
10. Aquifer Ty		One Confining			(Multiple Confining Layers)		ox Hills	
(Check on	=	(Not overlain b			(Overlain by Type III)	Type III (a		vial)
11. Geologic				- //	12. Hole Diameter (in.)			To (ft)
Depth	Туре	Grain Size	Color	Water Loc.	4	0)	46.5
0' - 4.5'	SAND	FINE	BROWN					
4.5' - 45'	CLAY	CLAY	BROWN	31'				
45' - 46.5'	CLAYSTONE	CLAY	LT BROWN		13. Plain Casing OD (in) Kind	Wall Size (in)	From (ft)	To (ft)
					2.375 PVC	.375	0	36.5
-					Perforated Casing Scr	een Slot Size (i	n): 0.010	
						Wall Size (in)	From (ft)	To (ft)
					2.375 PVC	.375	36.5	46.5
					14. Filter Pack:		er Placemer	nt:
					Material Silica Sand	Type	N/A	
					Size 10/20		N/A	
					Interval 23.5' - 46.5'	Depth		
					16. Grouting Record	Dentity	Interval	Method
Demostra					Material Amount Bentonite Chips 20	4 bags	2' - 22'	gravity
Remarks:						2	0 - 3.5	gravity
					Cement Mix 3.5	-	0.3.3	granty
17 Disinfacti	ion: Type N/A				Amt. Used None			
	Estimate Data:		Check be	ox if Test Da	ta is submitted on Form Nu	mber GWS-39.	Well Yield T	est Report
	Estimate Method:							
Static Leve				Estimated `	Yield (gpm)			
	e measured:				ength (hrs)			
Remarks:	measureu.							
19. I have read filing online) and statements is a v	certified in accordan	ce with Rule 17.4 91 108(1)(e), C.R	of the Water We LS., and is punis	ell Constructio hable by fines	r are true to my knowledge. Thi in Rules, 2 CCR 402 2. The filing up to \$1,000 and/or revocation ance with Rule 17.4.	g of a document ti	hat contains fa	alse
Company Nam			Email:		Phone w/are		License Nu	mber:
Kleinfelder, In			jkwhite⊛kle	infelder.con	n (719)	632-3593	50163	
Mailing Addres	55:							
Sign (or enter	name if filing onlir	ne)	Print Nam	ne and Title			Date:	

GWS-31 02/2017

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see online form submittal instructions at <u>http://water.state.co.us/groundwater/wellpermit/onlineformsubmittal/Pages/DWRSite1.aspx</u> You may also save, print and email the completed form to: <u>dwrpermitsonline@state.co.us</u>

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- 2. Provide the identification (owner's well designation) for the well.
- 3. Fill in well owner name.
- 4. Provide the street address where the well is located.
- 5. Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- Indicate the aguifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See http://water.state.co.us/groundwater/BOE/Pages/VariancesWaivers.aspx for more information on Notifications.
- 10. Check the box indicating the type aquifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples
 of descriptive terms include:

Type - sandstone, sand, etc. Grain size - Boulders, gravel, sand, silt, clay, etc. Color - Denote for all materials, most critical in sedimentary rock Water Location - Depth where water is encountered (if it can be determined)

- 12. Provide the diameters of the drilled borehole.
- The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- 18. Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.

Rule 17.4 Certification - Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us

IF YOU HAVE ANY QUESTIONS regarding any item on this form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to our web site at www.water.state.co.us for general information, forms, online filing instructions and access to state rules and statutes.

Form No. GWS-31		VELL CONSTRU State of Colo Sherman St., Ro	rado, Office	of the State	Engineer	581	Fo	r Office Use (Dnly
02/2017		w.water.state.c							
1. Well Permit	t Number: 58184-A	лн	Receipt	Number:			_		
	ell Designation: GV								
3. Well Owner	r Name: MVS Devel	opment, LLC							
	on Street Address						-		
	S Well Location (re						376999.3950		
6. Legal Well	Location: 1	/4, 1/4,	Sec.,	_Twp	N or S	, Range	E c	vr W 🗖, 🔄	P.M.
County:					, Lot	_, Block _	, Fil	ing (Unit)	
	face Elevation: 61	85.68 fee			/12/2018 51.5 f	-	thod: <u>Hollow S</u> opth Completed		feet
	Aquifer Name :	atification Requ						And the second sec	feet
10. Aquifer Ty		One Confining L			(Multiple Cont				010
(Check on		(Not overlain by			(Overlain by			(alluvial/coll	(leivi
11. Geologic		(not orter tail of	1)pc iii)		12. Hole Di			m (ft)	To (ft)
Depth	Type	Grain Size	Color	Water Loc		4	,	0	51.5
0' - 4'	SAND	FINE - MED	BROWN						
4' - 25'	SAND W/ CLAY	FINE - MED	BROWN	23'					
25' - 45'	CLAY	CLAY	GREY		13. Plain Ca	asing			
45' - 51.5'	CLAYSTONE	CLAY	GREY		OD (in) 2.375	Kind	Wall Size (in) .375	From (ft) 0	To (ft) 41.5
							.375	0	41.5
							creen Slot Size		T- 160
					OD (in) 2.375	Kind PVC	Wall Size (in) .375	From (ft) 41.5	To (ft) 51.5
					14. Filter P			ker Placemer	nt:
					Material	Silica Sand	Type	N/A	
				-	Size	10/20		N/A	
					Interval	35.5 - 51.5	5' Depth		
					16. Groutin			· · · ·	
December 1					Material	Amount	Density	Interval	Method
Remarks:					Bentonite Chip Cement Mix		5 bags	2' - 35' 0' - 2.5'	gravity gravity
17 Disinfasti	ent Tune N/4				Amt Hea	d Mana			
17. Disinfecti 18. Well Yield	Estimate Data:		Check h	ov if Tort Da	Amt. Use		lumber GWS-39	Well Viold 7	act Papart
	Estimate Method:		Clieck D	ox ii rest ba	ita is submitte	o on Form N	under Gw3-39	, well field i	est Report
				Estimated	Yield (gpm)	-			
Static Leve									
	measured:			Estimate D	ength (hrs)				
Remarks:									
	the statements made certified in accordance								
statements is a v	iolation of section 37 er considers the entry	91 108(1)(e), C.R.S	., and is punis	hable by fines	up to \$1,000 and	d/or revocatio			
Company Name			Email:			Phone w/ar		License Nu	mber:
Kleinfelder, In			jkwhite⊗kle	infelder.con	n	(719)	632-3593	50163	
Mailing Addres									
Sign (or enter i	name if filing onlin	e)	Print Nan	ne and Title				Date:	

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see online form submittal instructions at <u>http://water.state.co.us/groundwater/wellpermit/onlineformsubmittal/Pages/DWRSite1.aspx</u> You may also save, print and email the completed form to: <u>dwrpermitsonline@state.co.us</u>

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- 2. Provide the identification (owner's well designation) for the well.
- Fill in well owner name.
- 4. Provide the street address where the well is located.
- Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- 6. Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- Indicate the aquifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See http://water.state.co.us/groundwater/BOE/Pages/VariancesWaivers.aspx for more information on Notifications.
- Check the box indicating the type aquifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples
 of descriptive terms include:

Type - sandstone, sand, etc. Grain size - Boulders, gravel, sand, silt, clay, etc. Color - Denote for all materials, most critical in sedimentary rock Water Location - Depth where water is encountered (if it can be determined)

- 12. Provide the diameters of the drilled borehole.
- The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.

Rule 17.4 Certification - Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us

IF YOU HAVE ANY QUESTIONS regarding any item on this form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to our web site at www.water.state.co.us for general information, forms, online filing instructions and access to state rules and statutes.

Form No. GWS-31 02/2017 1. Well Permit	1313 :	State of Col Sherman St., F w.water.state		of the State ver, CO 8020 permitsonli				For Office Use (Only
	I Designation: GW						1.1		
	Name: MVS Develo								
4. Well Locati	on Street Address:	P.O. Box 275	60 Albauquerqu	Je, NM 8712	5				
5. As Built GPS	S Well Location (re	quired): 🗖 Z	one 12 💽 Zor	e 13 Eastir	ng: 188389.2 Nor		376987.5920		
6. Legal Well I	Location: 1/	4, 1/4	, Sec.,	Twp	N or S , R	Range	Ε	or W 🔲, 🔤	P.M.
County:					, Lot, B	Block —	,	Filing (Unit)	
7. Ground Sur	face Elevation: 61	91.33 fe	et Date Com	pleted: 07	/12/2018 Drill	ing Met	hod: Solid S	tem Auger	
	Aquifer Name : _				36.5 feet		pth Complet		feet
9. Advance No	otification: Was No	tification Rec	uired Prior to (Construction	n? 💽 Yes 🗌 No,	Date N			018
10. Aquifer Ty	/pe: Typel(One Confining	Layer)		(Multiple Confining		-	ie-Fox Hills	
(Check on	e) Type II	(Not overlain l	by Type III)	Type II	(Overlain by Type	III)		II (alluvial/coll	
11. Geologic	Log:				12. Hole Diamet	ter (in.)) F	rom (ft)	To (ft)
Depth	Type	Grain Size	Color	Water Loc	. 4			0	36.5
0' - 5'	SAND	FINE	BROWN						
5' - 19.5'	LEAN CLAY	CLAY	BROWN						
19.5' - 29'	FAT CLAY	CLAY	DRK BROWN	29'	13. Plain Casing		Wall Cine fie	Error (ft)	To (ft)
29' - 35'	CLAYSTONE	CLAY	RED-BROWN		OD (in) K 2.375	Gind	Wall Size (ir .375	n) From (ft) 0	26.5
35' - 36'	SHALE		DRK GREY		2.3/3		.373	0	2019
			-						
	-								
					Perforated Ca	sing c.	reen Clet Cia	(in): 0.010	
							Wall Size (in		To (ft)
						PVC	.375	26.5	36.5
					14. Filter Pack:		15. Pa	acker Placeme	nt:
					Material Sili	ica Sand	Туре		
					_	10/20			
						.5' - 36'	Depti	h	-
					16. Grouting Red		1000		
					-	nount	Density	Interval	Method
Remarks:					Bentonite Chips	10	2	2 - 12	gravity
					Cement Mix	ĩ	1	0' - Z	gravity
					Arrt Hand M				
	ion: Type N/A		Check by	wif Tort Do	Amt. Used N/ ata is submitted on		umbor CWS	20 Woll Vield	Tort Report
	Estimate Data:		Check bo	ox ir rest Da	tta is submitted on	FOILIN	uniber GW3-	57, melt field	rest neport
Static Leve	Estimate Method:			Estimated	Yield (gpm)				
					ength (hrs)				
	e measured:			Estimate D	engui (nis)				
Remarks:							to do como de la	alored for some	entered of
filing online) and	the statements made certified in accordan	e with Rule 17.	4 of the Water We	Il Constructio	on Rules, 2 CCR 402 2.	The filin	ng of a docume	ent that contains I	false
statements is a v	violation of section 37 er considers the entry	91 108(1)(e), C.I	R.S., and is punish contractor's name	to be compli	up to \$1,000 and/or r ance with Rule 17.4	revocation	n of the contra	cting license. If i	riting online
		or the needsed v		to be compe					
Company Nam			Email: jkwhite@klei	infolder cor			ea code: 632-3593	License No 50163	umber:
Kleinfelder, I			JAWINGGREE	metoer.cor		(714)	032-3343	50105	
Mailing Addres			In com					Data	
sign (or enter	name if filing onlin	e)	Print Nam	e and Title				Date:	

GWS-31 02/2017

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see online form submittal instructions at <u>http://water.state.co.us/groundwater/wellpermit/onlineformsubmittal/Pages/DWRSite1.aspx</u> You may also save, print and email the completed form to: <u>dwrpermitsonline@state.co.us</u>

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- 2. Provide the identification (owner's well designation) for the well.
- 3. Fill in well owner name.
- 4. Provide the street address where the well is located.
- Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- 6. Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- Indicate the aguifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See http://water.state.co.us/groundwater/BOE/Pages/VariancesWaivers.aspx for more information on Notifications.
- 10. Check the box indicating the type aquifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples
 of descriptive terms include:

Type - sandstone, sand, etc. Grain size - Boulders, gravel, sand, silt, clay, etc. Color - Denote for all materials, most critical in sedimentary rock Water Location - Depth where water is encountered (if it can be determined)

- 12. Provide the diameters of the drilled borehole.
- The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- 18. Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.

Rule 17.4 Certification - Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us

IF YOU HAVE ANY QUESTIONS regarding any item on this form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to our web site at www.water.state.co.us for general information, forms, online filing instructions and access to state rules and statutes.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

August 13, 2018

Brad Woodard Kleinfelder 1801 California Street, Suite 100 Denver, CO 80202

RE: Mesa Valley Landfill / 20191069

Dear Brad:

Enclosed are the results of the samples submitted to our laboratory on July 30, 2018. For your reference, these analyses have been assigned our service request number P1803928.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

1 12:44 per 08/13/11

Kate Kaneko Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

Client: Kleinfelder Project: Mesa Valley Landfill / 20191069 Service Request No: P1803928

CASE NARRATIVE

The samples were received intact under chain of custody on July 30, 2018 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Methane Analysis

The samples were analyzed for methane according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This procedure is described in laboratory SOP VOA-EPA3C. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	http://dec.alaska.gov/eh/lab.aspx	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	http://www.deq.louisiana.gov/page/la-lab-accreditation	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtml	2016036
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	1347317
New Jersey DEP (NELAP)	http://www.nj.gov/dep/enforcement/oqa.html	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-005
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 18-9
Utah DOH (NELAP)	http://health.utah.gov/lab/lab_cert_env	CA01627201 7-8
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

Client:	Kleinfelder							Service Request: P1803928
Project ID:	Mesa Valley La	andfill / <mark>2</mark> 0	191069					
m	5 120/2010							Can
Date Received:	7/30/2018							35.55
Time Received:	09:15							C B
								<u>č</u>
								Modified
			Date	Time	Container	Pil	Pft	
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	3C
SG-1	P1803928-001	Air	7/25/2018	12:33	SC01533	-2.92	3.71	X
\$0.2	P1803928-002	Air	7/25/2018	12.45	SC00182	-9 9Q	9.65	
and she was in here the second second second second	aller a finder second som second se		· · · · · · · · · · · · · · · · · · ·	e e e e e estempletion	contract or second 2004 (2015)	or of for departmention	2.1.1.1.1.2.4.1024.	

.

FIGURE 2

ALS Project Ng A 2 P	120	-				Comments e.g. Actual	Preservative	specific instructions			ľ										Project Requirements (MRLs, QAPP)		Cooler / Blank Temperature 'C
ALS Project	ALS Contact		Analysis Method						Medere	7		$\left \right $								1	 y Soul: (Cirolo) (EN ABSENT	SILLS THE THE	Timec
cle	П		A				N	e Volume	61	64			ł								Affain of Custody Soal: (Cirolo)	the so	Date:
ircharges) please cir 6 Dev 12562) 10.De							0	ter Canister ssure End Pressure "Ho/pelg		0							_				- sh	TT I	
Requested Turnaround Time in Business Days (Surcharges) please circle • Dour (1996) • Dour (1996) • Dour (1996) • Dour (1996) • 10.000.05400	areal feen + farnel feen o		[cold fill	0		6000	Servel	Hew Controller ID Bar code # - FC #) Start Pressure "Ho	AUGIOHTHS 11	JUGOHSTH 12				1	242						squired YES / No	Received by: (Signature)	Paceived by: (Signature)
quested Turnaround Til	force) fain a far nei 1 fai	Project Name	Masa Valler	Project Number 2.01910	P.O. 8 / Billing Information	20191069	Sampler Prime Sign	Carrister ID Flor (Bar code II - (Bar AC, SC, etc.)		V6 27100					110	14	~				EDD n	TIME O S D	
	1	£.		£	PA			Time Collected	12: 33							NC	A			1	ct on Summeries) ej 10% Surcharge	20/15	+ I
2655 Park Camer Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161	326-7270						12 en felderan	y Date or Collected	LIISZIL S	715517								1			Report Tier Levels - please select Ter II (Pesults + OC & Califration Summaries) Tier V (Date Valdeton Package) 10% Surcharge	1	
2855 Park Simi Valley Phone (80	Fax (806) 526-7270	formation)				Fex	Klew	Laboratory ID Number	01533	00182									Í		Tier I (Det	H	
		Company Name & Address (Reporting Information)	Kartu		Project Vanagy What - 1	I L	Email Address for Result Reporting		1-75	2-58		5 of 1	8								Ri Ther I - Avesutts (Darkuch Jannet Rood) Bosh Ther II (Presults + 94º Summarics	Patimonistred by: (Signifure)	Reinspiehel DarfSignature)

Air - Chain of Custody Record & Analytical Service Request

FIGURE 2

of Page -

ALS Environmental Sample Acceptance Check Form

Class	Kleinfelder	Cheek Porn		D1002030			
		-	Work order:	P1803928			
	Mesa Valley Landfill / 20191069		7/20/2010		4 4 8 0	NICON	1741 67
Sample	s) received on: 7/30/2018	Date opened:	7/30/2018	by:	AARO	N GUP	ZALEZ
Note: This	form is used for all samples received by ALS. The use of this form for custody so	eals is strictly m	eant to indicate pres	ence/absence and n	ot as an ir	idication	of
compliance	or nonconformity. Thermal preservation and pH will only be evaluated either at	the request of th	e client and/or as ree	quired by the metho			
					Yes	No	<u>N/A</u>
i	Were sample containers properly marked with client sample ID	?			\mathbf{X}		
2	Did sample containers arrive in good condition?				\mathbf{X}		
3	Were chain-of-custody papers used and filled out?				X		
4	Did sample container labels and/or tags agree with custody pap	ers?			X		
5	Was sample volume received adequate for analysis?				\mathbf{X}		
6	Are samples within specified holding times?				X		
7	Was proper temperature (thermal preservation) of cooler at rec	eipt adhered (:0?				\mathbf{X}
8	Were custody seals on outside of cooler/Box/Container?					\mathbf{X}	
	Location of seal(s)?			Sealing Lid?			\boxtimes
	Were signature and date included?						X
	Were seals intact?						\mathbf{X}
9	Do containers have appropriate preservation, according to me	thod/SOP or	Client specified	information?			\mathbf{X}
	Is there a client indication that the submitted samples are pH pro	eserved?					\mathbf{X}
	Were $\underline{\mathbf{VOA}\ \mathbf{vials}}$ checked for presence/absence of air bubbles?						\mathbf{X}
	Does the client/method/SOP require that the analyst check the sa	mple pH and	if necessary alte	ar it?			\boxtimes
10	Tubes: Are the tubes capped and intact?					Ω	\mathbf{X}
11	Badges: Are the badges properly capped and intact?						\mathbf{X}
	Are dual bed badges separated and individual	y capped and	intact?				\mathbf{X}

P1803928-001.01	6.0 L Source Can		 	
P1803928-002.01	6.0 L Source Can			
P1803928-003.01	6.0 L Source Can			
	1		 	
Explain any discrepar	ncies: (include lab sample l	D numbers):		

Explain any discrepancies: (include lab sample ID numbers):

5

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Project ID:	Kleinfelder Mesa Valley Landfill / 201	191069			ALS Project ID: P1803	928
			Methane			
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA Method 3C Modified HP5890 II/GC1/TCD Gilbert Gutierrez 6.0 L Summa Canister(s)				Date(s) Collected: 7/25/1 Date Received: 7/30/1 Date Analyzed: 8/1/18	8
Client Sample ID	ALS Sample ID	Containe Dílution Factor	Injection Volume ml(s)	Result %, v/v	MRL %, v/v	Data Qualifier
SG-1	P1803928-001	3.36	0.10	0.399	0.34	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

4.16

1.00

P1803928-002

P180801-MB

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

0.10

0.10

82.4

ND

0.42

0.10

SG-2

Method Blank

ALS ENVIRONMENTAL

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

-	Kleinfelder Lað Control Sample Mesa Valley Landfill / 20191069	ALS Project ID: P180 ALS Sample ID: P180	
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA Method 3C Modified HP5890 II/GC1/TCD Gilbert Gutierrez 6.0 L Summa Canister	Date Collected: NA Date Received: NA Date Analyzed: 8/01/ Volume(s) Analyzed:	18 NA ml(s)

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	_	ppmV	ppmV		Limits	Qualifier
74-82-8	Methane	40,000	39,600	99	98-110	<u></u>

Analytical Report

August 10, 2018

Report to: Bill Bergeron Kleinfelder, Inc. 1801 California Street Denver, CO 80002

cc: Brad Woodard

Bill to: Brenda Anthony Kleinfelder, Inc. 4815 List Drive, Unit 115 Colorado Springs, CO 80919

Project ID: 20191069 ACZ Project ID: L45886

Bill Bergeron:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 27, 2018. This project has been assigned to ACZ's project number, L45886. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L45886. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a gualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 09, 2018. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max janice

Max Janicek has reviewed and approved this report.

FIGURE¹2¹¹⁶

L45886-1808101400

Project ID: 20191069 Sample ID: GW-1

Inorganic Analytical Results

ACZ Sample ID:	L45886-01
Date Sampled:	07/26/18 10:45
Date Received:	07/27/18
Sample Matrix:	Groundwater

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate	M200.2 ICP-MS								08/03/18 14:28	rap
Digestion										
Total Hot Plate Digestion	M200.2 ICP				•				08/02/18 13:45	dom
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.011	В		mg/L	0.004	0.02	08/06/18 14:10	bsu
Arsenic, total	M200.8 ICP-MS	10	0.048			mg/L	0.002	0.01	08/06/18 14:10	bsu
Barium, total	M200.7 ICP	5	0.60			mg/L	0.02	80.0	08/03/18 23:26	dam
Beryllium, total	M200.8 ICP-MS	10	0.0014	в		mg/L	0.0005	0.003	08/06/18 23:21	mfm
Cadmium, total	M200.8 ICP-MS	10	0.004	в		mg/L	0.001	0.005	08/06/18 14:10	bsu
Calcium, dissolved	M200.7 ICP	5	39.5			mg/L	0.5	3	08/06/18 13:46	aeh
Chromium, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:26	dom
Cobalt, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:26	dom
Copper, total	M200.7 ICP	5	0.08	в		mg/L	0.05	0.3	08/03/18 23:26	dcm
Iron, total	M200.7 ICP	5	63.2		•	mg/L	0.1	0.3	08/03/18 23:26	dcm
Lead, total	M200.8 ICP-MS	10	0.257			mg/L	0.001	0.005	08/06/18 14:10	bsu
Magnesium, dissolved	M200.7 ICP	5	485			mg/L	1	5	08/06/18 13:46	aeh
Manganese, dissolved	M200.7 ICP	5	0.05	в	•	mg/L	0.03	0.1	08/06/18 13:46	aeh
Nickel, total	M200.7 ICP	5	0.07	в		mg/L	0.04	0.2	08/03/18 23:26	dcm
Potassium, dissolved	M200.7 ICP	5	57			mg/L	1	5	08/06/18 13:46	aeh
Selenium, total	M200.8 ICP-MS	10	0.017			mg/L	0.001	0.003	08/06/18 14:10	bsu
Silver, total	M200.7 ICP	5		U		mg/L	0.05	0.1	08/03/18 23:26	dom
Sodium, dissolved	M200.7 ICP	5	4090			mg/L	1	5	08/06/18 13:46	aeh
Thallium, total	M200.8 ICP-MS	10		U		mg/L	0.001	0.005	08/06/18 14:10	bsu
Vanadium, total	M200.7 ICP	5	0.11			mg/L	0.03	0.1	08/03/18 23:26	dcm
Zinc, total	M200.7 ICP	5	0.75			mg/L	0.05	0.3	08/03/18 23:26	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		2100			mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A	1							08/01/18 17:00	dcm

Arizona license number: AZ0102

Project ID:	20191069
Sample ID:	GW-2

Inorganic Analytical Results

ACZ Sample ID:	L45886-02
Date Sampled:	07/26/18 11:45
Date Received:	07/27/18
Sample Matrix:	Groundwater

Parameter	EPA Method	Dilution	Result	Qual XC) Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion	M200.2 ICP-MS			•				08/03/18 14:48	rap
Total Hot Plate Digestion	M200.2 ICP			•				08/02/18 13:57	dcm
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XC	Q Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.016	В	mg/L	0.004	0.02	08/06/18 14:12	bsu
Arsenic, total	M200.8 ICP-MS	10	0.494		mg/L	0.002	0.01	08/06/18 14:12	bsu
Barium, total	M200.7 ICP	5	9.20		mg/L	0.02	0.08	08/03/18 23:30	dom
Beryllium, total	M200.8 ICP-MS	10	0.0421		mg/L	0.0005	0.003	08/06/18 23:24	mfm
Cadmium, total	M200.8 ICP-MS	10	0.064		mg/L	0.001	0.005	08/06/18 14:12	bsu
Calcium, dissolved	M200.7 ICP	5	304		mg/L	0.5	3	08/06/18 13:49	aeh
Chromium, total	M200.7 ICP	5	1.16		mg/L	0.05	0.3	08/03/18 23:30	dam
Cobalt, total	M200.7 ICP	5	0.45		mg/L	0.05	0.3	08/03/18 23:30	dom
Copper, total	M200.7 ICP	5	2.09		mg/L	0.05	0.3	08/03/18 23:30	dom
Iron, total	M200.7 ICP	5	1300	•	mg/L	0.1	0.3	08/03/18 23:30	dom
Lead, total	M200.8 ICP-MS	10	4.98		mg/L	0.001	0.005	08/06/18 14:12	bsu
Magnesium, dissolved	M200.7 ICP	5	258		mg/L	1	5	08/06/18 13:49	aeh
Manganese, dissolved	M200.7 ICP	5	1.05		mg/L	0.03	0.1	08/06/18 13:49	aeh
Nickel, total	M200.7 ICP	5	1.05		mg/L	0.04	0.2	08/03/18 23:30	dcm
Potassium, dissolved	M200.7 ICP	5	32		mg/L	1	5	08/06/18 13:49	aeh
Selenium, total	M200.8 ICP-MS	10	0.035		mg/L	0.001	0.003	08/06/18 14:12	bsu
Silver, total	M200.7 ICP	5		U	mg/L	0.05	0.1	08/03/18 23:30	dcm
Sodium, dissolved	M200.7 ICP	5	2570		mg/L	1	5	08/06/18 13:49	aeh
Thallium, total	M200.8 ICP-MS	10	0.010		mg/L	0.001	0.005	08/06/18 14:12	bsu
Vanadium, total	M200.7 ICP	5	1.95		mg/L	0.03	0.1	08/03/18 23:30	dcm
Zinc, total	M200.7 ICP	5	18.7		mg/L	0.05	0.3	08/03/18 23:30	dcm
Wet Chemistry									
Parameter	EPA Method	Dilution	Result	Qual XC	Q Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		1820		mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um)	M200.7/200.8/3005A	1						08/01/18 17:00	dcm

Arizona license number: AZ0102

Project ID:	20191069
Sample ID:	GW-3

Inorganic Analytical Results

ACZ Sample ID:	L45886-03
Date Sampled:	07/26/18 12:25
Date Received:	07/27/18
Sample Matrix:	Groundwater

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion	M200.2 ICP-MS			•				08/03/18 15:07	rap
Total Hot Plate Digestion	M200.2 ICP			•				08/02/18 14:09	dom
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.006	В	mg/L	0.004	0.02	08/06/18 14:14	bsu
Arsenic, total	M200.8 ICP-MS	10	0.238		mg/L	0.002	0.01	08/06/18 14:14	bsu
Barium, total	M200.7 ICP	5	2.43		mg/L	0.02	0.08	08/03/18 23:33	dom
Beryllium, total	M200.8 ICP-MS	10	0.0141		mg/L	0.0005	0.003	08/06/18 23:27	mfm
Cadmium, total	M200.8 ICP-MS	10	0.009		mg/L	0.001	0.005	08/06/18 14:14	bsu
Calcium, dissolved	M200.7 ICP	5	239		mg/L	0.5	3	08/06/18 13:53	aeh
Chromium, total	M200.7 ICP	5	0.36		mg/L	0.05	0.3	08/03/18 23:33	dcm
Cobalt, total	M200.7 ICP	5	0.20	в	mg/L	0.05	0.3	08/03/18 23:33	dcm
Copper, total	M200.7 ICP	5	0.34		mg/L	0.05	0.3	08/03/18 23:33	dcm
Iron, total	M200.7 ICP	5	339	•	mg/L	0.1	0.3	08/03/18 23:33	dcm
Lead, total	M200.8 ICP-MS	10	0.354		mg/L	0.001	0.005	08/06/18 14:14	bsu
Magnesium, dissolved	M200.7 ICP	5	547		mg/L	1	5	08/06/18 13:53	aeh
Manganese, dissolved	M200.7 ICP	5	0.32		mg/L	0.03	0.1	08/06/18 13:53	aeh
Nickel, total	M200.7 ICP	5	0.31		mg/L	0.04	0.2	08/03/18 23:33	dcm
Potassium, dissolved	M200.7 ICP	5	35		mg/L	1	5	08/06/18 13:53	aeh
Selenium, total	M200.8 ICP-MS	10	0.018		mg/L	0.001	0.003	08/06/18 14:14	bsu
Silver, total	M200.7 ICP	5		U	mg/L	0.05	0.1	08/03/18 23:33	dcm
Sodium, dissolved	M200.7 ICP	5	4490		mg/L	1	5	08/06/18 13:53	ach
Thallium, total	M200.8 ICP-MS	10	0.004	в	mg/L	0.001	0.005	08/06/18 14:14	bsu
Vanadium, total	M200.7 ICP	5	0.74		mg/L	0.03	0.1	08/03/18 23:33	dcm
Zinc, total	M200.7 ICP	5	1.44		mg/L	0.05	0.3	08/03/18 23:33	dcm
Wet Chemistry									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		2850		mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A	1						08/01/18 17:01	dom

Arizona license number: AZ0102

Project ID: 20191069 Sample ID: GW-4

Inorganic Analytical Results

ACZ Sample ID:	L45886-04
Date Sampled:	07/26/18 11:00
Date Received:	07/27/18
Sample Matrix:	Groundwater

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate	M200.2 ICP-MS				•				08/03/18 15:27	rap
Digestion										
Total Hot Plate Digestion	M200.2 ICP								08/02/18 14:45	dom
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.011	в		mg/L	0.004	0.02	08/06/18 14:16	bsu
Arsenic, total	M200.8 ICP-MS	10	0.049			mg/L	0.002	0.01	08/06/18 14:16	bsu
Barium, total	M200.7 ICP	5	0.41			mg/L	0.02	0.08	08/03/18 23:50	dcm
Beryllium, total	M200.8 ICP-MS	10	0.0013	в		mg/L	0.0005	0.003	08/06/18 23:30	mfm
Cadmium, total	M200.8 ICP-MS	10	0.003	в		mg/L	0.001	0.005	08/06/18 14:16	bsu
Calcium, dissolved	M200.7 ICP	5	38.6			mg/L	0.5	3	08/06/18 13:56	aeh
Chromium, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:50	dcm
Cobalt, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:50	dcm
Copper, total	M200.7 ICP	5	0.07	в		mg/L	0.05	0.3	08/03/18 23:50	dcm
Iron, total	M200.7 ICP	5	44.4		•	mg/L	0.1	0.3	08/03/18 23:50	dcm
Lead, total	M200.8 ICP-MS	10	0.257			mg/L	0.001	0.005	08/06/18 14:16	bsu
Magnesium, dissolved	M200.7 ICP	5	488			mg/L	1	5	08/06/18 13:56	aeh
Manganese, dissolved	M200.7 ICP	5	0.04	в		mg/L	0.03	0.1	08/06/18 13:56	aeh
Nickel, total	M200.7 ICP	5		U		mg/L	0.04	0.2	08/03/18 23:50	dcm
Potassium, dissolved	M200.7 ICP	5	57			mg/L	1	5	08/06/18 13:56	aeh
Selenium, total	M200.8 ICP-MS	10	0.017			mg/L	0.001	0.003	08/06/18 14:16	bsu
Silver, total	M200.7 ICP	5		U		mg/L	0.05	0.1	08/03/18 23:50	dcm
Sodium, dissolved	M200.7 ICP	5	4100			mg/L	1	5	08/06/18 13:56	ach
Thallium, total	M200.8 ICP-MS	10		U		mg/L	0.001	0.005	08/06/18 14:16	bsu
Vanadium, total	M200.7 ICP	5	0.06	в		mg/L	0.03	0.1	08/03/18 23:50	dom
Zinc, total	M200.7 ICP	5	0.45			mg/L	0.05	0.3	08/03/18 23:50	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	xq	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		2110			mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um)	M200.7/200.8/3005A	1							08/01/18 17:01	dcm

Arizona license number: AZ0102

REPIN.02.06.05.01

Inorganic Reference

Batch	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Linit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit	it unless omitted or e	gual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN	A number assigned to reagents/standards to trace to the m	anufacturer's certific	ate of analysis
PQL	Practical Quantitation Limit. Synonymous with the EPA ter		
OC	True Value of the Control Sample or the amount added to I		
Rec	Recovered amount of the true value or spike added, in % ((Kg)
RPD	Relative Percent Difference, calculation used for Duplicate		
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of Interest		
		and the second second second	
Sample Ty		LCSWD	Laboratory Control Sample - Water Duplicate
AS ASD	Analytical Spike (Post Digestion) Analytical Spike (Post Digestion) Dustinate	LFB	Laboratory Fortified Blank
CCB	Analytical Spike (Post Digestion) Duplicate Continuing Calibration Blank	LFM	Laboratory Fortilled Matrix
CCN	Continuing Calibration Blank Continuing Calibration Verification standard	LEMO	Laboratory Fortified Matrix Duplicate
	Sample Duplicate	LRB	Laboratory Reagent Blank
DUP	Sample Duplicate Initial Calibration Blank	MS	
ICB ICV	Initial Calibration Blank Initial Calibration Verification standard	MSD	Matrix Spike Matrix Spike Duplicate
		PBS	Prep Blank - Sol
ACSAB	Inter-element Correction Standard - A plus B solutions	PBW	
LCSS	Laboratory Control Sample - Soll	POV	Prep Blank - Water Practical Quantitation Verification standard
LCSSD	Laboratory Control Sample - Soil Duplicate	SDL	Serial Dilution
LCOM	Laboratory Control Sample - Water	SDL	
Sample Tu			
South a share a share a share a share a share a share a share a share a share a share a share a share a share a	/pe Explanations		
Blanks		I contamination in the	e prep method or calibration procedure.
	Verifies that there is no or minima mples Verifies the accuracy of the method	od, including the prep	procedure.
Blanks	Verifies that there is no or minima mples Verifies the accuracy of the methon Verifies the precision of the instru-	od, including the prep ment and/or method.	procedure.
Blanks Control Sar Duplicates Spikes/For	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru tified Matrix Determines sample matrix interfe	od, including the prep ment and/or method. rences, if any.	procedure.
Blanks Control Sar Duplicates	Verifies that there is no or minima mples Verifies the accuracy of the moth Verifies the precision of the instru	od, including the prep ment and/or method. rences, if any.	procedure.
Blanks Control Sar Duplicates Spikes/For	Verifies that there is no or minima mples Verifies the accuracy of the meth Verifies the precision of the instru tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati	od, including the prep ment and/or method. rences, if any.	procedure.
Blanks Control Sar Duplicates Spikes/For Standard	Verifies that there is no or minima mples Verifies the accuracy of the meth Verifies the precision of the instru tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati	od, including the prep ment and/or method. rences, if any. ion.	procedure.
Blanks Control Sar Duplicates Spikes/For Standard	Verifies that there is no or minima mples Verifies the accuracy of the meth Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Qual)	od, including the prep ment and/or method. rences, if any. ion. d PQL. The associa	e procedure. Ied value is an estimated quantity.
Blanks Control Sa Duplicates Spikes/For Standard 2 Coalifiers B	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Qual) Analyte concentration detected at a value between MDL ar	od, including the prep ment and/or method. rences, if any. ion. d PQL. The associa h an immediate hold i	e procedure. Ied value is an estimated quantity.
Blanks Control Sar Duplicates Spikes/For Standard Z Contilions B H	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Qual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with	od, including the prep ment and/or method. rences, if any. ion. d PQL. The associa h an immediate hold i negative threshold.	procedure. ted value is an estimated quantity. time.
Blanks Control Sar Duplicates Spikes/For Standard Z Coalifiers B H L	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Qual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined	od, including the prep ment and/or method, rences, if any. ion. d PQL. The associat h an immediate hold i negative threshold. a the level of the association	procedure. ted value is an estimated quantity. time.
Blanks Control Sar Duplicates Spikes/For Standard Z Coalifiers B H L	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Qual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit	od, including the prep ment and/or method, rences, if any. ion. d PQL. The associat h an immediate hold i negative threshold. a the level of the association	procedure, ted value is an estimated quantity, time, ociated value,
Blanks Control Sa Duplicates Spikes/Tort Standard 2 Coolifiers 8 H L U	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Qual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit	od, including the prep ment and/or method rences, if any. ion. nd PQL. The associat h an immediate hold t negative threshold. In the level of the association or the sample detect	procedure. ted value is an estimated quantity. time. octated value. tion limit.
Blanks Control Sa Duplicates Spikes/For Standard Z Coalifiers B H L U U	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfer Verifies the validity of the calibration s (Gual) Analyte concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences	od, including the prep ment and/or method rences, if any. ion. A PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect or the sample detect	procedure. ted value is an estimated quantity. time. octated value. tion limit.
Blanks Control Sa Duplicates Spikes/For Standard Z Coalifiers B H L U U U thod Refere (1)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe Verifies the validity of the calibrati s (Gual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences. EPA 600/4-83-020. Methods for Chemical Analysis of Wat	od, including the preg ment and/or method rences, if any. ion. A PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect ter and Wastes, Marc ganic Substances in	e procedure. Ied value is an estimated quantity. time. octated value. tion limit. ch 1983. Environmental Samples, August 1993.
Blanks Control Sa Duplicates Spikes/For Standard Z Coalifiers B H L U U thod Refer (1) (2)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibration s (Gual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wath EPA 600/R-93-100. Methods for the Determination of Ince	od, including the preg ment and/or method rences, if any. ion. A PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect ter and Wastes, Marc ganic Substances in	e procedure. Ied value is an estimated quantity. time. octated value. tion limit. ch 1983. Environmental Samples, August 1993.
Blanks Control Sa Duplicates Spikes/For Standard Z Coalifiers B H L U U thod Refer (1) (2) (3)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfer Verifies the validity of the calibration s (Gual) Analyte concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wat EPA 600/R-93-100. Methods for the Determination of Incer EPA 600/R-94-111. Methods for the Determination of Metion	od, including the preg ment and/or method, rences, if any. ion. A PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect ter and Wastes, Marri ganic Substances in als in Environmental	e procedure. Ied value is an estimated quantity. time. octated value. tion limit. ch 1983. Environmental Samples, August 1993.
Blanks Control Sa Duplicates Spikes/For Standard Z Coalifiers B H L U U thod Refer (1) (2) (3) (4)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar analytic response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wall EPA 600/R-94-111. Methods for the Determination of liner EPA SW-846. Test Methods for Evaluating Solid Waste.	od, including the preg ment and/or method, rences, if any. ion. A PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect ter and Wastes, Marri ganic Substances in als in Environmental	e procedure. Ied value is an estimated quantity. time. octated value. tion limit. ch 1983. Environmental Samples, August 1993.
Blanks Control Sa Duplicates Spikes/For Standard P/ Coulifier B H L U U thood Refere (1) (2) (3) (4) (5)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar Analytic concentration detected at a value between MDL ar analytic response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wall EPA 600/R-94-111. Methods for the Determination of liner EPA SW-846. Test Methods for Evaluating Solid Waste.	od, including the preg ment and/or method rences, if any. ion. and PQL. The associat h an immediate hold t negative threshold. a the level of the asso or the sample detect ter and Wastes, Maro ganic Substances in als in Environmental awater.	b procedure. Ited value is an estimated quantity. Lime. Icolated value. Icon limit. In 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U U thood Refere (1) (2) (3) (4) (5)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibrati- s (Qual) Analyte concentration detected at a value between MDL ar Analytis exceeded method hold time, pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wat EPA 600/R-94-111. Methods for the Determination of ince EPA 600/R-94-111. Methods for the Determination of Meti EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Waste	od, including the preg ment and/or method rences, if any. ion. Ind PQL. The associat h an immediate hold to negative threshold. In the level of the association or the sample detect for and Wastes, Maro ganic Substances in als in Environmental awater.	b procedure. Ited value is an estimated quantity. time. botated value. tion limit. dh 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Blanks Control Sa Duplicates Spikes/For Standard Z Qualifiers B H L U U thood Refer (1) (2) (3) (4) (5) mments (1)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfer Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL ar Analytic exceeded method hold time, pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wat EPA 600/R-94-111. Methods for the Determination of incer EPA 600/R-94-111. Methods for the Determination of Metic EPA 800/R-94-111. Methods for the Determination of Metic EPA 800/R-94-111. Methods for the Determination of Water. Standard Methods for the Examination of Water and Waster. Standard Methods for the Examination of Water and Waster.	od, including the preg ment and/or method rences, if any. ion. Ind PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect or the sample detect ter and Wastes, Marc ganic Substances in als in Environmental ewater.	b procedure. Ited value is an estimated quantity. time. botated value. tion limit. dh 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Blanks Control Sa Duplicates Spikes/For Standard 22 Coulifier 8 H L U U thost Refer (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) (3)	Verifies that there is no or minima mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibrati s (Qual) Analyte concentration detected at a value between MDL ar Analysis exceeded method hold time. pH is a field test with Target analyte response was below the laboratory defined The material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Wat EPA 600/R-94-111. Methods for the Determination of Inon EPA 600/R-94-111. Methods for the Determination of Meti EPA SW-846. Test Methods for the Determination of Meti EPA SW-846. Test Methods for the Determination of Water. Standard Methods for the Examination of Water and Waster. Standard Methods for the Examination of Water and Waster. QC results calculated from raw data. Results may vary slig Soli, Sludge, and Plant matrices for Inorganic analyses are	od, including the prep ment and/or method, rences, if any. ion. and PQL. The associate a mimmediate hold in negative threshold. a the level of the associate or the sample detect or the sample detect and Wastes, Marc ganic Substances in als in Environmental ewater. aphty if the rounded way reported on a dry way "as received" basis.	e procedure. Hed value is an estimated quantity. time. octated value. tion limit. dh 1983. Environmental Samples, August 1993. Samples - Supplement L May 1994. alues are used in the calculations. sight basis.
Blanks Control Sa Duplicates Spikes/For Standard 22 Qualifier 8 H L U U thood Refere (1) (2) (3) (4) (5) (1) (2) (1) (2)	Verifies that there is no or minimal mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibration section of the instru- Verifies the validity of the calibration instruction of the instruction of the instruction of the material was analyzed for, but was not detected above The associated value is either the sample quantitation limit ences EPA 600/4-83-020. Methods for Chemical Analysis of Watt EPA 600/R-94-111. Methods for the Determination of Inter- EPA 600/R-94-111. Methods for the Determination of Methods EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Waste QC results calculated from raw data. Results may vary slig Soli, Sludge, and Plant matrices for Inorganic analyses are Animal matrices for Inorganic analyses are reported on an	od, including the prep ment and/or method, rences, if any. ion. and PQL. The associate a mimmediate hold in negative threshold. a the level of the associate or the sample detect or the sample detect and Wastes, Marc ganic Substances in als in Environmental ewater. aphty if the rounded way reported on a dry way "as received" basis.	e procedure. Hed value is an estimated quantity. time. colated value. tion limit. dh 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. sight basis.
Blanks Control Sa Duplicates Spikes/For Standard 22 Coulifier 8 H L U U thost Refer (1) (2) (3) (4) (5) (1) (2) (3) (1) (2) (3)	Verifies that there is no or minimal mples Verifies the accuracy of the methy Verifies the precision of the instru- tified Matrix Determines sample matrix interfe- Verifies the validity of the calibrati solution of the calibration solution of the calibration of the solution of the calibration of the calibration of the calibration of the calibration of the calibration of the calibration of the calibration of the solution of the calibration of the calibration of the solution of the calibration of the calibration of the terms of the calibration of the calibration of the terms of the calibration of the calibration of the terms of the calibration of the calibration of the terms of the calibration of the calibration of the terms of the calibration of the termination of the terms of the calibration of the termination of the terms of the calibration of the termination of the terms of the termination of the termination of the terms of the termination of the termination of the termination of the terms of the termination of the termination of the termination of the terms of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of the termination of termination of the termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination of termination	od, including the preg ment and/or method, rences, if any. ion. Ind PQL. The associat h an immediate hold the negative threshold. In the level of the association or the sample detect or the sample detect for and Wastes, Marc ganic Substances in als in Environmental ewater. Shify if the rounded wireported on a dry we "as received" basis, fed qualifier and/or co	a procedure. Ied value is an estimated quantity. time. sociated value. tion limit. dn 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994. alues are used in the calculations. alues are used in the calculations. alues are used in the calculations.

REP001.03.15.02

FIGURE⁶2¹⁶

Kleinfelder, Inc.

ACZ Project ID: L45886

Antimony, total			M200.8 IC	P-MS				_					_
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.02		.01952	mgt	98	90	110			
NG453278ICB	ICB	08/06/18 13:21				U	mgt		-0.0012	0.0012			
WG453142LRB	LRB	08/06/18 13:23				U	mgit		-0.00088	0.00088			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.01		.01032	mgit	103	85	115			
L45881-01LFM	LFM	08/06/18 14:05	MS10XW	.1	U	.1052	mgt	105	70	130			
L45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.1	U	.1051	mgiL	105	70	130	0	20	
Arsenic, total			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.04645	ngL	93	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	ngt		-0.0006	0.0006			
WG453142LRB	LRB	08/06/18 13:23				U	mgL		-0.00044	0.00044			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.0501		.04853	mgt	97	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS10XW	.501	U	.4822	mgL	96	70	130			
L45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.501	U	.4902	mgL	98	70	130	2	20	
Barium, total			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	180526-2	2		1.953	ron	98	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	Jon		-0.009	0.009			
WG453040LRB	LRB	08/03/18 22:31				U	rot		-0.0066	0.0066			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.5025		.4975	ngL	99	85	115			
L45886-03LFM	LFM	08/03/18 23:36	ISXWATER	2.5	2.43	5.025	mgL	104	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	ISXWATER	2.5	2.43	5.01	ngL	103	70	130	0	20	
Beryllium, total			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453313													
WG453313ICV	ICV	08/06/18 22:32	MS180730-1	.05		.04621	ngt	92	90	110			
WG453313ICB	ICB	08/06/18 22:35				U	ngL		-0.00015	0.00015			
WG453142LRB	LRB	08/06/18 22:38				U	ngt		-0.00011	0.00011			
WG453142LFB	LFB	08/06/18 22:41	MS180621-2	.05035		.04878	mgL	97	85	115			
L45881-01LFM	LFM	08/06/18 23:16	MS10XW	.5035	.0062	.5135	mgt	101	70	130			
L45881-01LFMD	LFMD	08/06/18 23:19	MS10XW	.5035	.0062	.5157	mg L	101	70	130	0	20	
Cadmium, total			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.04825	mg.t.	97	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgt		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U	mg.t.		-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.05005		.04994	mgit	100	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS10XW	.5005	.231	.7125	mgit.	96	70	130			

Kleinfelder, Inc.

ACZ Project ID: L45886

Calcium, dissol			M200.7 I				11-22	Death		Contraction of	000	1 Inchis	0.0
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268													
WG453268ICV	ICV	08/06/18 12:38	II180727-1	100		100.38	mgit	100	95	105			
WG453268ICB	ICB	08/06/18 12:45				U	mg.L		-0.3	0.3			
WG453268LFB	LFB	08/06/18 12:58	II180731-2	68.22088		70.98	mgit	104	85	115			
L45886-04AS	AS	08/06/18 13:59	II180731-2	341.1044	38.6	393.45	mgit.	104	85	115			
L45886-04ASD	ASD	08/06/18 14:03	II180731-2	341.1044	38.6	395.95	mgit	105	85	115	1	20	
Chromium, tota	1		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	II180626-2	2		1.98	mgit	99	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mgt		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mgL		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.5		.505	mgit.	101	85	115			
L45886-03LFM	LFM	08/03/18 23:36	ISXWATER	2.505	.36	2.879	mg.t.	101	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.505	.36	2.894	mgit	101	70	130	1	20	
Cobalt, total			M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	II180626-2	2.002		1.909	mgt	96	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mg.t.		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mgt		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.501		.494	mgit	99	85	115			
L45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5	.2	2.495	mgit	92	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.5	.2	2.504	mg.t.	92	70	130	0	20	
Copper, total			M200.7 I	CP									
ACZID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	1180626-2	2		1.954	mg/L	98	95	105			
WG453216ICB	ICB	08/03/18 22:18		-		U	mg/L		-0.03	0.03			
WG453040LR8	LRB	08/03/18 22:31				U	.hem		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	1180731-2	.4975		.497	mg/L	100	85	115			
L45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5	.34	2.726	mg/L	95	70	130			
L45886-03LFMD	LEND	08/03/18 23:40	II5XWATER	2.5	.34	2.755	mgA.	97	70	130	1	20	
Iron, total			M200.7 K	CP									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	II180626-2	2		1.906	mg/L	95	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mg/L		-0.06	0.06			
WG453040LRB	LRB	08/03/18 22:31				U	mg/L		-0.044	0.044			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	1.0018		.998	mg/L	100	85	115			
	LFM	08/03/18 23:36	II5XWATER	5.007	339	394.5	mg/L	1108	70	130			M3
L45886-03LFM													

Kleinfelder, Inc.

ACZ Project ID: L45886

Lead, total			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.04895	mg.t.	98	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgit		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U			-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.0496		.0487	mg.t.	98	85	115			
45881-01LFM	LFM	08/06/18 14:06	MS1000W	.496	.136	.6309	mgit	100	70	130			
45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.496	.136	.6406	mgit	102	70	130	2	20	
Magnesium, dis	solved		M200.7 I	CP			-						
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268													
WG453268ICV	ICV	08/06/18 12:38	II180727-1	100		101.38	ngt	101	95	105			
WG453268ICB	ICB	08/06/18 12:45				U	mgL		-0.6	0.6			
WG453268LFB	LFB	08/06/18 12:58	1180731-2	50.05667		50.45	ngt	101	85	115			
L45886-04AS	AS	08/06/18 13:59	1180731-2	250.28335	488	743.5	mgL	102	85	115			
45886-04ASD	ASD	08/06/18 14:03	II180731-2	250.28335	488	751.5	mgit	105	85	115	1	20	
Manganese, dis	solved		M200.7 H	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268													
WG453268ICV	ICV	08/06/18 12:38	II180727-1	2		1.9982	ngt	100	96	105			
WG453268ICB	ICB	08/06/18 12:45				U	mgt		-0.015	0.015			
WG453268LFB	LFB	08/06/18 12:58	■180731-2	.5005		.5046	ngL	101	85	115			
45886-04AS	AS	08/06/18 13:59	■180731-2	2.5025	.04	2.556	mgt	101	85	115			
45886-04ASD	ASD	08/06/18 14:03	II180731-2	2.5025	.04	2.559	mgit	101	85	115	0	20	
Nickel, total			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	1180626-2	2.004		1.9538	mgt	97	95	105			
NG453216ICB	ICB	08/03/18 22:18				U	mgt		-0.024	0.024			
WG453040LRB	LRB	08/03/18 22:31				U	mgiL		-0.0176	0.0176			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.5015		.5073	ngt	101	85	115			
45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5	.31	2.69	mg.t.	95	70	130			
45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.5	.31	2.673	mgit	95	70	130	1	20	
Potassium, diss	olved		M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268													
WG453268ICV	ICV	08/06/18 12:38	II180727-1	20		20.28	ngit	101	95	105			
WG453268ICB	ICB	08/06/18 12:45				U	mgit		-0.6	0.6			
WG453268LFB	LFB	08/06/18 12:58	II180731-2	99.72934		104.1	mg/L	104	85	115			
L45886-04AS	AS	08/06/18 13:59	11180731-2	498.6467	57	586.5	mg/L	106	85	115			
	1.000						-						

Kleinfelder, Inc.

ACZ Project ID: L45886

Selenium, total			M200.8 IC	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.0481	mg.t.	96	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgL		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U	mgt		-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.05005		.04799	mg.t.	96	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS100W	.5005	U	.5023	ngt	100	70	130			
45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.5005	U	.5038	mg.t.	101	70	130	0	20	
Silver, total			M200.7 I	CP .									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	11180626-2	1.001		1.001	mg1_	100	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mgL		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mat		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	1180731-2	.5		.491	mgL	98	85	115			
L45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5025	υ	2.338	mg.t.	93	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.5025	U	2.362	mgL	94	70	130	1	20	
Sodium, dissolv	ed		M200.7 10	2P									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268													
WG453268ICV	ICV	08/06/18 12:38	II180727-1	100		101.63	mgiL	102	95	105			
NG453268ICB	ICB	08/06/18 12:45	1100121-1	100		U	mgt	102	-0.6	0.6			
WG453268LFB	LFB	08/06/18 12:58	II180731-2	100.6711		104.5	mgL	104	85	115			
	AS	08/06/18 13:59	1180731-2	503.3555	4100	4616.5	mgt	103	85	115			
L45886-04AS L45886-04ASD	ASD	08/06/18 14:03	1180731-2	503.3555	4100	4640.5	mgit	107	85	115	1	20	
Thallium, total			M200.8 10	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
	type	Analyzed	PONIOCI	40	Gemple	Pound	Units	Topo no	Conter	opper	NI D	Ennite	NO.
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.0491	mg/L	98	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mg/L		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U	mg.t.		-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.0501		.04821	mg/L	96	85	115			
L45881-01LFM L45881-01LFMD	LFM	08/06/18 14:06 08/06/18 14:08	MS10XW MS10XW	.501	.002	.4923	mg/L mg/L	98 99	70	130 130	2	20	
		06/00/10 14:00			.002	.0000		00	10	1.50	•	40	
Vanadium, total ACZ ID	Туре	Analyzed	M200.7 10	QC	Sample	Found	linits	Rec%	Lower	Upper	RPD	Limit	Qual
	iypa	Analyzeu	FGNISGN	40	Gample	Pound	onna	Necia	Cower	opper	RFU	CHINA	GUAI
WG453216		000000000000	E100000 0	~		0.0000				105			
WG453216ICV	ICV	08/03/18 22:12	II180626-2	2		2.0002	mg/L	100	95	105			
WG453216ICB	IC8	08/03/18 22:18				U	mg/L		-0.015	0.015			
WG453040LRB	LRB	08/03/18 22:31				U	mg/L		-0.011	0.011			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.501		.4981	mg/L	99	85	115			
L45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5	.74	3.445	mg/L	108	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.5	.74	3.492	mg/L	110	70	130	1	20	

Kleinfelder, Inc.

ACZ Project ID: L45886

Zinc, total			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	II180625-2	2		2.011	mg/L	101	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mgA.		-0.03	0.03			
WG453040LR8	LRB	08/03/18 22:31				U	mg/L		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.4942		.523	mg/L	106	85	115			
.45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5025	1.44	3.998	mg/L	102	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.5025	1.44	3.994	mg/L	102	70	130	0	20	

Inorganic Extended Qualifier Report

ACZ Project ID: L45886

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L45886-01	WG453218	iron, total	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453268	Manganese, dissolved	M200.7 ICP	DA	Sample required dilution due to reactivity.
			M200.7 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
L45886-02	WG453216	Iron, total	M200.7 ICP	МЗ	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
L45885-03	WG453216	Iron, total	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
.45886-04	WG453216	Iron, total	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453268	Manganese, dissolved	M200.7 ICP	DA	Sample required dilution due to reactivity.
			M200.7 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.

ACZ Project ID: L45886

No certification qualifiers associated with this analysis

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493		Re	ceipt	
einfelder, Inc. ACZ Proje 191069 Date Rec Receive Date Proje		eived: 07/27/2018 ed By:		
Receipt Verification	Date Pri	ntea:	11.	30/2018
	Nones to Pro	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?				Х
2) Is the Chain of Custody form or other directive shipping papers present?	. [х		Star Star
3) Does this project require special handling procedures such as CLP protocol?	[х	1
4) Are any samples NRC licensable material?				х
5) If samples are received past hold time, proceed with requested short hold time analyst	ses?	х		
6) Is the Chain of Custody form complete and accurate?	Ì	x		1948
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sar	mples?		х	
Samples/Containers	-15-16	11 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -		
		YES	NO	NA
8) Are all containers intact and with no leaks?	[х		
9) Are all labels on containers and are they intact and legible?	[х		A ALEAN
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Ti	me?	х		
11) For preserved bottle types, was the pH checked and within limits? 1	[х	
L45886-01 Container B2015616 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang				
L45886-02 Container B2015618 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang				
L45886-03 Container B2015620 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang				
L45886-04 Container B2015622 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang				
12) Is there sufficient sample volume to perform all requested work?		Х		B. C.L.
13) Is the custody seal intact on all containers?	[х
14) Are samples that require zero headspace acceptable?	[Х
15) Are all sample containers appropriate for analytical requirements?		х		IN STATE
16) Is there an Hg-1631 trip blank present?				х
17) Is there a VOA trip blank present?				X
18) Were all samples received within hold time?		х		1.5.1.2
		NA indicat	les Not Ap	plicable
Chain of Custody Related Remarks				115
Client Contact Remarks			100	al Grad
Shipping Containers	A State of the	S. S. S. L.		
Cooler Id Temp(°C) Temp Rad(µR/Hr) Custo	dy Seal			

L45886-1808101400

FIGURE¹⁴2^{f 16}

ACZ 2773 Downhill Dr			Inc. 487 (800) 334-5493		11210201000	Sample Receipt
Kleinfelder, In 20191069	IC.				ACZ Project ID: Date Received: Received By:	07/27/2018 12:36
					Date Printed:	7/30/2018
	NA28809	2.7	 NA	20	Yes	
	ent in the shipm t ice was p		(s)? the shipment c	ontainer(s).		

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).

2773 Downhill Drive Steambe Report to:	oat Springs, CO-80487 (800) 33	14-5493			
	K-secon		Address:		
Company:	rolder .	-	, 100.000		<u></u>
E-mail: 6/2(12(0	neklendelder		Telephone:	78157	24574
Copy of Report to:					
\sim D 111	oclaric		E-mail:	Wand are	to klente
Company: Klant	elder		Telephone:		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
Invoice to:					
Name: Sama a	s above		Address:		
Company:					
E-mail:			Telephone:		
	olding time (HT), or if insufficie				YES
•	shall ACZ proceed with request erinstruction. If neither "YES" per "NO" is indice		•		NO
Are samples for SDWA Con	•		Yes	No	
· · · · ·	forms. Results will be reported		>r Colorado.		
1		to the authontic			het intentionally mislabeling the lime/di
*Sampler's Signature		ng with the way		eldered fraud and punish YSES REQUESTED (able by State Law. Sittach list or use quote number)
Quote #:			y)		
PO#: 201910	ଜଣ୍		of Containers Shal M & La s	E A	
Reporting state for compliano	······································		t outa	FF	
Check box if samples include	NRC licensed material?	T	Sal a	2 L	
SAMPLE IDENTIFICATI	ION DATE:TIME	Matrix	*	45	
<u>C-w-l</u>	7/20/18 1045	<u> w </u>	2 ×		
<u>GW-Z</u>	1145	Ψ	<u>2 ×</u>		
$\frac{(-v-3)}{(-v-3)}$	1225	<u>w</u>	$\frac{2}{2}$		
Gw-4	V 1100	$ \omega $	2/		
		+		+	
······································	- m	D	=4/2	#+O	
·····					
Matrix SW (Surface Water	GW (Ground Water) WW (Waste	Water) · DV	V (Drinking Water	r) · SL (Sludge) · SC) (Soil) ⊢OL (Oil) ⊢Other (Spe
REMARKS					
DII	re infiltered				
Dissolval a	re man bed				
	د				
	se refer to ACZ's terms & con				
				RECEIVED BY:	DATE:
Pleas	D BY: DATE:T				
	7/24/18	14 <u>3</u> 5 3:30			7/26/19 DDC 70718

Appendix H Landfill Gas Generation Analysis

LANDFILL GAS GENERATION ANALYSIS

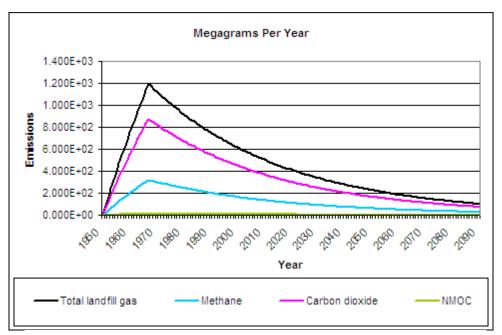
POTENTIAL FOR LANDFILL GAS GENERATION

The generation of gas by a landfill results from the decomposition of organic materials deposited in the landfill. Organics decomposition is most frequently through anaerobic digestion. The rate of gas generation as well as the period of the time gas will be generated is dependent upon a number of factors, including the:

- Amount of liquid entering the landfill;
- Quantity of organics;
- Daily cover characteristics; and
- Final cover characteristics.

For the abandoned landfill located on the MVS property, it is very likely landfill gas has been and may continue to be generated. The materials covering the waste are comprised of local soils that vary in depth from less than 1 foot to over 5 feet. There are numerous cracks and gouges in the cover materials that allow for liquids to enter the landfill. Because the landfill was not operated by anyone, but rather was a local dumping area, if any daily cover was placed at the landfill it was placed infrequently and haphazardly.

It is difficult to exactly determine the quantity of solid waste that was placed in the landfill; however, given the time period in which the site was utilized as a landfill (1950's to 1966), it is likely there are organic materials in the landfill. This assessment is based on the limited waste characterization studies conducted during this time period as well as the lack of a number of household appliances, garbage disposals, and large refrigerators available during this time period that would either capture organic wastes or reduce the number of organics that spoiled.

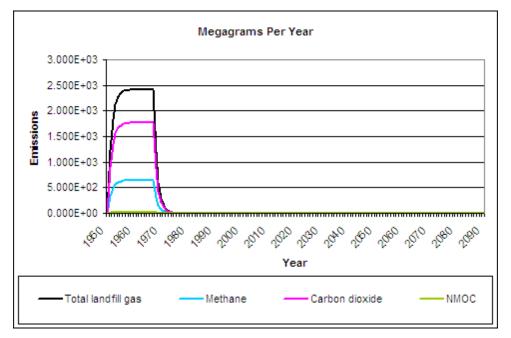

COMPUTER MODELING

The potential for landfill gas generation exists at this site. The LandGEM computer model was utilized to determine the amount of landfill gas that would possibly be generated as well as the time period over which the landfill would generate this gas. This computer model was selected for use because it allows for maximum flexibility when determining the characteristics of the landfill and its waste components. The LandGEM model is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate.

The model was run three times to identify various characteristics of the landfill. The first run was based on the climate that occurs at the landfill site. The Methane Generation Rate and the Potential Methane Generation Capacity were selected based on a dry climate. For the second run the Methane Generation Rate and the Potential Methane Generation Capacity were selected based on a wetter climate. This wetter climate was selected given the bottom of the landfill was a creek bed and that a significant portion of the waste was likely in contact with water during various times of the year. The final computer model run was a composite of the first two runs. This composite allowed for a slightly higher Methane Generation Rate and lower Potential Methane Generation Capacity. The results of all three runs are provided in Appendix 1, 2, and 3 respectively, at the end of this analysis report. Based on the computer model runs, it appears the landfill will be generating some landfill gas for at least the next 25 to 70 years.

First Computer Model Run

The following chart provides the results of the first computer model run. As can be seen, the landfill gas generation peaked in 1970 and has decreased significantly. Based on the model results the landfill is estimated to be generating 198,500 cubic meters of methane a year and 1,588 cubic meters of Non-Methane Organic Compounds (NMOC).

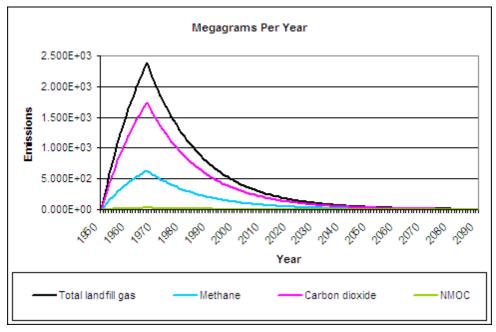


RESULTS OF FIRST COMPUTER MODEL RUN

Second Computer Run

This second computer model run reflects a much wetter environment which may have happened with this landfill given that the landfill bottom was an active creek bed. The following chart presents the results of this model run. In this run, the landfill gas generation peaked in the late 1950's and sustained that peak until the mid 1960's. This extended peak results in a larger amount of gas being generated over a short period of time. With the extended peak, the fall-off of the amount of landfill gas generated is abrupt and quite significant.

For methane, the peak period ended in 1967 with an annual estimated generation rate of 970,000 cubic meters of landfill gas. By 2011 it is estimated the landfill is generating 0.00000004079 cubic meters of gas annually. The amount of NMOC generated in 2011 is estimated to be 0.000000003263 cubic meters per year. This model run indicates that a minimal amount of gas is being generated and likely little gas is being discharged from the landfill.



RESULTS OF SECOND COMPUATER MODEL RUN

Third Computer Model Run

As indicated previously, it is unlikely that neither of the first two computer model runs accurately reflect the actual conditions within the landfill. That is why the third computer model run combines elements of the two previous runs. The chart below presents the results of the third computer model run. The peak of landfill gas generation occurs in or about 1970, similar to the first computer model run, and the amount of gas generated decreases more rapidly, similar to the second computer model run.

For methane, the peak period ended in 1968 with an annual generation of 952,300 cubic meters of landfill gas. By 2018 the landfill is estimated to be generating 75,500 cubic meters of gas annually.

RESULTS OF THIRD COMPUTER MODEL RUN

POTENTIAL LANDFILL GAS MIGRATION AND METHODS TO MITIGATE LANDFILL GAS

As indicated in the Final Cover Analysis, Appendix I of this application package, the final cover for the consolidated landfill will be designed to control the infiltration of liquids into the landfill and will act as a deterrent for landfill gas to migrate from the landfill area. In addition, the Remediation Plan Section of the Final Cover Analysis describes how the landfill will be consolidated, any water that is still following the old creek bed will be removed, and a soil barrier will be installed to deter water from continuing to flow along this creek bed. Thus, significantly reducing the amount of moisture in the solid waste. In addition, soils at the site are mostly lean, silty, slightly sandy clay. This soil type, when properly compacted, can become very dense and limit the migration of gases through the soil. Finally, the amount of methane estimated to be generated in 2018 is 198,500 cubic meters. This is a very small quantity of methane and would likely not be capable of migrating through compacted clayey soils.

Because a completely impervious liner or final cover is not practical for this situation, there is a limited potential for landfill gas to migrate from the landfill. Although, as described previously, the possibility of the landfill gas migrating through the on-site soils is relatively small and added measure of precaution will be utilized.

A passive landfill gas monitoring system will be installed to detect any landfill gases generated by the consolidated landfill. The system will incorporate a series of perforated PVC pipe laid along the side of the consolidated landfill at strategic locations. Each pipe will have a sampling port which will be utilized to test for landfill gas. These perforated PVC pipes can be fitted with wind turbines to vent the landfill gas is it is detected. If significant quantities of landfill gas are detected over a significant duration, the wind turbines can be removed and the perforated PVC can be connected to a blower system that will collect the gas and transport it to a flare system.

2090/Waterman Folder/VCUP Application 2018 Folder/Final document Folder/Appendix N-Landfill Gas Analysis V01 10-22-2018 RSC

Appendix 1 First Computer Model Run

Summary Report

Landfill Name or Identifier: MVS Landfill Colorado Springs, CO

Date: Monday, March 07, 2011

Description/Comments:

This computer run considers climate conditions at the site

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

Q_{CH4} = annual methane generation in the year of the calculation (m³/year) i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (vear 1)

L_o = potential methane generation capacity (m³/Mg)

M, = mass of waste accepted in the ith year (Mg) t_{ij} = age of the jth section of waste mass M, accepted in the ith year (decimal years, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

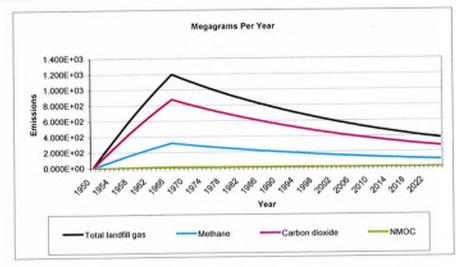
Input Review

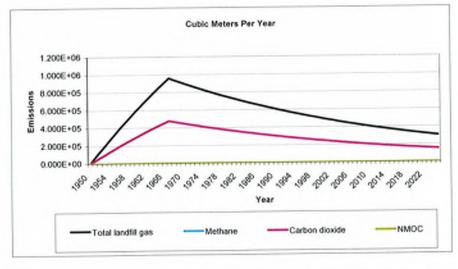
LANDFILL CHARACTERISTICS		
Landfill Open Year	1950	
Landfill Closure Year (with 80-year limit)	1966	
Actual Closure Year (without limit)	1966	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	182,500	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year ⁻¹
Potential Methane Generation Capacity, Lo	170	m ³ /Mg
NMOC Concentration	4,000	ppmv as hexane
Methane Content	50	% by volume

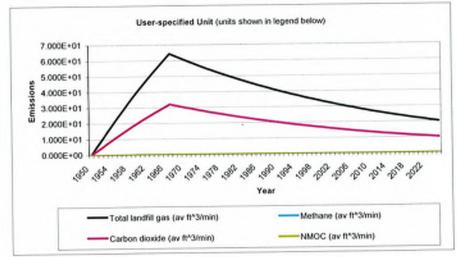
GASES / POLLUTANTS S	SELECTED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

WASTE ACCEPTANCE RATES

	TE ACCEPTANCE RATES Waste Acc		Waste-I	n-Place
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1950	9,759	10,735	0	0
1951	9,759	10,735	9,759	10,735
1952	9,759	10,735	19,518	21,470
1953	9,759	10,735	29,277	32,205
1954	9,759	10,735	39,036	42,940
1955	9,759	10,735	48,795	53,675
1956	9,759	10,735	58,555	64,410
1957	9,759	10,735	68,314	75,145
1958	9,759	10,735	78,073	85,880
1959	9,759	10,735	87,832	96,615
1960	9,759	10,735	97,591	107,350
1961	9,759	10,735	107,350	118,085
1962	9,759	10,735	117,109	128,820
1963	9,759	1Ö,735	126,868	139,555
1964	9,759	10,735	136,627	150,290
1965	9,759	10,735	146,386	161,025
1966	9,759	10,735	156,145	171,760
1967	Ö	0	165,905	182,495
1968	0	0	165,905	182,495
1969	0	0	165,905	182,495
1970	0	Ó		182,495
1971	0	O Ō	165,905	182,495
1972	0			182,495
1973	0			182,495
1974	<u>0</u> 0	0	165,905	182,495
1975	0	0	165,905	182,495
1976	0	0	165,905	182,495
1977		0	165,905	182,495
1978	Ö			
1979	0	0	165,905	
1980	0	0	165,905	
1981				
1982				
1983	0	0		
1984				
1985				
1986		0		
1987				
1988		0	165,905	
1989	0	0	165,905	182,495


WASTE ACCEPTANCE RATES (Continued)


	Waste Ac	cepted	Waste-I	n-Place
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1990	0	0	165,905	182,495
1991	0	0	165,905	182,495
1992	0	0	165,905	182,495
1993	0	0	165,905	182,495
1994	0	0	165,905	182,495
1995	0	0	165,905	182,495
1996	0	0	165,905	182,495
1997	0	0	165,905	182,495
1998	Ó	0	165,905	182,495
1999	0	0	165,905	182,495
2000	0	0	165,905	182,495
2001	0	0	165,905	182,495
2002	0	0;	165,905	182,495
2003	0	0	165,905	182,495
2004	0	0	165,905	182,495
2005	0	Q		182,495
2006	0	Ó		182,495
2007	Ó	0	165,905	182,495
2008	0	0	165,905	182,495
2009	0	0		182,495
2010	Ö	O Ö	165,905	182,495
2011	0		165,905	182,495
2012	0	0	165,905	182,495
2013	D	ļ ļ	165,905	182,495
2014	Ó	Ó	165,905	
2015	0	0	165,905	
2016	0	0	165,905	
2017	0			
2018	0		165,905	1
2019	0	0		1 · · ·
2020				
2021	0			
2022	0			
2023			165,905	
2024	0	Ċ		182,495
2025				-
2026	0		165,905	
2027	(0	0		
2028	(c		165,905	
2029) <u> </u>	165,905	182,495


<i>,</i>	Gas / Pol	utant Default Parame		lutant Parameters:	
	0	Concentration	Molecular Weight	Concentration (ppmv)	Motecular Weight
Ta	Compound tal landfill gas	(ppmv)	0.00	(ppinv)	indiddau troigin
	thane		16.04		
Se Ca	rbon dioxide		44.01		
O NN	AOC	4,000	86.18		
	1-Trichloroethane				
	ethyl chloroform) -			1	
. HA		0.48	133.41		
	,2,2.				
Te	trachloroethane -				
	NP/VOC	1.1	167.85		
	I-Dichloroethane				
	hylidene dichloride) -		00.07		
	PNOC	2.4	98.97		
	-Dichloroethene				
	nylidene chloride) -	0.20	96.94		
	AP/VOC 2-Dichloroethane	0.20	30.34		
	hylene dichloride) -				
	APNOC	0.41	98.96		
	2-Dichloropropane				
	opylene dichloride) -			1	
	AP/VOC	0.18	112.99		
	Propanot (isopropyl			ł	
alc	cohol) - VOC	50	60.11		
	etone	7.0	58.08		
	rylonitrile - HAP/VOC			1	
AC	ayioniane - nAPAOO	6.3	53.06		
	nzene - No or				
	known Co-disposal -		70.44		
H/	AP/VOC	1.9	78.11		
	enzene - Co-disposal -	11	78.11		•
±2 [∏] /	AP/VOC omodichloromethane -	t ł	JQ. 11		
	omodicniorometrane - DC	3.1	163.83		
물 6	Itane - VOC	5.0	58.12		
	arbon disulfide -	0.0			
	AP/VOC	0.58	76.13		
•	arbon monoxide	140	28.01		
	arbon tetrachloride -				
	AP/VOC	4.0E-03	153.84		
	arbonyl sulfide -				
H/	AP/VOC	0.49	60.07		
	hlorobenzene -				
1.1.2	AP/VOC	0.25	112.56		
	nlorodifluoromethane	1.3	86.47		
	hioroethane (ethyl	1.3	64.52		
	horide) - HAP/VOC	0.03	119.39		1
	hloroform - HAP/VOC hloromethane - VOC	1.2	50.49		
1		1.6		1	
	ichlorobenzene - (HAP			1	
fo	r para isomer/VOC)	0.21	147	1	
l_					
D	ichlorodifluoromethane	16	120.91		1
D	ichlorofluoromethane -	1			
	OC	2.6	102.92		
	ichloromethane			1	
	nethylene chloride) •	1		1	
	AP	14	84.94		1
	imethyl sulfide (methyl		00.45		
	ulfide) - VOC	7.8	62.13		
	thane	890	30.07		
E	thanol - VOC	27	46.08	1	i

_	Gas / Pol	lutant Default Param	User-specified Pollutant Parameters: Concentration		
		Concentration	Adology I Mainht		Molecular Weight
	Compound	(ppmv)	Molecular Weight	(ppmv)	Withecthal weight
	Ethyl mercaptan		62.13		
	(ethanethiol) - VOC	2.3	02.13		
	Ethylbenzene -	10	106.16		
	HAPNOC	4.6	100.10		
	Ethylene dibromide -	1.05 00	407.00		
	HAP/VOC	1.0E-03	187.88		
	Fluorotrichloromethane -		407 00		
	voc	0.76	137.38		
	Hexane - HAP/VOC	6.6	86.18		
	Hydrogen sulfide	36	34.08		
	Mercury (total) - HAP	2.9E-04	200.61		
	Methyl ethyl kelone -				
	HAP/VOC	7.1	72.11		
	Methyl isobutyl ketone -				
	HAP/VOC	1.9	100.16		
	Mathur management				
	Methyl mercaptan - VOC	2.5	48.11		
	Pentane - VOC	3.3	72.15		
	Perchloroethylene				
	(tetrachloroethylene) -				
	НАР	3.7	165.83		
	Propane - VOC	11	44.09		
	t-1,2-Dichloroethene -				
	VOC	2.8	96.94		
	Toluene - No or				
	Unknown Co-disposal -				
	HAP/VOC	39	92.13		
	Toluene - Co-disposal -	••			
	HAP/VOC	170	92.13		
	Trichloroethylene	, T Ç	42.10		
					1
2	(trichloroethene) -	2.8	131.40		
ĕ	HAPNOC	2.0	131.40		
	Vinyl chloride -	7.3	62.50		
Pollutants		12	106.16		
	Xylenes - HAP/VOC	12	1 100.10		<u> </u>
		- 			
		: s		(1
	1			4	
		а 4 — -			
		4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Graphs

<u>Results</u>

		Total landfill gas		Methane			
(ear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
950	0	0	0	0	0	0	
951	8.213E+01	6.577E+04	4.419E+00	2.194E+01	3.288E+04	2.209E+00	
952	1.626E+02	1.302E+05	8,750E+00	4.344E+01	6.512E+04	4.375E+00	
953	2.416E+02	1.934E+05	1.300E+01	6.452E+01	9.671E+04	6.498E+00	
54	3.189E+02	2.554E+05	1,716E+01	8.518E+01	1.277E+05	8.579E+00	
955	3.947E+02	3.161E+05	2.124E+01	1.054E+02	1.580E+05	1.062E+01	
956	4.690E+02	3.756E+05	2,524E+01	1.253E+02	1.878E+05	1.262E+01	
957	5.419E+02	4.339E+05	2.915E+01	1.447E+02	2.170E+05	1.458E+01	
958	6.133E+02	4.911E+05	3.300E+01	1.638E+02	2.455E+05	1.650E+01	
959	6.833E+02	5.471E+05	3.676E+01	1.825E+02	2.736E+05	1.838E+01	
960	7.519E+02	6.021E+05	4.045E+01	2.008E+02	3.010E+05	2.023E+01	
961	8.191E+02	6.559E+05	4.407E+01	2.188E+02	3.280E+05	2.204E+01	
62	8.850E+02	7.087E+05	4.762E+01	2.364E+02	3.543E+05	2.381E+01	
63	9.496E+02	7.604E+05	5.109E+01	2.537E+02	3.802E+05	2.555E+01	
64	1.013E+03	8,111E+05	5.450E+01	2.706E+02	4.056E+05	2.725E+01	
65	1.075E+03	8.608E+05	5.784E+01	2.872E+02	4.304E+05	2.892E+01	
66	1.136E+03	9.096E+05	6.111E+01	3.034E+02	4.548E+05	3.056E+01	
67	1.196E+03	9.573E+05	6.432E+01	3.193E+02	4.787E+05	3.216E+01	
	1.172E+03	9.384E+05	6.305E+01	3.130E+02	4.692E+05	3.152E+01	
68	1.149E+03	9.198E+05	6.180E+01	3.068E+02	4.599E+05	3.090E+01	
69	1.126E+03	9.016E+05	6.058E+01	3.007E+02	4.508E+05	3.029E+01	
70		8.837E+05	5.938E+01	2.948E+02	4.419E+05	2.969E+01	
71	1.104E+03	8.662E+05	5.820E+01	2.890E+02	4.331E+05	2.910E+01	
72	1.082E+03	8,491€+05	5.705E+01	2.832E+02	4.245E+05	2.852E+01	
73	1.060E+03	8.323E+05	5.592E+01	2.776E+02	4,161E+05	2.796E+01	
74	1.039E+03	F L	5.481E+01	2,721E+02	4.079E+05	2.741E+01	
75	1.019E+03	8,158E+05	5.373E+01	2.667E+02	3.998E+05	2.686E+01	
76	9.986E+02	7.996E+05		2.615E+02	3.919E+05	2.633E+01	
977	9.788E+02	7.838E+05	5.266E+01 5.162E+01	2.563E+02	3.841E+05	2.581E+01	
978	9.594E+02	7.683E+05	1 -	2.512E+02	3.765E+05	2.530E+01	
979	9.404E+02	7.531E+05	5.060E+01	2.462E+02	3.691E+05	2.480E+01	
80	9.218E+02	7.382E+05	4.960E+01	2.402E+02 2.414E+02	3.618E+05	2.431E+01	
81	9.036E+02	7.235E+05	4.861E+01	2.366E+02	3.546E+05	2.383E+01	
82	8.857E+02	7.092E+05	4.765E+01		3.476E+05	2.335E+01	
83	8.681E+02	6.952E+05	4.671E+01	2.319E+02	3.407E+05	2.289E+01	
84	8.509E+02	6.814E+05	4.578E+01	2.273E+02	3.340E+05	2.244E+01	
85	8.341E+02	6.679E+05	4.488E+01	2.228E+02	3.340E+05	2.199E+01	
86	8.176E+02	6.547E+05	4.399E+01	2.184E+02	3.209E+05	2.156E+01	
187	8.014E+02	6.417E+05	4.312E+01	2.141E+02	3.145E+05	2.136E+01	
88	7.855E+02	6.290E+05	4.226E+01	2.098E+02	3.083E+05	2.071E+01	
89	7.700E+02	6.166E+05	4.143E+01	2.057E+02	3.083E+05 3.022E+05	2.030E+01	
90	7.547E+02	6.043E+05	4.061E+01	2.016E+02	2.962E+05	1.990E+01	
91	7.398E+02	5.924E+05	3.980E+01	1.976E+02	2.902E+05	1.951E+01	
92	7.251E+02	5.806E+05	3.901E+01	1.937E+02		1.912E+01	
993	7.108E+02	5.692E+05	3.824E+01	1.899E+02	2.846E+05	1.874E+01	
994	6.967E+02	5.579E+05	3.748E+01	1.861E+02	2.789E+05	1.837E+01	
995	6.829E+02	5.468E+05	3.674E+01	1.824E+02	2.734E+05	1.801E+01	
996	6.694E+02	5.360E+05	3.601E+01	1.788E+02	2.680E+05	1	
997	6.561E+02	5.254E+05	3.530E+01	1.753E+02	2.627E+05	1.765E+01	
998	6.431E+02	5.150E+05	3.460E+01	1.718E+02	2.575E+05	1.730E+01	
999	6.304E+02	5.048E+05	3.392E+01	1.684E+02	2.524E+05	1.696E+01	

¥		Total landfill gas		Methane			
Year	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
2000	6.179E+02	4.948E+05	3.325E+01	1.651E+02	2.474E+05	1.662E+01	
001	6.057E+02	4.850E+05	3.259E+01	1.618E+02	2.425E+05	1.629E+01	
002	5.937E+02	4.754E+05	3.194E+01	1.586E+02	2.377E+05	1,597E+01	
003	5.819E+02	4.660E+05	3.131E+01	1.554E+02	2.330E+05	1.565E+01	
004	5.704E+02	4.568E+05	3.069E+01	1.524E+02	2.284E+05	1.534E+01	
005	5.591E+02	4.477E+05	3.008E+01	1.493E+02	2.239E+05	1.504E+01	
006	5,480E+02	4.388E+05	2.949E+01	1.464E+02	2.194E+05	1.474E+01	
007	5.372E+02	4.302E+05	2.890E+01	1.435E+02	2.151E+05	1.445E+01	
800	5.266E+02	4.216E+05	2.833E+01	1.406E+02	2.108E+05	1.416E+01	
009	5.161E+02	4.133E+05	2.777E+01	1.379E+02	2.066E+05	1.388E+01	
010	5.059E+02	4.051E+05	2.722E+01	1.351E+02	2.026E+05	1.361E+01	
011	4.959E+02	3.971E+05	2.668E+01	1.325E+02	1.985E+05	1.334E+01	
012	4.861E+02	3.892E+05	2.615E+01	1.298E+02	1.946E+05	1.308E+01	
013	4.764E+02	3.815E+05	2.563E+01	1.273E+02	1.908E+05	1.282E+01	
014	4.670E+02	3.740E+05	2.513E+01	1.247E+02	1.870E+05	1.256E+01	
015	4.578E+02	3.666E+05	2.463E+01	1.223E+02	1.833E+05	1.231E+01	
016	4.487E+02	3.593E+05	2.414E+01	1.199E+02	1,796E+05	1.207E+01	
017	4.398E+02	3.522E+05	2.366E+01	1.175E+02	1.761E+05	1.183E+01	
018	4.311E+02	3.452E+05	2.319E+01	1.152E+02	1,726E+05	1.160E+01	
019	4.226E+02	3.384E+05	2.274E+01	1.129E+02	1.692E+05	1.137E+01	
020	4.142E+02	3.317E+05	2.229E+01	1.106E+02	1.658E+05	1.114E+01	
021	4.060E+02	3.251E+05	2.184E+01	1.084E+02	1.626E+05	1.092E+01	
022	3.980E+02	3.187E+05	2.141E+01	1.063E+02	1.593E+05	1.071E+01	
023	3.901E+02	3.124E+05	2.099E+01	1.042E+02	1.562E+05	1.049E+01	
024	3.824E+02	3.062E+05	2.057E+01	1.021E+02	1.531E+05	1.029E+01	
025	3.748E+02	3.001E+05	2.016E+01	1.001E+02	1.501E+05	1.008E+01	
026	3.674E+02	2.942E+05	1.977E+01	9.813E+01	1.471E+05	9.883E+00	
027	3.601E+02	2.883E+05	1.937E+01	9.618E+01	1.442E+05	9.687E+00	
028	3.530E+02	2.826E+05	1,899E+01	9.428E+01	1.413E+05	9.495E+00	
029	3.460E+02	2.770E+05	1.861E+01	9.241E+01	1_385E+05	9.307E+00	
030	3.391E+02	2.716E+05	1.825E+01	9.058E+01	1.358E+05	9.123E+00	
031	3.324E+02	2,662E+05	1.788E+01	8.879E+01	1.331E+05	8.942E+00	
032	3.258E+02	2.609E+05	1.753E+01	8.703E+01	1.305E+05	8.765E+00	
033	3,194E+02	2.557E+05	1.718E+01	8.531E+01	1.279E+05	8.591E+00	
034	3.130E+02	2.507E+05	1.684E+01	8.362E+01	1.253E+05	8.421E+00	
035	3.068E+02	2.457E+05	1.651E+01	8.196E+01	1.229E+05	8.255E+00	
036	3.008E+02	2.408E+05	1.618E+01	8.034E+01	1.204E+05	8.091E+00	
037	2.948E+02	2.361E+05	1.586E+01	7.875E+01	1.180E+05	7.931E+00	
038	2.890E+02	2.314E+05	1.555E+01	7.719E+01	1.157E+05	7.774E+00	
039	2.833E+02	2.268E+05	1.524E+01	7.566E+01	1.134E+05	7.620E+00	
040	2.776E+02	2.223E+05	1.494E+01	7.416E+01	1.112E+05	7.469E+00	
041	2.721E+02	2.179E+05	1.464E+01	7.269E+01	1.090E+05	7.321E+00	
042	2.668E+02	2.136E+05	1.435E+01	7.125E+01	1.068E+05	7.176E+00	
042	2.615E+02	2.094E+05	1.407E+01	6.984E+01	1.047E+05	7.034E+00	
043	2.563E+02	2.052E+05	1.379E+01	6.846E+01	1,026E+05	6.895E+00	
045	2.503E+02 2.512E+02	2.012E+05	1.352E+01	6.710E+01	1.006E+05	6.758E+00	
045	2.463E+02	1.972E+05	1.325E+01	6.578E+01	9.859E+04	6.624E+00	
040	2.403E+02 2.414E+02	1.933E+05	1.299E+01	6.447E+01	9.664E+04	6,493E+00	
047	2.366E+02	1.895E+05	1.273E+01	6.320E+01	9.473E+04	6.365E+00	
- F	2.319E+02	1.857E+05	1.248E+01	6.195E+01	9.285E+04	6.239E+00	
049	2.319E+02 2.273E+02	1.820E+05	1.223E+01	6.072E+01	9,101E+04	6.115E+00	
050	2.2106+02	1 1.0200-00	1 1.2202 01	0.0144.01	E QUIQUEIQU		

- 1		Total landfill gas			Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
2051	2.228E+02	1.784E+05	1.199E+01	5.952E+01	8.921E+04	5.994E+00		
2052	2.184E+02	1.749E+05	1.175E+01	5.834E+01	8.744E+04	5.875E+00		
2053	2.141E+02	1.714E+05	1.152E+01	5.718E+01	8.571E+04	5.759E+00		
2054	2.098E+02	1.680E+05	1.129E+01	5.605E+01	8.402E+04	5.645E+00		
2055	2.057E+02	1.647E+05	1.107E+01	5.494E+01	8.235E+04	5.533E+00		
2056	2.016E+02	1.614E+05	1.085E+01	5.385E+01	8.072E+04	5.424E+00		
2057	1.976E+02	1.582E+05	1.063E+01	5.279E+01	7.912E+04	5.316E+00		
2058	1.937E+02	1.551E+05	1.042E+01	5.174E+01	7.756E+04	5.211E+00		
2059	1.899E+02	1.520E+05	1.022E+01	5.072E+01	7.602E+04	5.108E+00		
2060	1.861E+02	1.490E+05	1.001E+01	4.971E+01	7.451E+04	5.007E+00		
2061	1.824E+02	1.461E+05	9.815E+00	4.873E+01	7.304E+04	4.908E+00		
2062	1.788E+02	1.432E+05	9,621E+00	4.776E+01	7.159E+04	4.810E+00		
2063	1.753E+02	1.404E+05	9.430E+00	4.682E+01	7.018E+04	4.715E+00		
2064	1.718E+02	1.376E+05	9.243E+00	4.589E+01	6.879E+04	4.622E+00		
2065	1.684E+02	1.348E+05	9.060E+00	4.498E+01	6.742E+04	4.530E+00		
2065	1.651E+02	1.322E+05	8.881E+00	4.409E+01	6.609E+04	4.441E+00		
2067	1.618E+02	1.296E+05	8.705E+00	4.322E+01	6.478E+04	4.353E+00		
2068	1.586E+02	1.270E+05	8.533E+00	4.236E+01	6.350E+04	4.266E+00		
	1.555E+02	1.245E+05	8.364E+00	4.152E+01	6.224E+04	4.182E+00		
2069 2070	1.524E+02	1.220E+05	8.198E+00	4.070E+01	6.101E+04	4.099E+00		
	1.494E+02	1.196E+05	8.036E+00	3.990E+01	5.980E+04	4.018E+00		
2071	1.464E+02	1.172E+05	7.877E+00	3.911E+01	5.862E+04	3.938E+00		
2072	1,435E+02	1.149E+05	7.721E+00	3.833E+01	5,745E+04	3.860E+00		
2073	1.407E+02	1.126E+05	7.568E+00	3.757E+01	5.632E+04	3.784E+00		
	1.379E+02	1.104E+05	7.418E+00	3.683E+01	5.520E+04	3.709E+00		
2075	1.351E+02	1.082E+05	7.271E+00	3.610E+01	5.411E+04	3.636E+00		
2076	1.325E+02	1.061E+05	7.127E+00	3.538E+01	5.304E+04	3.564E+00		
2078	1.298E+02	1.040E+05	6.986E+00	3.468E+01	5,199E+04	3.493E+00		
	1.273E+02	1.019E+05	6.848E+00	3,400E+01	5.096E+04	3.424E+00		
2079	1.248E+02	9.990E+04	6.712E+00	3.332E+01	4.995E+04	3.356E+00		
2080		9.792E+04	6.579E+00	3.266E+01	4.896E+04	3.290E+00		
2081	1.223E+02 1.199E+02	9.598E+04	6.449E+00	3.202E+01	4.799E+04	3.224E+00		
2082	1.175E+02	9.408E+04	6.321E+00	3.138E+01	4.704E+04	3.161E+00		
2083		9.408E+04 9.222E+04	6.196E+00	3.076E+01	4.611E+04	3.098E+00		
2084	1.152E+02	9.222E+04 9.039E+04	6.073E+00	3.015E+01	4.520E+04	3.037E+00		
2085	1.129E+02	9.039E+04 8.860E+04	5.953E+00	2.956E+01	4.430E+04	2.977E+00		
2086	1.106E+02	· · · · · · · · · · · · · · · · · · ·	5.835E+00	2.897E+01	4.342E+04	2.918E+00		
2087	1.085E+02	8.685E+04	5.835E+00 5.720E+00	2.840E+01	4.256E+04	2.860E+00		
2088	1.063E+02	8.513E+04	1	2.783E+01	4.172E+04	2.803E+00		
2089	1.042E+02 1.021E+02	8.344E+04 8.179E+04	5.606E+00 5.495E+00	2.728E+01	4.089E+04	2.748E+00		

Year	Carbon dioxide			NMOC			
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
1950	0	0	0	0	0	0	
1951	6.019E+01	3.288E+04	2.209E+00	9.430E-01	2.631E+02	1.768E-02	
1952	1.192E+02	6.512E+04	4.375E+00	1.867E+00	5.209E+02	3.500E-02	
953	1,770E+02	9.671E+04	6.498E+00	2.773E+00	7.737E+02	5.198E-02	
954	2.337E+02	1,277E+05	8.579E+00	3.661E+00	1.021E+03	6.863E-02	
955	2.893E+02	1.580E+05	1.062E+01	4.532E+00	1.264E+03	8.495E-02	
956	3.438E+02	1.878E+05	1.262E+01	5.385E+00	1.502E+03	1.009E-01	
957	3.971E+02	2.170E+05	1.458E+01	6.221E+00	1.736E+03	1.166E-01	
958	4.495E+02	2.455E+05	1.650E+01	7.041E+00	1.964E+03	1.320E-01	
959	5.008E+02	2.736E+05	1.838E+01	7.845E+00	2.189E+03	1.470E-01	
960	5.510E+02	3.010E+05	2.023E+01	8.632E+00	2.408E+03	1.618E-01	
961	6.003E+02	3.280E+05	2.204E+01	9.404E+00	2.624E+03	1.763E-01	
962	6.486E+02	3.543E+05	2.381E+01	1.016E+01	2.835E+03	1.905E-01	
963	6.960E+02	3.802E+05	2,555E+01	1.090E+01	3.042E+03	2.044E-01	
964	7.424E+02	4.056E+05	2.725E+01	1.163E+01	3.245E+03	2.180E-01	
965	7.879E+02	4.304E+05	2.892E+01	1.234E+01	3.443E+03	2.314E-01	
966	8.325E+02	4.548E+05	3.056E+01	1.304E+01	3.638E+03	2.445E-01	
967	8.762E+02	4.787E+05	3.216E+01	1.373E+01	3.829E+03	2.573E-01	
968	8.588E+02	4.692E+05	3.152E+01	1.345E+01	3.753E+03	2.522E-01	
969	8.418E+02	4.599E+05	3.090E+01	1.319E+01	3.679E+03	2.472E-01	
970	8.252E+02	4.508E+05	3.029E+01	1.293E+01	3.606E+03	2.423E-01	
971	8.088E+02	4.419E+05	2.969E+01	1.267E+01	3.535E+03	2.375E-01	
972	7.928E+02	4.331E+05	2.910E+01	1.242E+01	3.465E+03	2.328E-01	
973	7.771E+02	4.245E+05	2.852E+01	1.217E+01	3.396E+03	2.282E-01	
974	7.617E+02	4.161E+05	2.796E+01	1.193E+01	3.329E+03	2.237E-01	
975	7.466E+02	4.079E+05	2.741E+01	1.170E+01	3.263E+03	2.192E-01	
976	7.319E+02	3.998E+05	2.686E+01	1.146E+01	3,199E+03	2.149E-01	
977	7.174E+02	3.919E+05	2.633E+01	1.124E+01	3.135E+03	2.107E-01	
978	7.032E+02	3.841E+05	2.581E+01	1.102E+01	3,073E+03	2.065E-01	
979	6.892E+02	3.765E+05	2.530E+01	1.080E+01	3.012E+03	2.024E-01	
980	6.756E+02	3.691E+05	2.480E+01	1.058E+01	2.953E+03	1.984E-01	
981	6.622E+02	3.618E+05	2.431E+01	1.037E+01	2.894E+03	1.945E-01	
982	6.491E+02	3.546E+05	2.383E+01	1.017E+01	2.837E+03	1.906E-01	
983	6.362E+02	3.476E+05	2.335E+01	9.967E+00	2.781E+03	1.868E-01	
984	6.236E+02	3.407E+05	2.289E+01	9.770E+00	2.726E+03	1.831E-01	
985	6,113E+02	3.340E+05	2.244E+01	9.576E+00	2.672E+03	1.795E-01	
986	5.992E+02	3.273E+05	2.199E+01	9.387E+00	2.619E+03	1.760E-01	
987	5.873E+02	3.209E+05	2.156E+01	9.201E+00	2.567E+03	1.725E-01	
988	5.757E+02	3.145E+05	2.113E+01	9.019E+00	2.516E+03	1.691E-01	
989	5.643E+02	3.083E+05	2.071E+01	8.840E+00	2.466E+03	1.657E-01	
990	5.531E+02	3.022E+05	2.030E+01	8.665E+00	2.417E+03	1.624E-01	
991	5.422E+02	2.962E+05	1.990E+01	8.493E+00	2.370E+03	1.592E-01	
992	5.314E+02	2.903E+05	1.951E+01	8.325E+00	2.323E+03	1.561E-01	
993	5.209E+02	2.846E+05	1.912E+01	8.160E+00	2.277E+03	1.530E-01	
994	5.106E+02	2.789E+05	1.874E+01	7.999E+00	2.232E+03	1.499E-01	
995	5.005E+02	2.734E+05	1.837E+01	7.840E+00	2.187E+03	1.470E-01	
	4.906E+02	2.680E+05	1.801E+01	7.685E+00	2.144E+03	1.441E-01	
996		2.600E+05 2.627E+05	1.765E+01	7.533E+00	2.102E+03	1.412E-01	
997	4.809E+02	2.575E+05	1.730E+01	7.384E+00	2.060E+03	1.384E-01	
998 999	4.713E+02 4.620E+02	2.575E+05 2.524E+05	1.696E+01	7.238E+00	2.019E+03	1.357E-01	

. 1		Carbon dioxide				
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2000	4.529E+02	2.474E+05	1.662E+01	7.094E+00	1.979E+03	1.330E-01
001	4.439E+02	2.425E+05	1.629E+01	6.954E+00	1.940E+03	1.303E-01
002	4,351E+02	2.377E+05	1.597E+01	6.816E+00	1.902E+03	1.278E-01
003	4.265E+02	2.330E+05	1.565E+01	6.681E+00	1.864E+03	1.252E-01
2004	4.180E+02	2.284E+05	1.534E+01	6.549E+00	1.827E+03	1.228E-01
005	4,098E+02	2.239E+05	1.504E+01	6.419E+00	1.791E+03	1.203E-01
2006	4.017E+02	2.194E+05	1.474E+01	6.292E+00	1.755E+03	1.179E-01
007	3.937E+02	2.151E+05	1.445E+01	6.168E+00	1.721E+03	1.156E-01
008	3.859E+02	2.108E+05	1.416E+01	6.045E+00	1.687E+03	1.133E-01
009	3.783E+02	2.066E+05	1.388E+01	5.926E+00	1.653E+03	1.111E-01
010	3.708E+02	2.026E+05	1.361E+01	5.808E+00	1.620E+03	1.089E-01
011	3.634E+02	1.985E+05	1.334E+01	5.693E+00	1.588E+03	1.067E-01
012	3.562E+02	1.946E+05	1,308E+01	5.581E+00	1.557E+03	1.046E-01
		1.908E+05	1.282E+01	5.470E+00	1.526E+03	1.025E-01
2013	3.492E+02 3.423E+02	1.870E+05	1.256E+01	5.362E+00	1.496E+03	1.005E-01
014		1.833E+05	1.231E+01	5.256E+00	1,466E+03	9.851E-02
015	3.355E+02	1.796E+05	1.207E+01	5.152E+00	1.437E+03	9.656E-02
016	3.288E+02	1.761E+05	1.183E+01	5.050E+00	1.409E+03	9.465E-02
017	3.223E+02	1.726E+05	1.160E+01	4.950E+00	1.381E+03	9.278E-02
018	3.160E+02	1	1.137E+01	4.852E+00	1.353E+03	9.094E-02
019	3.097E+02	1.692E+05	1.114E+01	4,755E+00	1.327E+03	8.914E-02
020	3.036E+02	1.658E+05	1.092E+01	4.661E+00	1.300E+03	8.737E-02
021	2.976E+02	1.626E+05	1.071E+01	4,569E+00	1.275E+03	8.564E-02
022	2.917E+02	1.593E+05	1.049E+01	4.479E+00	1.249E+03	8.395E-02
023	2.859E+02	1.562E+05	1.029E+01	4.390E+00	1.225E+03	8.229E-02
2024	2.802E+02	1.531E+05	1.008E+01	4.303E+00	1.200E+03	8.066E-02
2025	2.747E+02	1.501E+05	9,883E+00	4.218E+00	1.177E+03	7.906E-02
2026	2.692E+02	1.471E+05	· · · · · · · · · · · · · · · · · · ·	4.134E+00	1.153E+03	7.749E-02
2027	2.639E+02	1.442E+05	9.687E+00	4.052E+00	1,131E+03	7.596E-02
2028	2.587E+02	1.413E+05	9.495E+00		1.108E+03	7.446E-02
2029	2.536E+02	1.385E+05	9.307E+00	3.972E+00	1.086E+03	7.298E-02
2030	2.485E+02	1.358E+05	9.123E+00	3.893E+00	1.065E+03	7.154E-02
2031	2.436E+02	1.331E+05	8.942E+00	3.816E+00	1.044E+03	7.012E-02
2032	2.388E+02	1.305E+05	8.765E+00	3.741E+00	1.023E+03	6.873E-02
2033	2.341E+02	1.279E+05	8.591E+00	3.667E+00	1.003E+03	6.737E-02
2034	2.294E+02	1.253E+05	8.421E+00	3.594E+00	9.828E+02	6.604E-02
2035	2.249E+02	1.229E+05	8.255E+00	3.523E+00	9.634E+02	6.473E-02
2036	2.204E+02	1.204E+05	8.091E+00	3.453E+00	9.443E+02	6.345E-02
2037	2.161E+02	1.180E+05	7.931E+00	3.385E+00	t .	6.219E-02
2038	2.118E+02	1.157E+05	7.774E+00	3.318E+00	9.256E+02	6.096E-02
2039	2.076E+02	1.134E+05	7.620E+00	3.252E+00	9.073E+02	5.975E-02
2040	2.035E+02	1.112E+05	7.469E+00	3.188E+00	8.893E+02	5.857E-02
2041	1.995E+02	1.090E+05	7.321E+00	3.125E+00	8.717E+02	5.857E-02 5.741E-02
2042	1.955E+02	1.068E+05	7.176E+00	3.063E+00	8.544E+02	
2043	1.916E+02	1.047E+05	7.034E+00	3.002E+00	8.375E+02	5.627E-02
2044	1.878E+02	1.026E+05	6.895E+00	2.943E+00	8.209E+02	5.516E-02
2045	1.841E+02	1.006E+05	6.758E+00	2.884E+00	8.047E+02	5.407E-02
2046	1.805E+02	9.859E+04	6.624E+00	2.827E+00	7.887E+02	5.300E-02
2047	1,769E+02	9.664E+04	6.493E+00	2.771E+00	7.731E+02	5.195E-02
2048	1.734E+02	9.473E+04	6.365E+00	2.716E+00	7.578E+02	5.092E-02
2049	1.700E+02	9.285E+04	6 239E+00	2.663E+00	7.428E+02	4,991E-02
2050	1.666E+02	9.101E+04	6.115E+00	2.610E+00	7.281E+02	4.892E-02

		Carbon dioxide			NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
2051	1.633E+02	8.921E+04	5.994E+00	2.558E+00	7.137E+02	4.795E-02		
2052	1.601E+02	8.744E+04	5.875E+00	2.508E+00	6.996E+02	4.700E-02		
2053	1.569E+02	8.571E+04	5.759E+00	2.458E+00	6.857E+02	4.607E-02		
2054	1.538E+02	8.402E+04	5.645E+00	2.409E+00	6.721E+02	4.516E-02		
2055	1.507E+02	8.235E+04	5.533E+00	2.361E+00	6.588E+02	4.427E-02		
2056	1.478E+02	8.072E+04	5.424E+00	2.315E+00	6.458E+02	4.339E-02		
2057	1.448E+02	7.912E+04	5.316E+00	2.269E+00	6.330E+02	4.253E-02		
2058	1.420E+02	7.756E+04	5.211E+00	2.224E+00	8.204E+02	4.169E-02		
2059	1.392E+02	7.602E+04	5.108E+00	2.180E+00	6.082E+02	4.086E-02		
2060	1.364E+02	7.451E+04	5.007E+00	2.137E+00	5.961E+02	4.005E-02		
2061	1.337E+02	7.304E+04	4.908E+00	2.094E+00	5.843E+02	3.926E-02		
2062	1.311E+02	7.159E+04	4.810E+00	2.053E+00	5.727E+02	3.848E-02		
2063	1.285E+02	7.018E+04	4.715E+00	2.012E+00	5.614E+02	3.772E-02		
2064	1.259E+02	6.879E+04	4.622E+00	1.972E+00	5.503E+02	3.697E-02		
2065	1.234E+02	6.742E+04	4.530E+00	1.933E+00	5.394E+02	3 624E-02		
2066	1.210E+02	6.609E+04	4.441E+00	1.895E+00	5.287E+02	3.552E-02		
2067	1.186E+02	6.478E+04	4.353E+00	1.858E+00	5.182E+02	3.482E-02		
2068	1.162E+02	6.350E+04	4.266E+00	1.821E+00	5.080E+02	3.413E-02		
2069	1.139E+02	6.224E+04	4.182E+00	1.785E+00	4.979E+02	3.346E-02		
2070	1.117E+02	6.101E+04	4.099E+00	1.749E+00	4.881E+02	3.279E-02		
2071	1.095E+02	5.980E+04	4.018E+00	1.715E+00	4.784E+02	3.214E-02		
2072	1.073E+02	5.862E+04	3.938E+00	1.681E+00	4.689E+02	3.151E-02		
2073	1.052E+02	5.745E+04	3.860E+00	1.648E+00	4.596E+02	3.088E-02		
2074	1.031E+02	5.632E+04	3.784E+00	1.615E+00	4.505E+02	3.027E-02		
2075	1.010E+02	5.520E+04	3.709E+00	1.583E+00	4.416E+02	2.967E-02		
2076	9.905E+01	5.411E+04	3.636E+00	1.552E+00	4.329E+02	2.908E-02		
2077	9.709E+01	5.304E+04	3.564E+00	1.521E+00	4.243E+02	2.851E-02		
2078	9.516E+01	5.199E+04	3.493E+00	1.491E+00	4.159E+02	2.794E-02		
2079	9.328E+01	5.096E+04	3.424E+00	1.461E+00	4.077E+02	2.739E-02		
2080	9.143E+01	4.995E+04	3.356E+00	1.432E+00	3.996E+02	2.685E-02		
2081	8.962E+01	4.896E+04	3.290E+00	1.404E+00	3.917E+02	2.632E-02		
2082	8.785E+01	4.799E+04	3.224E+00	1.376E+00	3.839E+02	2.580E-02		
2083	8.611E+01	4.704E+04	3.161E+00	1.349E+00	3.763E+02	2.528E-02		
2084	8.440E+01	4.611E+04	3.098E+00	1.322E+00	3.689E+02	2.478E-02		
2085	8.273E+01	4.520E+04	3.037E+00	1.296E+00	3.616E+02	2.429E-02		
2086	8.109E+01	4.430E+04	2.977E+00	1.270E+00	3.544E+02	2.381E-02		
2087	7.949E+01	4.342E+04	2.918E+00	1.245E+00	3.474E+02	2.334E-02		
2088	7.791E+01	4.256E+04	2.860E+00	1.221E+00	3.405E+02	2.288E-02		
2089	7.637E+01	4.172E+04	2.803E+00	1.196E+00	3.338E+02	2.243E-02		
2090	7.486E+01	4.089E+04	2.748E+00	1.173E+00	3.272E+02	2.198E-02		

Appendix 2 Second Computer Model Run

FIGURE 2

Summary Report

Landfill Name or Identifier: MVS Landfill Colorado Springs, CO

Date: Monday, March 07, 2011

Description/Comments:

This computer run considers wet conditions based on creek as bottom of landfill

Ç

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10} \right) e^{-kt_{ij}}$$

Where,

Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year')

L_a = potential methane generation capacity (m³/Mg)

 M_i = mass of waste accepted in the ith year (Mg) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (decimal years, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS Landfill Open Year Landfill Closure Year (with 80-year limit) Actual Closure Year (without limit) Have Model Calculate Closure Year?	1950 19 66 1966 No	
Waste Design Capacity	182,500	short tons
MODEL PARAMETERS Methane Generation Rate, k	0.700	year '
Potential Methane Generation Capacity, Lo	96	m³/Mg
NMOC Concentration	4,000	ppmv as hexane
Methane Content	60	% by volume

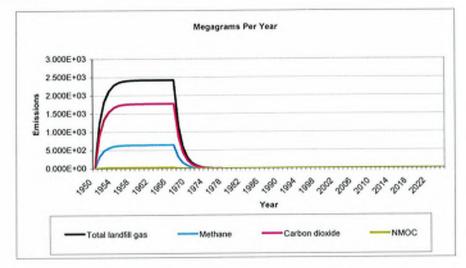
GASES / POLLUTANTS :	SELECTED
Gas / Poliutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

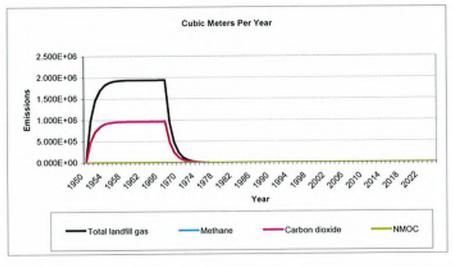
WASTE ACCEPTANCE RATES

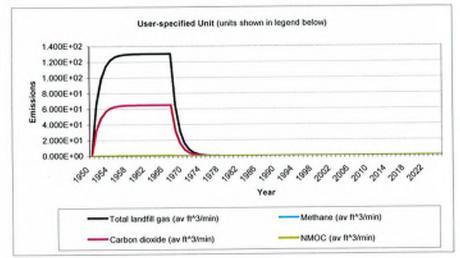
Innel	Waste Acc		Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1950	9,759	10,735	0	(
951	9,759	10,735	9,759	10,735	
952	9,759	10,735	19,518	21,47(
953	9,759	10,735	29,277	32,205	
954	9,759	10,735	39,036	42,940	
955	9,759	10,735	48,795	53,675	
956	9,759	10,735	58,555	64,410	
957	9,759	10,735	68,314	75,14	
958	9,759	10,735	78,073	85,88	
959	9,759	10,735	87,832	96,61	
960	9,759	10,735	97,591	107,35	
961	9,759	10,735	107,350	118,08	
962	9,759	10,735	117,109	128,82	
963	9,759	10,735	126,868	139,55	
964	9,759	10,735	136,627	150,29	
965	9,759	10,735	146,386	161,02	
966	9,759	10,735	156,145	171,76	
967	0	0	165,905	182,49	
968	0	0	165,905	182,49	
969	Ö	Ö	165,905	182,49	
970	0	0	165,905	182,49	
971	0	0	165,905	182,49	
1972	0	0	165,905	182,49	
1973	0	0	165,905	182,49	
1974	Ö	Ö	165,905	182,49	
1975	0	· 0	165,905	182,49	
1976		0	165,905	182,49	
1977	0	0	165,905	182,49	
1978	0	0	165,905	182,49	
1979	0		165,905	182,49	
1980	0 Ó	0 Ō	165,905	182,49	
1981	0	0	165,905	182,49	
1982	0			182,49	
983	0			182,49	
984	0			182,49	
1985	1			182,49	
1986			165,905	182,49	
1987	1		165,905	182,49	
1988	1			182,49	
1000	Ŏ		165,905	182,49	

3/7/2011

WASTE ACCEPTANCE RATES (Continued)


	Waste Acc	epted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	<u>(Mg)</u>	(short tons)	
1990	0	0	165,905	182,495	
1991	. 0	0	165,905	182,495	
1992	0	0	165,905	182,495	
1993	Ó	0	165,905	182,495	
1994	0	0	165,905	182,495	
1995	0	0	165,905	182,495	
1996	0		165,905	182,495	
1997	0	0	165,905	182,495	
1998	0	0	165,905	182,495	
1999	Ó	0	165,905	182,495	
2000	0	0	165,905	182,495	
2001	0	0	165,905	182,495	
2002	0	0	165,905	182,495	
2003	0	0	165,905	182,495	
2004	0	0	165,905	182,495	
2005	0	0	165,905	182,495	
2006	0	0	165,905	182,495	
2007	0	0	165,905	182,495	
2008	0	0	165,905	182,495	
2009	0	0	165,905	182,495	
2010	0	0	165,905	182,495	
2011	0	0	165,905	182,495	
2012	0	0	165,905	182,495	
2013	0	0	165,905	182,495	
2014	0	0	165,905	182,495	
2015	0	0	165,905	182,495	
2016	0	0	165,905	182,495	
2017	0	0	165,905	182,495	
2018	0	0	165,905		
2019	0	Ó	165,905	1	
2020	0	0	165,905		
2021	0	0	165,905		
2022	0	0	165,905		
2023	0	0	165,905		
2024	0	0	165,905		
2025	0	0	165,905		
2026	0		165,905		
2027	0	0			
2028	Ò	0	165,905		
2029	Ó	0	165,905	182,495	


	tant Default Param Concentration		Concentration	lutant Parameters:
Compound	(ppniv)	Molecular Weight	(ppmv)	Molecular Weight
Total landfill das	()))///////////////////////////////////	0.00		
Methane Carbon dioxide		16.04		
Carbon dioxide		44.01		
NMOC	4,000	86.18		
1,1,1-Trichloroethane	1.4.4.4			
(methyl chloroform) -				
HAP	0.48	133.41		
1,1,2,2-	0.40			-
Tetrachloroethane -				
HAPNOC	1.1	167.85		
1,1-Dichloroethane		101.00		
(ethylidene dichloride) - HAP/VOC	2.4	98.97		
1	£.4	30.31		
1,1-Dichloroethene				
(vinylidene chloride) -	0.20	96.94		
HAP/VOC	0.20	90,94		E
1,2-Dichloroethane				
(ethylene dichloride) -	0.44	98.96		
HAP/VOC	0.41	90.80		
1,2-Dichloropropane				
(propylene dichloride) -	.	140.00		1
HAP/VOC	0.18	112.99		
2-Propanol (isopropyl				
alcohol) - VOC	50	60.11		
Acetone	7.0	58.08	1	
Acrylonitrile - HAP/VOC				
Actylonidile - Tha ACO	6.3	53.06		
Benzene - No or				
Unknown Co-disposal -				
HAP/VOC	1.9	78.11	ł	
Benzene - Co-disposal -				
u HAP/VOC	11	78.11		
Bromodichloromethane -			Į	
Bromodichloromethane - VOC Butane - VOC	3.1	163.83		
Butane - VOC	5.0	58,12		
Carbon disulfide -				1
HAP/VOC	0.58	76.13		
Carbon monoxide	140	28.01		1
Carbon tetrachloride -				
HAP/VOC	4.0E-03	153.84		
Carbonyl sulfide -				
HAP/VOC	0.49	60.07	1	
Chlorobenzene -				
HAP/VOC	0.25	112.56		
Chlorodifluoromethane	1.3	86.47		
Chloroethane (ethyl				
chloride) - HAP/VOC	1.3	64.52		
Chloroform - HAP/VOC	0.03	119.39	1	
Chloromethane - VOC	1.2	50.49		
				ţ
Dichlorobenzene - (HAP				
for para isomer/VOC)	0.21	147	1	
Dichlorodifluoromethane				
Dictitorodinuorometnane	16	120.91		
Dichlorofluoromethane -				
VOC	2.6	102.92		
Dichloromethane			1	1
(methylene chloride) -]	1	
HAP	14	84.94	1	
Dimethyl sulfide (methyl		1	1	l l
sulfide) - VOC	7.8	62.13		
Ethane	890	30.07		
Ethanol - VOC	27	46.08		
		1	•	•


Pollutant Parameters (Continued)

(E F E	Compound Ethyl mercaptan (ethanethiol) - VOC Ethylbenzene -	Concentration (ppmv) 2.3	Molecular Weight 62.13	Concentration (ppmv)	Molecular Weight
(E F E	Ethyl mercaptan (ethanethiol) - VOC	#*************************************		(ppmv)	I WOIECUIAR Weight
(E F E	(ethanethiol) - VOC	2.3	62.13		
E		2.3	1 62.13 1		
ł	Ethylbenzene -		52.70		
E					
	HAP/VOC	4.6	106.16		
1	Ethylene dibromide -		1		
	HAP/VOC	1.0E-03	187.88		
F	Fluorotrichloromethane -				
	voc	0.76	137.38		
	Hexane - HAP/VOC	6.6	86.18		
	Hydrogen sulfide	36	34.08		1
	Mercury (total) - HAP	2.9E-04	200.61		
		2.06-04	200.01		
	Methyl ethyl ketone -	7.1	72.11		
	HAPNOC	1.1	14.11		
	Methyl isobulyl ketone -				
ł	HAP/VOC	1,9	100.16		
	Methyl mercaptan - VOC				
11	weinyr mercaptan - voo	2.5	48.11		
f	Pentane - VOC	3.3	72.15		
	Perchloroethylene				ł
	(tetrachloroethylene) -				
	HAP	3.7	165.83		
		11	44.09		
	Propane - VOC	F F	44.09		}
	I-1,2-Dichloroethene -		00.07		
	voc	2.8	96.94		
	Toluene - No or				
1	Unknown Co-disposal - 🛛				
	HAP/VOC	39	92.13		1
	Toluene - Co-disposal -				
	HAP/VOC	170	92.13		
	Trichloroethylene		Vav		
) [(trichloroethene) -	~ ~	404.40		
; F	HAPNOC	2.8	131.40		
	Vinyl chloride -				
	HAP/VOC	7.3	62.50		
• •	Xylenes - HAP/VOC	12	106.16		
		· · · ·			
1			- 1		
ł					
1		1			
		1			
		r			
ļ	1	í :	3		
					ł
1					
					1
					1
		î l			1
					1
		x			
					-
		j .			
		i.			
		1			
	- -				
	·				

Graphs

FIGURE 2

<u>Results</u>

		Total landfill gas			Methane			
'ear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)		
950	0	0	0	0	0	0		
951	1.220E+03	9.767E+05	6.562E+01	3.258E+02	4.883E+05	3.281E+01		
152	1.825E+03	1.462E+06	9.821E+01	4.876E+02	7.308E+05	4.910E+01		
53	2.126E+03	1.703E+06	1,144E+02	5.679E+02	8.513E+05	5.720E+01		
53 54	2.275E+03	1.822E+06	1,224E+02	6.078E+02	9.111E+05	6.121E+01		
55	2.350E+03	1.882E+06	1.264E+02	6.276E+02	9.408E+05	6.321E+01		
55 56	2.387E+03	1.911E+06	1.284E+02	6.375E+02	9.555E+05	6.420E+01		
57	2.405E+03	1.926E+06	1.294E+02	6.423E+02	9.628E+05	6.469E+01		
58	2.414E+03	1.933E+06	1.299E+02	6.448E+02	9.665E+05	6.494E+01		
59	2.418E+03	1.937E+06	1.301E+02	6.460E+02	9.683E+05	6.506E+01		
59 60	2.421E+03	1.938E+06	1.302E+02	6.466E+02	9.692£+05	6.512E+01		
	2.422E+03	1.939E+06	1.303E+02	6.469E+02	9.696E+05	6.515E+01		
61	2.422E+03	1.940E+06	1.303E+02	6.470E+02	9,698E+05	6.516E+01		
62		1.940E+06	1.303E+02	6.471E+02	9.699E+05	6.517E+01		
63	2.423E+03 2.423E+03	1.940E+06	1.303E+02	6.471E+02	9.700E+05	6.517E+01		
64	2.423E+03 2.423E+03	1.940E+06	1.304E+02	6.471E+02	9.700E+05	6.518E+01		
65		1.940E+06	1.304E+02	6.472E+02	9.700E+05	6.518E+01		
66	2.423E+03 2.423E+03	1.940E+06	1.304E+02	6.472E+02	9.700E+05	6.518E+01		
67		9.634E+05	6.473E+01	3.214E+02	4.817E+05	3.237E+01		
68	1,203E+03	4.784E+05	3.214E+01	1.596E+02	2.392E+05	1.607E+01		
69	5.975E+02	2.376E+05	1,596E+01	7.925E+01	1.188E+05	7.981E+00		
70	2.967E+02	1.180E+05	7.927E+00	3.935E+01	5.899E+04	3.963E+00		
71	1.473E+02	5.859E+04	3.936E+00	1.954E+01	2.929E+04	1.968E+00		
72	7.316E+01	2.909E+04	1.955E+00	9.705E+00	1.455E+04	9.774E-01		
73	3.633E+01	1.445E+04	9.707E-01	4.819E+00	7.223E+03	4.853E-01		
74	1.804E+01		4.820E-01	2.393E+00	3.587E+03	2.410E-01		
75	8.959E+00	7.174E+03	2,394E-01	1.188E+00	1.781E+03	1.197E-01		
76	4.449E+00	3.563E+03	1.189E-01	5.901E-01	8.846E+02	5.943E-02		
77	2.209E+00	1.769E+03	5.903E-02	2.931E-01	4,393E+02	2.951E-02		
78	1.097E+00	8.785E+02	2.931E-02	1.455E-01	2.181E+02	1.466E-02		
79	5.448E-01	4.363E+02	1.456E-02	7.227E-02	1.083E+02	7.278E-03		
80	2.705E-01	2.166E+02	7.228E-03	3.589E-02	5.379E+01	3.614E-03		
81	1.343E-01	1.076E+02		1.782E-02	2.671E+01	1.795E-03		
82	6.672E-02	5.342E+01	3.589E-03	8.849E-03	1.326E+01	8,912E-04		
83	3.313E-02	2.653E+01	1.782E-03	4.394E-03	6.587E+00	4.426E-04		
84	1.645E-02	1.317E+01	8.852E-04	2.182E-03	3.271E+00	2.198E-04		
85	8.170E-03	6.542E+00	4.396E-04	1.084E-03	1.624E+00	1.091E-04		
86	4.057E-03	3.249E+00	2.183E-04	5.381E-04	8,066E-01	5.420E-05		
87	2.015E-03	1.613E+00	1.084Ē-04	2.672E-04	4.006E-01	2.691E-05		
88	1.000E-03	8.011E-01	5.383E-05	1.327E-04	1.989E-01	1.336E-05		
89	4.968E-04	3.978E-01	2.673E-05		9.878E-02	6.637E-06		
90	2.467E-04	1.976E-01	1.327E-05	6.590E-05 3.272E-05	4.905E-02	3.296E-06		
91	1,225E-04	9.810E-02	6.591E-06		2.436E-02	1.637E-06		
192	6.084E-05	4.872E-02	3.273E-06	1.625E-05	1.210E-02	8.127E-07		
993	3.021E-05	2.419E-02	1.625E-06	8.070E-06 4.007E-06	6.007E-03	4.036E-07		
994	1.500E-05	1.201E-02	8.072E-07	1	2.983E-03	2.004E-07		
995	7.450E-06	5.966E-03	4.008E-07	1.990E-06 9.882E-07	2.963E-03	9.952E-08		
996	3.699E-06	2.962E-03	1.990E-07		7.355E-04	4.942E-08		
997	1.837E-06	1.471E-03	9.884E-08	4.907E-07	3.653E-04	2.454E-08		
998	9.123E-07	7.305E-04	4.908E-08	2.437E-07	1.814E-04	1.219E-08		
999]	4.530E-07	3.628E-04	2.437E-08	1.210E-07	1.0190-04	1.2106-00		

Year	Total landfill gas			Methane			
rear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
000	2.250E-07	1.801E-04	1.210E-08	6.009E-08	9.007E-05	6.052E-09	
001	1.117E-07	8.946E-05	6.011E-09	2.984E-08	4.473E-05	3.005E-09	
002	5.548E-08	4 442E-05	2.985E-09	1.482E-08	2.221E-05	1.492E-09	
003	2.755E-08	2.206E-05	1.482E-09	7.359E-09	1 103E-05	7.411E-10	
004	1.368E-08	1.095E-05	7.360E-10	3.654E-09	5.477E-06	3.680E-10	
005	6.793E-09	5.440E-06	3.655E-10	1.815E-09	2.720E-06	1.828E-10	
006	3.374E-09	2.701E-06	1.815E-10	9.011E-10	1.351E-06	9.075E-11	
007	1.675E-09	1.341E-06	9.013E-11	4.475E-10	6.707E-07	4.507E-11	
008	8.319E-10	6.661E-07	4.476E-11	2.222E-10	3.331E-07	2.238E-11	
009	4.131E-10	3.308E-07	2.223E-11	1,103E-10	1.654E-07	1.111E-11	
010	2.051E-10	1,643E-07	1.104E-11	5.480E-11	8.213E-08	5.519E-12	
111	1.019E-10	8.157E-08	5.481E-12	2.721E-11	4.079E-08	2.740E-12	
12	5.059E-11	4.051E-08	2.722E-12	1.351E-11	2.025E-08	1.361E-12	
13	2.512E-11	2.012E-08	1.352E-12	6.710E-12	1.006E-08	6.758E-13	
14	1.247E-11	9.989E-09	6.712E-13	3.332E-12	4.995E-09	3.356E-13	
15	6.195E-12	4.960E-09	3.333E-13	1.655E-12	2.480E-09	1.666E-13	
16	3.076E-12	2.463E-09	1.655E-13	8.217E-13	1.232E-09	8.275E-14	
17	1.528E-12	1.223E-09	8.219E-14	4.080E-13	6.116E-10	4.109E-14	
18	7.586E-13	6.074E-10	4.081E-14	2.026E-13	3.037E-10	2.041E-14	
19	3.767E-13	3.016E-10	2.027E-14	1.006E-13	1.508E-10	1.013E-14	
20	1.871E-13	1.498E-10	1.006E-14	4.997E-14	7.490E-11	5.032E-15	
21	9.289E-14	7.439E-11	4.998E-15	2.481E-14	3.719E-11	2.499E-15	
22	4.613E-14	3.694E-11	2.482E-15	1.232E-14	1.847E-11	1.241E-15	
22	2.291E-14	1.834E-11	1_232E-15	6.119E-15	9.172E-12	6.162E-16	
		9.109E-12	6.120E-16	3.039E-15	4.554E-12	3.060E-16	
24	1.138E-14	4.523E-12	3.039E-16	1.509E-15	2.262E-12	1.520E-16	
25	5.649E-15	2.246E-12	1.509E-16	7.493E-16	1.123E-12	7.546E-17	
26	2.805E-15	1.115E-12	7.495E-17	3.721E-16	5.577E-13	3.747E-17	
27	1.393E-15	5.539E-13	3.722E-17	1.848E-16	2.770E-13	1.861E-17	
28	6.917E-16			9.176E-17	1.375Ë-13	9.241E-18	
29	3.435E-16	2.751E-13	1.848E-17	4.556E-17	6.830E-14	4.589E-18	
30	1.706E-16	1.366E-13	9.178E-18	2.263E-17	3.392E-14	2,279E-18	
31	8.471Ë-17	6.783E-14	4.558E-18		1.684E-14	1.132E-18	
32	4.207E-17	3.368E-14	2.263E-18	1,124E-17	8.363E-15	5.619E-19	
33	2.089E-17	1.673E-14	1.124E-18	5.580E-18	4.153E-15	2.790E-19	
34	1.037E-17	8.306E-15	5.581E-19	2.771E-18	2.062E-15	1.386E-19	
35	5.151E-18	4.125E-15	2.771E-19	1.376E-18 6.833E-19	1.024E-15	6.881E-20	
36	2.558E-18	2.048E-15	1.376E-19 6.834E-20		5.086E-16	3.417E-20	
37	1.270E-18	1.017E-15		3.393E-19	2.526E-16	1.697E-20	
38	6.308E-19	5.051E-16	3.394E-20	1.685E-19	1.254E-16	8.427E-20	
39	3.132E-19	2.508E-16	1.685E-20	8.367E-20		4.185E-21	
40	1.556E-19	1.246E-16	8.369E-21	4.155E-20	6.228E-17	4.185E-21 2.078E-21	
)41	7.724E-20	6.185E-17	4.156E-21	2.063E-20	3.093E-17	1.032E-21	
42	3.836E-20	3.072E-17	2.064E-21	1.025E-20	1.536E-17		
43	1.905E-20	1.525E-17	1.025E-21	5.088E-21	7.626E-18	5.124E-22	
)44	9.459E-21	7.574E-18	5 089E-22	2.527E-21	3.787E-18	2.545E-22	
)45	4.697E-21	3.761E-18	2.527E-22	1.255E-21	1.881E-18	1.264E-22	
046	2.333E-21	1.868E-18	1.255E-22	6.231E-22	9.339E-19	6.275E-23	
047	1.158E-21	9.275E-19	6.232E-23	3.094E-22	4.638E-19	3.116E-23	
D46	5.752E-22	4.606E-19	3.095E-23	1.536E-22	2.303E-19	1.547E-23	
049	2.856E-22	2.287E-19	1.537E-23	7.630E-23	1.144E-19	7.684E-24	
050	1.418E-22	1.136E-19	7.632E-24	3.789E-23	5.679E-20	3.816E-24	

	Total landfill gas				Methane	
Year —	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2051	7.044E-23	5.640E-20	3.790E-24	1.881E-23	2.820E-20	1,895E-24
2052	3.498E-23	2.801E-20	1.882E-24	9.343E-24	1.400E-20	9.410E-25
053	1.737E-23	1.391E-20	9.345E-25	4.640E-24	6.954E-21	4.673E-25
2054	8.626E-24	6.907E-21	4.641E-25	2.304E-24	3.453E-21	2.320E-25
2055	4.283E-24	3.430E-21	2.305E-25	1.144E-24	1.715E-21	1.152E-25
2056	2.127E-24	1.703E-21	1.144E-25	5.682E-25	8.516E-22	5.722E-26
2057	1.056E-24	8.458E-22	5.683E-26	2.821E-25	4.229E-22	2.841E-26
2058	5.245E-25	4.200E-22	2.822E-26	1.401E-25	2.100E-22	1.411E-26
059	2.605E-25	2.086E-22	1.401E-26	6.957E-26	1.043E-22	7.007E-27
2060	1.293E-25	1.036E-22	6.959E-27	3.455E-26	5.179E-23	3.480E-27
2061	6.423E-26	5.143E-23	3.456E-27	1.716E-26	2.572E-23	1.728E-27
2062	3.190E-26	2.554E-23	1.716E-27	8.520E-27	1.277E-23	8.580E-28
2063	1.584E-26	1.268E-23	8.522E-28	4.231E-27	6.342E-24	4.261E-28
2064	7.865E-27	6.298E-24	4.232E-28	2.101E-27	3.149E-24	2.116E-28
2065	3,906E-27	3.128E-24	2.101E-28	1.043E-27	1.564E-24	1.051E-28
2066	1.940E-27	1.553E-24	1.044E-28	5.181E-28	7.766E-25	5.218E-29
2067	9.632E-28	7.713E-25	5.182E-29	2.573E-28	3.856E-25	2.591E-29
2068	4.783E-28	3.830E-25	2.573E-29	1.278E-28	1.915E-25	1.287E-29
2069	2.375E-28	1.902E-25	1.278E-29	6.344E-29	9.510E-26	6.390E-30
2070	1.179E-28	9.445E-26	6.346E-30	3.151E-29	4.722E-26	3.173E-30
2071	5.857E-29	4.690E-26	3.151E-30	1.564E-29	2.345E-26	1.576E-30
2072	2.909E-29	2.329E-26	1.565E-30	7.769E-30	1.165E-26	7.824E-31
2073	1.444E-29	1.157E-26	7.771E-31	3.858E-30	5.783E-27	3.885E-31
2074	7.172E-30	5.743E-27	3.859E-31	1,916E-30	2.872E-27	1.929E-31
2075	3.562E-30	2.852E-27	1.916E-31	9.514E-31	1.426E-27	9.581E-32
2076	1.769E-30	1.416E-27	9.516E-32	4,724E-31	7.081E-28	4.758E-32
2077	8.783E-31	7.033E-28	4.726E-32	2.346E-31	3.517E-28	2.363E-32
2078	4.362E-31	3.493E-28	2.347E-32	1.165E-31	1.746E-28	1.173E-32
2079	2.166E-31	1.734E-28	1,165E-32	5.785E-32	8.672E-29	5.826E-33
2079	1.076E-31	8.612E-29	5.787E-33	2.873E-32	4.306E-29	2.893E-33
	5.341E-32	4.277E-29	2.874E-33	1.427E-32	2.138E-29	1.437E-33
2081	5.341E-32 2.652E-32	2.124E-29	1.427E-33	7.084E-33	1.062E-29	7.135E-34
2082		1.055E-29	7.086E-34	3.518E-33	5.273E-30	3.543E-34
2083	1.317E-32	5.237E-30	3.519E-34	1.747E-33	2.619E-30	1.759E-34
2084	6.540E-33	2.601E-30	1.747E-34	8.675E-34	1.300E-30	8.737E-35
2085	3.248E-33	1.291E-30	8.677E-35	4.308E-34	6.457E-31	4.339E-35
2086	1.613E-33	6.413E-31	4,309E-35	2.139E-34	3.207E-31	2.155E-35
2087	8.009E-34		2.140E-35	1.062E-34	1.592E-31	1.070E-35
2088	3.977E-34	3.185E-31	1	5.275E-35	7.908E-32	5.313E-36
2089	1.975E-34	1.582E-31	1.063E-35			2.638E-36
2089	9.808E-35	7.854E-32	5.277E-36	2.620E-35	3.927E-32	2.63

۰.

Year	Carbon dioxide				NMOC	E
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
1950	0	0	0	0	0	0
951	8.939E+02	4.883E+05	3.281E+01	1.400E+01	3.907E+03	2.625E-01
952	1.338E+03	7.308E+05	4.910E+01	2.096E+01	5.847E+03	3.928E-01
953	1.558E+03	8.513E+05	5.720E+01	2.441E+01	6.810E+03	4.576E-01
954	1.668E+03	9.111E+05	6.121E+01	2.613E+01	7.288E+03	4.897E-01
955	1.722E+03	9.408E+05	6.321E+01	2.698E+01	7.526E+03	5.057E-01
956	1.749E+03	9.555E+05	6.420E+01	2.740E+01	7.644E+03	5.136E-01
957	1.762E+03	9.628E+05	6.469E+01	2.761E+01	7.703E+03	5,175E-01
958	1.769E+03	9.665E+05	6.494E+01	2.771E+01	7.732E+03	5.195E-01
959	1.772E+03	9.683E+05	6.506E+01	2.777E+01	7.746E+03	5.205E-01
1960	1.774E+03	9.692E+05	6.512E+01	2.779E+01	7.753E+03	5.209E-01
961	1.775E+03	9.696E+05	6.515E+01	2.780E+01	7.757E+03	5.212E-01
962	1.775E+03	9.698E+05	6.516E+01	2.781E+01	7.759E+03	5.213E-01
963	1.775E+03	9.699E+05	6.517E+01	2.781E+01	7.759E+03	5.214E-01
964	1.776E+03	9.700E+05	6.517E+01	2.782E+01	7.760E+03	5.214E-01
965	1.776E+03	9.700E+05	6.518E+01	2.782E+01	7.760E+03	5.214E-01
966	1.776E+03	9.700E+05	6.518E+01	2.782E+01	7.760E+03	5.214E-01
967	1.776E+03	9.700E+05	6.518E+01	2.782E+01	7.760E+03	5.214E-01
968	8.818E+02	4.817E+05	3.237E+01	1.381E+01	3.854E+03	2.589E-01
969	4.379E+02	2.392E+05	1.607E+01	6.859E+00	1.914E+03	1.286E-01
970	2.174E+02	1.188E+05	7.981E+00	3.406E+00	9.503E+02	6.385E-02
971	1.080E+02	5.899E+04	3.963E+00	1.692E+00	4.719E+02	3.171E-02
972	5.362E+01	2.929E+04	1.968E+00	8.400E-01	2.343E+02	1.575E-02
973	2.663E+01	1,455E+04	9.774E-01	4.171E-01	1.164E+02	7.819E-03
974	1.322E+01	7.223E+03	4,853E-01	2.071E-01	5.779E+01	3.883E-03
975	6.566E+00	3.587E+03	2.410E-01	1.029E-01	2.870E+01	1.928E-03
1976	3.261E+00	1.781E+03	1.197E-01	5.108E-02	1.425E+01	9.575E-04
1977	1.619E+00	8.846E+02	5.943E-02	2.537E-02	7.076E+00	4.755E-04
978	8.041E-01	4.393E+02	2.951E-02	1.260E-02	3.514E+00	2.361E-04
1979	3.993E-01	2.181E+02	1.466E-02	6.255E-03	1.745E+00	1.172E-04
980	1.983E-01	1,083E+02	7.278E-03	3.106E-03	8.666E-01	5.822E-05
981	9.846E-02	5.379E+01	3.614E-03	1.542E-03	4.303E-01	2.891E-05
982	4.890E-02	2.671E+01	1.795E-03	7.660E-04	2.137E-01	1.436E-05
1983	2.428E-02	1.326E+01	8.912E-04	3,804E-04	1.061E-01	7.130E-06
1984	1,206E-02	6.587E+00	4.426E-04	1.889E-04	5.270E-02	3.541E-06
1985	5.988E-03	3.271E+00	2.198E-04	9.380E-05	2.617E-02	1.758E-06
1986	2.973E-03	1.624E+00	1.091E-04	4.658E-05	1.299E-02	8.731E-07
1987	1.477E-03	8.066E-01	5,420E-05	2.313E-05	6.453E-03	4.336E-07
1988	7.332E-04	4.006E-01	2.691E-05	1,149E-05	3.204E-03	2.153E-07
1989	3.641E-04	1.989E-01	1.336E-05	5.704E-06	1.591E-03	1.069E-07
1990	1.808E-04	9.878E-02	6.637E-06	2.832E-06	7.902E-04	5.309E-08
1991	8.979E-05	4,905E-02	3.296E-06	1.407E-06	3.924E-04	2.637E-08
1992	4.459E-05	2.436E-02	1.637E-06	6.985E-07	1.949E-04	1.309E-08
1993	2.214E-05	1.210E-02	8.127E-07	3.469E-07	9.677E-05	6.502E-09
1994	1.099E-05	6.007E-03	4.036E-07	1.722E-07	4.805E-05	3.229E-09
1995	5.460E-06	2.983E-03	2.004E-07	8.553E-08	2.386E-05	1.603E-09
1996	2.711E-06	1,481E-03	9.952E-08	4,247E-08	1.185E-05	7.962E-10
1997	1.346E-06	7.355E-04	4.942E-08	2,109E-08	5.884E-06	3.954E-10
1998	6.686E-07	3.653E-04	2.454E-08	1.047E-08	2.922E-06	1.963E-10
1999	3.320E-07	1,814E-04	1.219E-08	5,201E-09	1.451E-06	9.750E-11

1000	Carbon dioxide			NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
000	1.649E-07	9.007E-05	6.052E-09	2.583E-09	7.206E-07	4.842E-11	
001	8.187E-08	4.473E-05	3.005E-09	1.283E-09	3.578E-07	2.404E-11	
002	4.066E-08	2.221E-05	1.492E-09	6.369E-10	1.777E-07	1.194E-11	
003	2.019E-08	1.103E-05	7.411E-10	3.163E-10	8.824E-08	5.929E-12	
004	1.003E-08	5.477E-06	3.680E-10	1.571E-10	4.382E-08	2.944E-12	
005	4,979E-09	2.720E-06	1.828E-10	7.800E-11	2.176E-08	1.462E-12	
006	2.472E-09	1.351E-06	9.075E-11	3.873E-11	1.081E-08	7.260E-13	
007	1.228E-09	6.707E-07	4.507E-11	1.923E-11	5.366E-09	3.605E-13	
008	6.097E-10	3.331E-07	2.238E-11	9.551E-12	2.665E-09	1.790E-13	
009	3.028E-10	1.654E-07	1.111E-11	4.743E-12	1.323E-09	8.890E-14	
010	1.503E-10	8.213E-08	5.519E-12	2.355E-12	6.571E-10	4.415E-14	
011	7.466E-11	4.079E-08	2.740E-12	1.170E-12	3.263E-10	2.192E-14	
012	3.708E-11	2.025E-08	1.361E-12	5.808E-13	1.620E-10	1.089E-14	
013	1.841E-11	1.006E-08	6.758E-13	2.884E-13	8.046E-11	5.406E-15	
014	9.143E-12	4.995E-09	3.356E-13	1.432E-13	3.996E-11	2.685E-15	
015	4.540E-12	2.480E-09	1.666E-13	7.112E-14	1.984E-11	1.333E-15	
016	4.540E-12 2.255E-12	1.232E-09	8.275E-14	3,532E-14	9.853E-12	6.620E-16	
	2.255E-12 1.120E-12	6.116E-10	4.109E-14	1.754E-14	4.893E-12	3.288E-16	
017		1	2.041E-14	8.709E-15	2.430E-12	1.633E-16	
018	5.560E-13	3.037E-10	1.013E-14	4.325E-15	1.207E-12	8.107E-17	
019	2.761E-13	1.508E-10		2.148E-15	5.992E-13	4.026E-17	
020	1.371E-13	7.490E-11	5.032E-15	1.067E-15	2.975E-13	1.999E-17	
021	6.808E-14	3.719E-11	2.499E-15	5.296E-16	1.478E-13	9.928E-18	
022	3.381E-14	1.847E-11	1.241E-15		7.337E-14	4.930E-18	
023	1.679E-14	9.172E-12	6.162E-16	2.630E-16	3.644E-14	2.448E-18	
024	8.337E-15	4.554E-12	3.060E-16	1.306E-16	1.809E-14	1.216E-18	
025	4.140E-15	2.262E-12	1.520E-16	6.486E-17		6.037E-19	
026	2.056E-15	1.123E-12	7.546E-17	3.221E-17	8.985E-15 4.462E-15	2.998E-19	
027	1.021E-15	5.577E-13	3.747E-17	1.599E-17			
028	5.070E-16	2.770E-13	1.861E-17	7.942E-18	2.216E-15	1.489E-19 7.393E-20	
029	2.518E-16	1.375E-13	9.241E-18	3.944E-18	1.100E-15		
030	1.250E-16	6.830E-14	4.589E-18	1.958E-18	5.464E-16	3.671E-20	
031	6.208E-17	3.392E-14	2.279E-18	9.725E-19	2.713E-16	1.823E-20	
032	3.083E-17	1.684E-14	1.132E-18	4.830E-19	1.347E-16	9.053E-21	
033	1.531E-17	8.363E-15	5.619E-19	2.398E-19	6.691E-17	4.496E-21	
034	7.602E-18	4.153E-15	2.790E-19	1.191E-19	3.323E-17	2.232E-21	
035	3.775E-18	2.062E-15	1.386E-19	5.914E-20	1.650E-17	1.109E-21	
036	1.875E-18	1.024E-15	6.881E-20	2.937E-20	8.193E-18	5.505E-22	
037	9.310E-19	5.086E-16	3.417E-20	1.458E-20	4.069E-18	2.734E-22	
038	4.623E-19	2.526E-16	1.697E-20	7.242E-21	2.020E-18	1.358E-22	
039	2.296E-19	1.254E-16	8.427E-21	3.596E-21	1.003E-18	6.741E-23	
040	1.140E-19	6.228E-17	4.185E-21	1.786E-21	4.982E-19	3.348E-23	
041	5.661E-20	3.093E-17	2.078E-21	8.868E-22	2.474E-19	1.662E-23	
042	2.811E-20	1.536E-17	1.032E-21	4.404E-22	1.229E-19	8.255E-24	
043	1.396E-20	7.626E-18	5.124E-22	2.187E-22	6.101E-20	4.099E-24	
044	6.932E-21	3.787E-18	2.545E-22	1.086E-22	3.030E-20	2.036E-24	
045	3.443E-21	1.881E-18	1.264E-22	5.393E-23	1.505E-20	1.011E-24	
046	1.710E-21	9.339E-19	6.275E-23	2.678E-23	7.471E-21	5.020E-25	
047	8.489E-22	4.638E-19	3.116E-23	1.330E-23	3.710E-21	2.493E-25	
048	4.216E-22	2.303E-19	1.547E-23	6.604E-24	1.842E-21	1.238E-25	
049	2.093E-22	1.144E-19	7.684E-24	3.279E-24	9.149E-22	6.147E-26	
2050	1.040E-22	5.679E-20	3,816E-24	1.629E-24	4.543E-22	3.053E-26	

.	Carbon dioxide				NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
051	5.162E-23	2.820E-20	1.895E-24	8.087E-25	2.256E-22	1.516E-26		
052	2.564E-23	1.400E-20	9.410E-25	4.016E-25	1.120E-22	7.528E-27		
2053	1,273E-23	6.954E-21	4.673E-25	1.994E-25	5.564E-23	3.738E-27		
2054	6.322E-24	3.453E-21	2.320E-25	9.903E-26	2.763E-23	1.856E-27		
2055	3.139E-24	1,715E-21	1.152E-25	4.918E-26	1.372E-23	9.218E-28		
2056	1.559E-24	8.516E-22	5.722E-26	2.442E-26	6.813E-24	4.578E-28		
2057	7.741E-25	4.229E-22	2.841E-26	1.213E-26	3.383E-24	2.273E-28		
2058	3.844E-25	2.100E-22	1.411E-26	6.022E-27	1.680E-24	1.129E-28		
2059	1.909E-25	1.043E-22	7.007E-27	2.990E-27	8.343E-25	5.606E-29		
2060	9,480E-26	5.179E-23	3.480E-27	1.485E-27	4,143E-25	2.784E-29		
2061	4.707E-26	2.572E-23	1.728E-27	7.374E-28	2.057E-25	1.382E-29		
2062	2.338E-26	1.277E-23	8.580E-28	3.662E-28	1,022E-25	6.864E-30		
2063	1.161E-26	6.342E-24	4.261E-28	1,819E-28	5.073E-26	3.409E-30		
2064	5.765E-27	3.149E-24	2.116E-28	9.030E-29	2.519E-26	1.693E-30		
2065	2.863E-27	1.564E-24	1.051E-28	4.484E-29	1.251E-26	8.406E-31		
2066	1.422E-27	7.766E-25	5.218E-29	2.227E-29	6.213E-27	4.174E-31		
2067	7.059E-28	3.856E-25	2.591E-29	1.106E-29	3.085E-27	2.073E-31		
2068	3.505E-28	1.915E-25	1.287E-29	5.491E-30	1.532E-27	1.029E-31		
2069	1.741E-28	9.510E-26	6.390E-30	2.727E-30	7.608E-28	5.112E-32		
2070	8.644E-29	4.722E-26	3.173E-30	1.354E-30	3.778E-28	2.538E-32		
2071	4.293E-29	2.345E-26	1.576E-30	6.725E-31	1.876E-28	1.261E-32		
2072	2.132E-29	1.165E-26	7.824E-31	3.339E-31	9.316E-29	6.259E-33		
2073	1.059E-29	5.783E-27	3.885E-31	1.658E-31	4.626E-29	3.108E-33		
2074	5.257E-30	2.872E-27	1.929E-31	8.235E-32	2.297E-29	1.544E-33		
2075	2.610E-30	1.426E-27	9.581E-32	4.089E-32	1.141E-29	7.665E-34		
2076	1.296E-30	7.081E-28	4.758E-32	2.031E-32	5.665E-30	3.806E-34		
2077	6.437E-31	3.517E-28	2.363E-32	1.008E-32	2.813E-30	1.890E-34		
2078	3.197E-31	1.746E-28	1.173E-32	5.008E-33	1.397E-30	9.386E-35		
2079	1.587E-31	8.672E-29	5.826E-33	2.487E-33	6.937E-31	4.661E-35		
2080	7.883E-32	4.306E-29	2.893E-33	1.235E-33	3.445E-31	2.315E-35		
2081	3.914E-32	2.138E-29	1.437E-33	6.132E-34	1.711E-31	1.149E-35		
2082	1.944E-32	1.062E-29	7.135E-34	3.045E-34	8.495E-32	5.708E-36		
2083	9.653E-33	5.273E-30	3.543E-34	1.512E-34	4.219E-32	2.834E-36		
2084	4.793E-33	2.619E-30	1.759E-34	7.509E-35	2.095E-32	1.408E-36		
2085	2.380E-33	1,300E-30	8.737E-35	3.729E-35	1.040E-32	6.990E-37		
2086	1.182E-33	6.457E-31	4.339E-35	1.852E-35	5.166E-33	3.471E-37		
2087	5.870E-34	3.207E-31	2.155E-35	9.195E-36	2.565E-33	1.724E-37		
2068	2.915E-34	1.592E-31	1.070E-35	4.566E-36	1.274E-33	8.559E-38		
2089	1.447E-34	7.908E-32	5.313E-36	2.268E-36	6.326E-34	4.250E-38		
2090	7.188E-35	3.927E-32	2.638E-36	1,126E-36	3.141E-34	2.111E-38		

Appendix 3 Third Computer Model Run

FIGURE 2

Summary Report

Landfill Name or Identifier: MVS Landfill Colorado Springs, CO

Date: Monday, March 07, 2011

Description/Comments:

This computer run is median between wet and arid conditions at the site

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10} \right) e^{-kt_{ij}}$$

Where,

Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year ')

Lo = potential methane generation capacity (m3/Mg)

M_i = mass of waste accepted in the ith year (Mg) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (decimal years, e.g., 3.2 years)

FIGURE 2

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

REPORT - 1

Input Review

LANDFILL CHARACTERISTICS		
Landfill Open Year	1950	
Landfill Closure Year (with 80-year limit)	1966	
Actual Closure Year (without limit)	1966	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	182,500	short
MODEL PARAMETERS		
Methane Generation Rate, k	0.050	year ⁻
Potential Methane Generation Capacity, Lo	170	m³/N
NMOC Concentration	4,000	ppmv
Methane Content	50	% by
GASES / POLLUTANTS SELECTED		

short tons

year⁻¹ m³/Mg ppmv as hexane % by volume

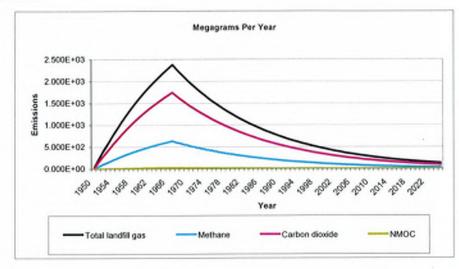
GASES / POLLUTANTS SEL	ECTED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

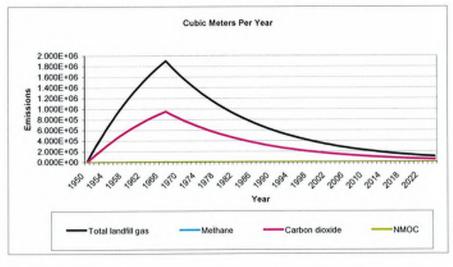
WASTE ACCEPTANCE RATES

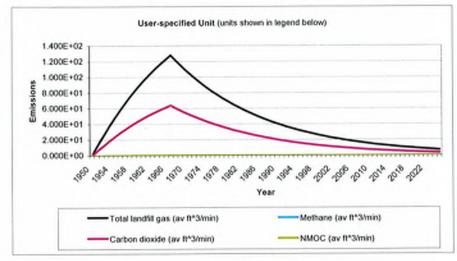
	Waste Acc	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1950	9,759	10,735	0	0	
1951	9,759	10,735	9,759	10,735	
1952	9,759	10,735	19,518	21,470	
1953	9,759	10,735	29,277	32,205	
1954	9,759	10,735	39,036	42,940	
1955	9,759	10,735	48,795	53,675	
1956	9,759	10,735	58,555	64,410	
1957	9,759	10,735	68,314	75,145	
1958	9,759	10,735	78,073	85,880	
1959	9,759	10,735	87,832	96,615	
1960	9,759	10,735	97,591	107,350	
1961	9,759	10,735	107,350	118,085	
1962	9,759	10,735	117,109	128,820	
1963	9,759	10,735	126,868	139,555	
1964	9,759	10,735	136,627	150,290	
1965	9,759	10,735	146,386	161,025	
1966	i .	10,735	156,145	171,760	
1967	0	0	165,905	182,495	
1968		0	165,905	182,495	
1969	1	0	165,905	182,495	
1970	1	Ó	165,905	182,495	
1971	0	0	165,905	182,495	
1972		0	165,905	182,495	
1973		0 D	165,905	182,495	
1974	1		165,905	182,495	
1975	1	0	165,905	182,495	
1976	`	o o	165,905	182,495	
1977	1	0	165,905	182,495	
1978			165,905	182,495	
1979	1		165,905	182,495	
1980			165,905	182,495	
1981				182,495	
1982	1			182,495	
1983		0	165,905	182,495	
1984	1 · · · · · · · · · · · · · · · · · · ·		165,905	182,495	
1985				182,495	
1986				182,495	
1987		0	165,905	182,495	
1988	1			182,495	
1989		0	165,905	182,495	

WASTE ACCEPTANCE RATES (Continued)

	Waste Ac	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1990	0	0	165,905	182,495	
1991	0	0	165,905	182,495	
1992	0	0	165,905	182,495	
1993	0	0	165,905	182,495	
1994	0	0	165,905	182,495	
1995	0	0	165,905	182,495	
1996	0	0	165,905	182,495	
1997	0	0	165,905	182,495	
1998	0	0	165,905	182,495	
1999	0	0	165,905	182,495	
2000	0	0	165,905	182,495	
2001	0	0	165,905	182,495	
2002	0	0	165,905	182,495	
2003	0	0	165,905	182,495	
2004	0	Ö	165,905	182,495	
2005	0	0	165,905	182,495	
2006	0	0	165,905	182,495	
2007	Ö	0	165,905	182,495	
2008	0	0	165,905	182,495	
2009	0	0	165,905	182,495	
2010	0	0	165,905	182,495	
2011	0	0	165,905	182,495	
2012	0	Ó	165,905	182,495	
2013	0	0	165,905	182,495	
2014	0	a o	165,905	182,495	
2015	0		165,905	182,495	
2016	0	0	165,905	182,495	
2017	0	0	165,905	182,495	
2018	0	0	165,905	182,495	
2019	0	0	165,905	182,495	
2020	0	0	165,905		
2021	0	0	165,905		
2022	0	0	165,905		
2023	0	0	165,905		
2024	0	0	165,905	1	
2025	0	0	165,905		
2026	0	0	165,905		
2027	0	0	165,905		
2028	0	0	165,905	182,495	
2029	0	0	165,905	182,495	


÷


1	Gas (r'0ii	Utant Default Parame Concentration		User-specified Pollutant Paran Concentration	
	Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
	otal landfill gas		0.00	(opint)	
	iethane		16.04		
			44.01		
5 0	arbon dioxide	4 000	86.18		
	MOC	4,000	00.10	te le trans a ser a ser	a berrie burger
	1,1-Trichloroethane				
	methyl chloroform) -				
	AP	0.48	133.41		
	,1,2,2-				
T]	etrachloroethane -				
H	IAP/VOC	1.1	167.85		
1	,1-Dichloroethane				
(ethylidene dichloride) -				
	APNOC	2.4	98.97		
	,1-Dichloroethene				
	vinylidene chloride) -				
	APNOC	0.20	96.94		
	,2-Dichloroethane	0.20	00.04	ł	
	ethylene dichloride) -		00.00		
- 1	IAP/VOC	0.41	98.96	1	
	2-Dichloropropane				
	propylene dichloride) -				
	IAP/VOC	0.18	112.99		
2	Propanol (isopropyl				
a	licohol) - VOC	50	60.11		_
	cetone	7.0	58.08		
A	crylonitrile - HAP/VOC	6.3	53,06		
	Benzene - No or	•.•			
	Jnknown Co-disposal -				
		1.9	78.11		
	IAP/VOC	1.9	70.11		
	Benzene - Co-disposal -	**	78.11		
2 [†]	APNOC	11	10.11		
8 8	Bromodichloromethane -		100.00		
	/oc	3.1	163.83		
5 6	Butane - VOC	5.0	58.12		
<u>م</u> (0	Carbon disulfide -				
۲	HAP/VOC	0.58	76.13		
	Carbon monoxide	140	28.01		
ld	Carbon tetrachloride •				
	HAP/VOC	4.0E-03	153.84	1	
	Carbonyl sulfide -				
1	AP/VOC	0,49	60.07		
1	Chlorobenzene -	U .7 U			
	HAP/VOC	0.25	112.56	1	1
			86.47	1	
	Chlorodifluoromethane	1.3	00.47	1	1
	Chloroethane (ethyl		6450	1	1
	chloride) · HAP/VOC	1.3	64.52	1	
	Chloroform - HAP/VOC	0.03	119.39		1
1	Chloromethane - VOC	1.2	50.49		
ļ.	Dichlorobenzene - (HAP				
- T	•				ł
1	for para isomer/VOC)	0.21	147	1	
		1			
ļ	Dichlorodifluoromethane	16	120.91		
h	Dichlorofluoromethane -				l.
	VOC	2.6	102.92		
	Dichloromethane	L.V	1	1	
					1
	(methylene chloride) -		04.04	1	
	HAP	14	84.94		
	Dimethyl sulfide (methyl			1	
	sulfide) - VOC	7.8	62.13	1	
	Ethane	890	30.07		
	Ethanol - VOC	27	46.08	1	


Pollutant Parameters (Continued)

Gas / Poli	utant Default Param	eters:	User-specified Pollutant Parameters: Concentration		
Compound	Concentration (ppmv)	Molecular Weight	Concentration (ppmv)	Molecular Weight	
Ethyl mercaptan	<i>(<i>ppint</i>)</i>	inologina irongina	<u></u>		
(ethanethiol) - VOC	2.3	62,13			
Ethylbenzene -	2.0	52,10			
HAP/VOC	4.6	106.16			
Ethylene dibromide -	4.0	100.10			
	1.0E-03	187.88			
HAP/VOC	1.0E-05	101.00			
Fluorotrichloromethane -		407.00			
VOC	0.76	137.38			
Hexane - HAP/VOC	6.6	86.18			
Hydrogen sulfide	36	34.08			
Mercury (total) - HAP	2.9E-04	200.61			
Methyl ethyl ketone -					
HAP/VOC	7.1	72.11			
Methyl isobutyl ketone -					
HAP/VOC	1.9	100.16			
1					
Methyl mercaptan - VOC	2.5	48.11			
	3.3	72.15			
Pentane - VOC	J.J	12.10			
Perchloroethylene					
(tetrachloroethylene) -					
HAP	3.7	165.83			
Propane - VOC	11	44.09		l	
t-1,2-Dichloroethene -					
voc	2.8	96.94			
Toluene - No or					
Unknown Co-disposal -					
HAP/VOC	39	92.13			
Toluene - Co-disposal -	~~	Q1.70			
HUDHOC	170	92.13			
HAP/VOC	170	92.13		ŧ	
Trichloroethylene					
(trichloroethene) -					
HAP/VOC	2.8	131.40			
Vinyl chloride -				1	
HAP/VOC Vinyl chloride - HAP/VOC	7.3	62.50	1	1	
Xylenes - HAP/VOC	12	106.16			
×110/20 1::::10/20		1	· · · · · · · · · · · · · · · · · · ·		
			j		
				1	
F i					
ţ. I					
	· · ·			1	
			5		
1					
				1	
			1	1	
			1		
	· ·				
			I.		
	4				
				ł	
	· · ·			i i	

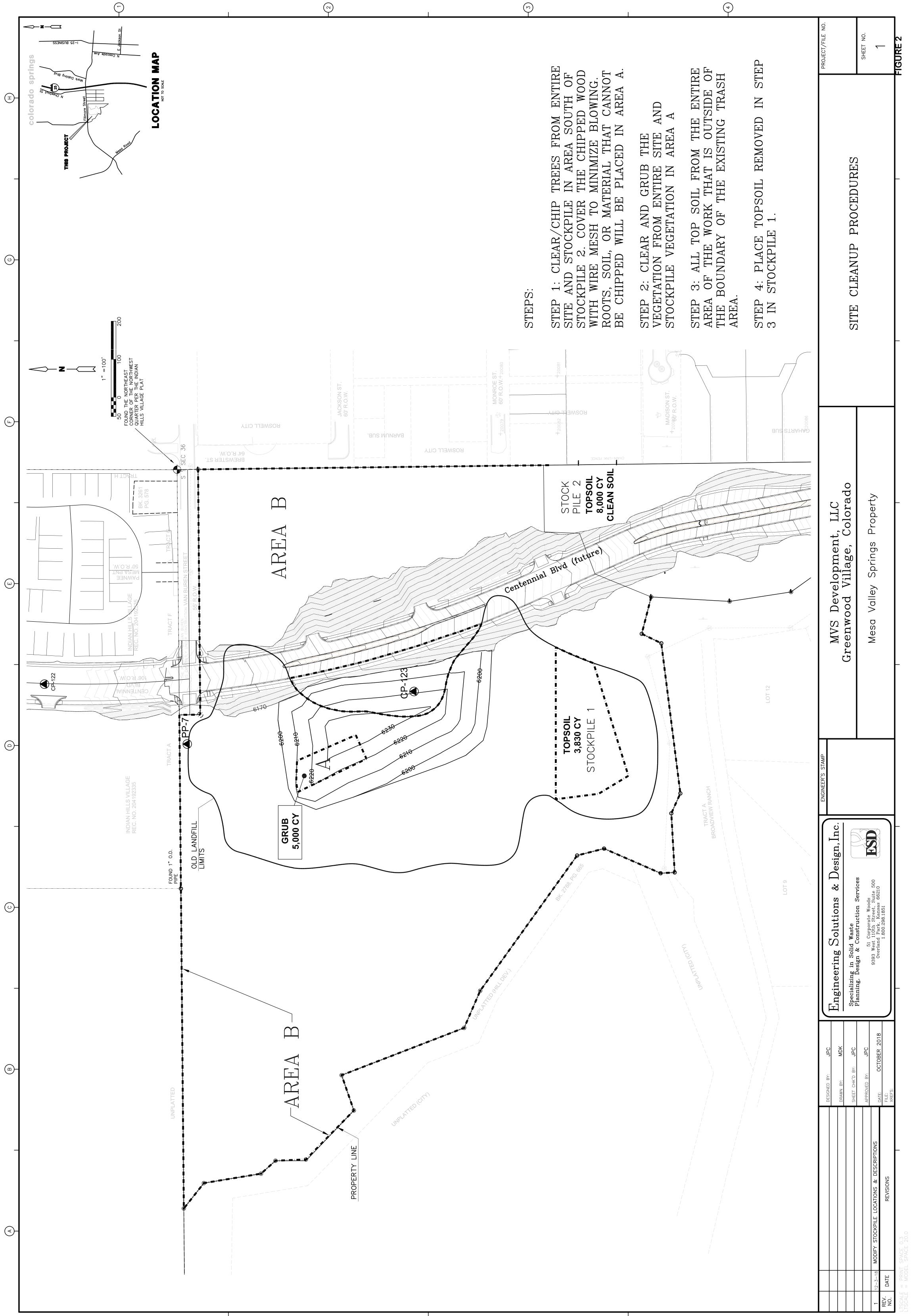
Graphs

FIGURE 2

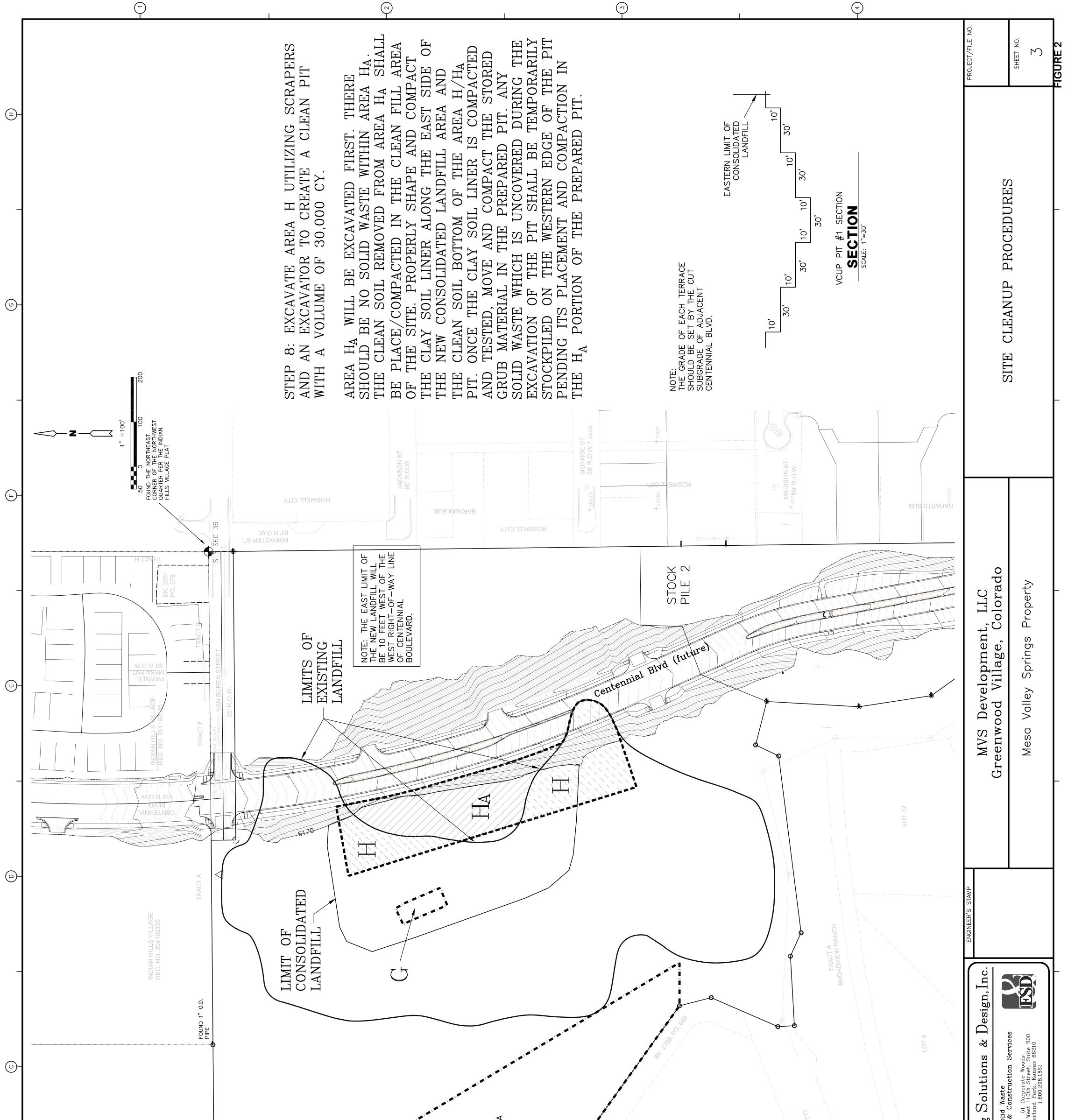
<u>Results</u>

	Total landfill gas			Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
950	0	0	0	0	0	0	
951	2.026E+02	1.622E+05	1.090E+01	5.412E+01	8.112E+04	5.450E+00	
952	3.953E+02	3.165E+05	2,127E+01	1.056E+02	1.583E+05	1.063E+01	
953	5.786E+02	4.633E+05	3.113E+01	1.546E+02	2.317E+05	1.557E+01	
954	7.530E+02	6.030E+05	4.051E+01	2.011E+02	3.015E+05	2.026E+01	
955	9.189E+02	7.358E+05	4.944E+01	2.454E+02	3.679E+05	2.472E+01	
956	1.077E+03	8.621E+05	5,793E+01	2.876E+02	4.311E+05	2.896E+01	
957	1.227E+03	9.823E+05	6.600E+01	3.277E+02	4.912E+05	3.300E+01	
958	1.370E+03	1.097E+06	7.368E+01	3.658E+02	5.483E+05	3.684E+01	
959	1.505E+03	1.205E+06	8.099E+01	4.021E+02	6.027E+05	4.050E+01	
360	1.635E+03	1.309E+06	8.794E+01	4.366E+02	6.544E+05	4.397E+01	
961	1.757E+03	1.407E+06	9.455E+01	4.694E+02	7.036E+05	4.728E+01	
362	1.874E+03	1.501E+06	1.008E+02	5.006E+02	7.504E+05	5.042E+01	
	1.985E+03	1.590E+06	1.068E+02	5.303E+02	7.949E+05	5.341E+01	
363	2.091E+03	1.675E+06	1.125E+02	5.586E+02	8.373E+05	5.626E+01	
964 965	2.192E+03	1.755E+06	1.179E+02	5.855E+02	8.776E+05	5.896E+01	
		1.832E+06	1.231E+02	6.110E+02	9.159E+05	6.154E+01	
966	2.288E+03	1.905E+06	1.280E+02	6.353E+02	9.523E+05	6.399E+01	
967	2.379E+03	1.812E+06	1.217E+02	6.044E+02	9.059E+05	6.087E+01	
868	2.263E+03	1.723E+06	1.158E+02	5,749E+02	8.617E+05	5.790E+01	
969	2.152E+03	1.639E+06	1.101E+02	5.468E+02	8,197E+05	5.507E+01	
970	2.047E+03		1.048E+02	5.202E+02	7.797E+05	5.239E+01	
371	1.947E+03	1,559E+06	9.967E+01	4.948E+02	7.417E+05	4.983E+01	
972	1.852E+03	1.483E+06	A Contraction of the contraction	4.707E+02	7.055E+05	4.740E+01	
973	1.762E+03	1.411E+06	9.480E+01	4.477E+02	6.711E+05	4.509E+01	
374	1.676E+03	1.342E+06	9.018E+01	4.259E+02	6.384E+05	4.289E+01	
975	1.594E+03	1.277E+06	8.578E+01	4.259E+02 4.051E+02	6.072E+05	4.080E+01	
976	1.517E+03	1.214E+06	8.160E+01		5.776E+05	3.881E+01	
977	1.443E+03	1.155E+06	7.762E+01	3.854E+02	5.494E+05	3.692E+01	
978	1.372E+03	1.099E+06	7.383E+01	3.666E+02	5.226E+05	3.512E+01	
979	1.305E+03	1.045E+06	7.023E+01	3.487E+02	4.972E+05	3.340E+01	
980	1.242E+03	9.943E+05	6.681E+01	3.317E+02		3.177E+01	
981	1.181E+03	9.458E+05	6.355E+01	3.155E+02	4.729E+05	3.023E+01	
982	1.124E+03	8.997E+05	6.045E+01	3.001E+02	4.498E+05	2.875E+01	
983	1.069E+03	8.558E+05	5.750E+01	2.855E+02	4.279E+05	L	
984	1.017E+03	8,141E+05	5.470E+01	2.716E+02	4.070E+05	2.735E+01	
985	9.671E+02	7.744E+05	5.203E+01	2.583E+02	3.872E+05	2.601E+01	
986	9.199E+02	7.366E+05	4.949E+01	2.457E+02	3.683E+05	2.475E+01	
987	8.750E+02	7.007E+05	4.708E+01	2.337E+02	3.503E+05	2.354E+01	
988	8.323E+02	6.665E+05	4.478E+01	2.223E+02	3.333E+05	2.239E+01	
989	7.918E+02	6.340E+05	4.260E+01	2.115E+02	3.170E+05	2.130E+01	
990	7.531E+02	6.031E+05	4.052E+01	2.012E+02	3.015E+05	2.026E+01	
991	7.164E+02	5.737E+05	3.854E+01	1.914E+02	2.868E+05	1.927E+01	
992	6.815E+02	5.457E+05	3.666E+01	1.820E+02	2.728E+05	1.833E+01	
993	6.482E+02	5.191E+05	3.488E+01	1.732E+02	2.595E+05	1.744E+01	
994	6.166E+02	4.938E+05	3.318E+01	1.647E+02	2.469E+05	1.659E+01	
995	5.865E+02	4.697E+05	3.156E+01	1.567E+02	2.348E+05	1.578E+01	
996	5.579E+02	4.468E+05	3.002E+01	1.490E+02	2,234E+05	1.501E+01	
997	5.307E+02	4.250E+05	2.855E+01	1.418E+02	2.125E+05	1.428E+01	
998	5.048E+02	4.043E+05	2.716E+01	1.348E+02	2.021E+05	1.358E+01	
1999	4.802E+02	3.845E+05	2.584E+01	1.283E+02	1.923E+05	1.292E+01	

Vaar		Total landfill gas		Methane			
Year 🗕	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
000	4.568E+02	3.658E+05	2.458E+01	1.220E+02	1.829E+05	1.229E+01	
001	4.345E+02	3.479E+05	2.338E+01	1.161E+02	1.740E+05	1.169E+01	
002	4.133E+02	3.310E+05	2.224E+01	1.104E+02	1.655E+05	1.112E+01	
003	3.932E+02	3.148E+05	2.115E+01	1.050E+02	1.574E+05	1.058E+01	
004	3.740E+02	2.995E+05	2.012E+01	9.990E+01	1.497E+05	1.006E+01	
005	3.558E+02	2.849E+05	1.914E+01	9.503E+01	1.424E+05	9.570E+00	
006	3.384E+02	2.710E+05	1.821E+01	9.039E+01	1.355E+05	9.104E+00	
007	3.219E+02	2.578E+05	1.732E+01	8.598E+01	1,289E+05	8.660E+00	
008	3.062E+02	2.452E+05	1.647E+01	8.179E+01	1.226E+05	8.237E+00	
009	2.913E+02	2.332E+05	1.567E+01	7.780E+01	1.166E+05	7.836E+00	
010	2.771E+02	2.219E+05	1.491E+01	7.401E+01	1.109E+05	7.453E+00	
011	2.636E+02	2.110E+05	1.418E+01	7.040E+01	1.055E+05	7.090E+00	
012	2.507E+02	2.007E+05	1.349E+01	6.696E+01	1.004E+05	6.744E+00	
013	2.385E+02	1.910E+05	1.283E+01	6.370E+01	9.548E+04	6.415E+00	
014	2.268E+02	1.816E+05	1.220E+01	6.059E+01	9.082E+04	6.102E+00	
015	2.158E+02	1.728E+05	1.161E+01	5.764E+01	8.639E+04	5.805E+00	
016	2.053E+02	1.644E+05	1.104E+01	5.483E+01	8.218E+04	5.522E+00	
017	1.952E+02	1.563E+05	1.050E+01	5.215E+01	7.817E+04	5.252E+00	
018	1.857E+02	1.487E+05	9.992E+00	4,961E+01	7.436E+04	4.996E+00	
019	1.767E+02	1.415E+05	9.505E+00	4,719E+01	7.073E+04	4.752E+00	
020	1.680E+02	1.346E+05	9.041E+00	4.489E+01	6.728E+04	4.521E+00	
021	1.599E+02	1.280E+05	8.600E+00	4.270E+01	6.400E+04	4.300E+00	
022	1.521E+02	1.218E+05	8.181E+00	4.062E+01	6.088E+04	4.091E+00	
022	1.446E+02	1.158E+05	7.782E+00	3.864E+01	5.791E+04	3.891E+00	
023	1.376E+02	1.102E+05	7.402E+00	3.675E+01	5.509E+04	3.701E+00	
	1.309E+02	1.048E+05	7.041E+00	3.496E+01	5.240E+04	3.521E+00	
025	1.245E+02	9.969E+04	6.698E+00	3.325E+01	4.984E+04	3.349E+00	
026		9.483E+04	6.371E+00	3.163E+01	4,741E+04	3.186E+00	
027	1.184E+02	9.020E+04	6.061E+00	3.009E+01	4.510E+04	3.030E+00	
028	1.126E+02		5.765E+00	2.862E+01	4.290E+04	2.883E+00	
2029	1.072E+02	8.580E+04 8.162E+04	5.484E+00	2.723E+01	4.081E+04	2.742E+00	
030	1.019E+02			2.590E+01	3.882E+04	2.608E+00	
031	9.696E+01	7.764E+04	5.216E+00	2.463E+01	3.693E+04	2.481E+00	
032	9.223E+01	7.385E+04	4.962E+00		3.512E+04	2.360E+00	
2033	8.773E+01	7.025E+04	4.720E+00	2.343E+01	3.341E+04	2.245E+00	
034	8.345E+01	6.682E+04	4.490E+00	2.229E+01	3.178E+04	2.135E+00	
035	7.938E+01	6.356E+04	4.271E+00	2.120E+01	3.023E+04	2.031E+00	
036	7.551E+01	6.046E+04	4.063E+00	2.017E+01 1.919E+01	2.876E+04	1.932E+00	
037	7.183E+01	5.752E+04	3.864E+00		\$	1.838E+00	
038	6.832E+01	5.471E+04	3.676E+00	1.825E+01	2.736E+04		
2039	6.499E+01	5.204E+04	3.497E+00	1.736E+01	2.602E+04	1.748E+00	
040	6.182E+01	4.950E+04	3.326E+00	1.651E+01	2.475E+04	1.663E+00	
041	5.881E+01	4.709E+04	3.164E+00	1.571E+01	2.354E+04	1.582E+00	
042	5.594E+01	4.479E+04	3.010E+00	1.494E+01	2.240E+04	1.505E+00	
043	5.321E+01	4.261E+04	2.863E+00	1.421E+01	2.130E+04	1.431E+00	
044	5.062E+01	4.053E+04	2.723E+00	1.352E+01	2.027E+04	1.362E+00	
2045	4.815E+01	3.855E+04	2.590E+00	1.286E+01	1.928E+04	1.295E+00	
2046	4.580E+01	3.667E+04	2.464E+00	1.223E+01	1.834E+04	1.232E+00	
2047	4.356E+01	3.488E+04	2.344E+00	1.164E+01	1.744E+04	1.172E+00	
2048	4.144E+01	3.318E+04	2.230E+00	1.107E+01	1.659E+04	1.115E+00	
2049	3.942E+01	3.157E+04	2.121E+00	1.053E+01	1.578E+04	1.060E+00	
2050	3,750E+01	3.003E+04	2.017E+00	1.002E+01	1.501E+04	1.009E+00	

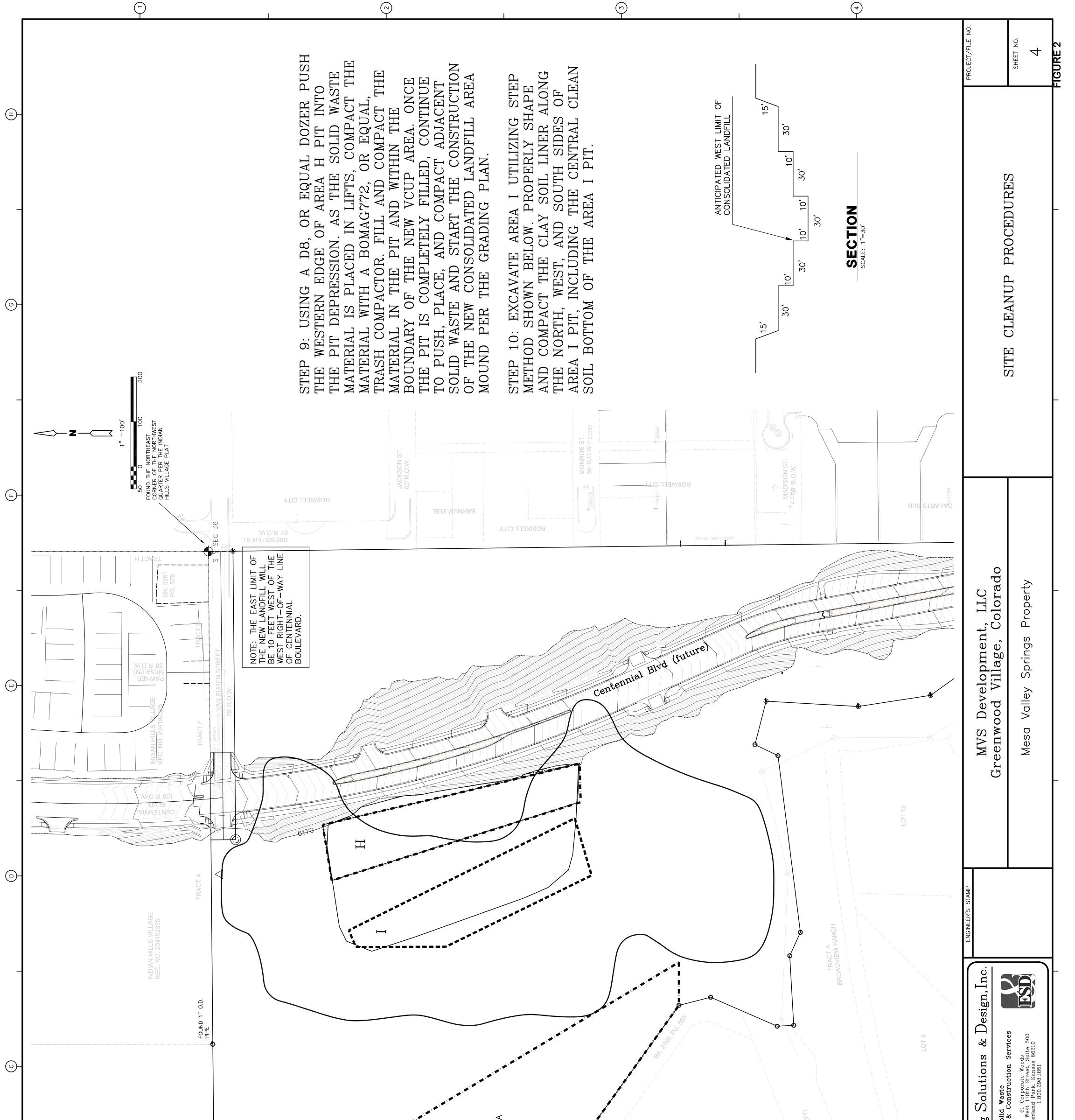

.		Total landfill gas			Methane	
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
051	3.567E+01	2.856E+04	1.919E+00	9.527E+00	1.428E+04	9.595E-01
052	3.393E+01	2.717E+04	1.825E+00	9.063E+00	1.358E+04	9.127E-01
053	3.227E+01	2.584E+04	1.736E+00	8.621E+00	1.292E+04	8.682E-01
054	3.070E+01	2.458£+04	1.652E+00	8.200E+00	1.229E+04	8.259E-01
055	2,920E+01	2.338E+04	1.571E+00	7.800E+00	1.169E+04	7.856E-01
056	2.778E+01	2.224E+04	1.495E+00	7.420E+00	1.112E+04	7.473E-01
057	2.642E+01	2.116E+04	1.422E+00	7.058E+00	1.058E+04	7.108E-01
058	2.513E+01	2.013E+04	1.352E+00	6.714E+00	1.006E+04	6.762E-01
059	2.391E+01	1.915E+04	1.286E+00	6.386E+00	9.573E+03	6.432E-01
060	2.274E+01	1.821E+04	1.224E+00	6.075E+00	9.106E+03	6.118E-01
061	2.163E+01	1.732E+04	1.164E+00	5.779E+00	8.662E+03	5.820E-01
062	2.058E+01	1.648E+04	1.107E+00	5.497E+00	8.239E+03	5.536E-01
063	1.957E+01	1.567E+04	1.053E+00	5.229E+00	7.837E+03	5.266E-01
064	1.862E+01	1.491E+04	1.002E+00	4.974E+00	7.455E+03	5.009E-01
065	1.771E+01	1.418E+04	9.530E-01	4.731E+00	7.092E+03	4.765E-01
066	1.685E+01	1.349E+04	9.065E-01	4.500E+00	6.746E+03	4.532E-01
067	1,603E+01	1.283E+04	8.623E-01	4.281E+00	6.417E+03	4.311E-01
068	1.525E+01	1.221E+04	8.202E-01	4.072E+00	6.104E+03	4.101E-01
069	1.450E+01	1.161E+04	7.802E-01	3.874E+00	5.806E+03	3.901E-01
070	1.379E+01	1.105E+04	7.422E-01	3.665E+00	5.523E+03	3.711E-01
071	1.312E+01	1.051E+04	7.060E-01	3.505E+00	5.254E+03	3.530E-01
072	1.248E+01	9.995E+03	6.715E-01	3,334E+00	4.997E+03	3.358E-01
2073	1.187E+01	9.507E+03	6.388E-01	3.171E+00	4.754E+03	3.194E-01
074	1,129E+01	9.044E+03	6.076E-01	3.017E+00	4.522E+03	3.038E-01
075	1.074E+01	8.602E+03	5.780E-01	2.870E+00	4.301E+03	2.890E-01
076	1.022E+01	8.183E+03	5.498E-01	2.730E+00	4.091E+03	2.749E-01
077	9.721E+00	7.784E+03	5.230E-01	2.596E+00	3.892E+03	2.615E-01
078	9.247E+00	7.404E+03	4.975E-01	2.470E+00	3.702E+03	2.487E-01
079	8.796E+00	7.043E+03	4.732E-01	2.349E+00	3.522E+03	2.366E-01
080	8.367E+00	6.700E+03	4.501E-01	2.235E+00	3.350E+03	2.251E-01
2081	7.959E+00	6.373E+03	4.282E-01	2.126E+00	3.186E+03	2.141E-01
082	7.570E+00	6.062E+03	4.073E-01	2.022E+00	3.031E+03	2.037E-01
083	7.201E+00	5.766E+03	3.874E-01	1.924E+00	2.883E+03	1.937E-01
084	6.850E+00	5.485E+03	3.685E-01	1.830E+00	2.743E+03	1.843E-01
085	6.516E+00	5.218E+03	3.506E-01	1.740E+00	2.609E+03	1.753E-01
086	6.198E+00	4.963E+03	3.335E-01	1.656E+00	2.482E+03	1.667E-01
087	5.896E+00	4.721E+03	3.172E-01	1.575E+00	2.361E+03	1.586E-01
088	5.608E+00	4.491E+03	3.017E-01	1.498E+00	2.245E+03	1.509E-01
089	5.335E+00	4.272E+03	2.870E-01	1.425E+00	2.136E+03	1.435E-01
090	5.075E+00	4.064E+03	2.730E-01	1.355E+00	2.032E+03	1.365E-01

Year	Carbon dioxide			NMÔC			
	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
950	0	0	0	0	0	ļ 0	
951	1.485E+02	8.112E+04	5.450E+00	2.326E+00	6.489E+02	4.360E-02	
952	2.897E+02	1.583E+05	1.063E+01	4.539E+00	1.266E+03	8.508E-02	
953	4.241E+02	2.317E+05	1.557E+01	6.643E+00	1.853E+03	1.245E-01	
954	5.519E+02	3.015E+05	2.026E+01	8.645E+00	2.412E+03	1.621E-01	
955	6.734E+02	3.679E+05	2,472E+01	1.055E+01	2.943E+03	1.978E-01	
956	7.891E+02	4.311E+05	2.896E+01	1.236E+01	3.449E+03	2.317E-01	
957	8.991E+02	4.912E+05	3.300E+01	1.408E+01	3.929E+03	2.640E-01	
958	1.004E+03	5.483E+05	3.684E+01	1.572E+01	4.387E+03	2.947E-01	
959	1.103E+03	6.027E+05	4.050E+01	1.728E+01	4.822E+03	3.240E-01	
960	1.198E+03	6.544E+05	4.397E+01	1.877E+01	5.235E+D3	3.518E-01	
961	1.288E+03	7.036E+05	4.728E+01	2.018E+01	5.629E+03	3.782E-01	
962	1.374E+03	7.504E+05	5.042E+01	2.152E+01	6.003E+03	4.034E-01	
963	1.455E+03	7.949E+05	5.341E+01	2.280E+01	6.359E+03	4.273E-01	
964	1.533E+03	8.373E+05	5.626E+01	2.401E+01	6.698E+03	4.501E-01	
965	1.606E+03	8.776E+05	5.896E+01	2.516E+01	7.020E+03	4.717E-01	
	1.677E+03	9.159E+05	6.154E+01	2.626E+01	7.327E+03	4.923E-01	
966 967	1.743E+03	9.523E+05	6.399E+01	2.731E+01	7.619E+03	5.119E-01	
	1.658E+03	9.059E+05	6.087E+01	2.598E+01	7.247E+03	4.869E-01	
968	1.577E+03	8.617E+05	5.790E+01	2.471E+01	6.894E+03	4.632E-01	
969		8.197E+05	5.507E+01	2.350E+01	6.557E+03	4.406E-01	
70	1.500E+03	7.797E+05	5.239E+01	2.236E+01	6.238E+03	4,191E-01	
971	1.427E+03	7.417E+05	4.983E+01	2.127E+01	5.933E+03	3.987E-01	
972	1.358E+03		4.983E+01	2.023E+01	5.644E+03	3.792E-01	
973	1.291E+03	7.055E+05	4.509E+01	1.924E+01	5.369E+03	3.607E-01	
974	1.228E+03	6.711E+05	4.289E+01	1.831E+01	5.107E+03	3.431E-01	
975	1.169E+03	6.384E+05	4.080E+01	1.741E+01	4.858E+03	3.264E-01	
976	1.112E+03	6.072E+05		1.656E+01	4.621E+03	3.105E-01	
977	1.057E+03	5.776E+05	3.881E+01	1.576E+01	4.396E+03	2.953E-01	
978	1.006E+03	5.494E+05	3.692E+01		4.181E+03	2.809E-01	
979	9.567E+02	5.226E+05	3.512E+01	1.499E+01	3.977E+03	2.672E-01	
980	9.100E+02	4.972E+05	3.340E+01	1.426E+01	3.783E+03	2.542E-01	
981	8.657E+02	4.729E+05	3.177E+01	1.356E+01	3.599E+03	2.418E-01	
982	8.234E+02	4.498E+05	3.023E+01	1.290E+01	f .	2.300E-01	
983	7.833E+02	4.279E+05	2.875E+01	1.227E+01	3.423E+03	2.188E-01	
984	7.451E+02	4.070E+05	2.735E+01	1.167E+01	3.256E+03	2.081E-01	
985	7.087E+02	3.872E+05	2.601E+01	1.110E+01	3.097E+03	1.980E-01	
986	6.742E+02	3.683E+05	2.475E+01	1.056E+01	2.946E+03	1.883E-01	
987	6.413E+02	3.503E+05	2.354E+01	1.005E+01	2.803E+03		
988	6.100E+02	3.333E+05	2.239E+01	9.556E+00	2.666E+03	1.791E-01	
989	5.803E+02	3.170E+05	2.130E+01	9.090E+00	2.536E+03	1.704E-01	
990	5.520E+02	3.015E+05	2.026E+01	8.647E+00	2.412E+03	1.621E-01	
991	5.250E+02	2.868E+05	1.927E+01	8.225E+00	2.295E+03	1.542E-01	
992	4.994E+02	2.728E+05	1.833E+01	7.824E+00	2.183E+03	1.467E-01	
993	4,751E+02	2.595E+05	1.744E+01	7.442E+00	2.076E+03	1.395E-01	
994	4.519E+02	2.469E+05	1.659E+01	7.079E+00	1.975E+03	1.327E-01	
995	4.299E+02	2.348E+05	1.578E+01	6.734E+00	1.879E+03	1.262E-01	
996	4.089E+02	2.234E+05	1.501E+01	6.406E+00	1.787E+03	1.201E-01	
997	3.890E+02	2.125E+05	1.428E+01	6.093E+00	1.700E+03	1.142E-01	
998	3.700E+02	2.021E+05	1.358E+01	5.796E+00	1.617E+03	1.086E-01	
999	3.520E+02	1.923E+05	1,292E+01	5.513E+00	1.538E+03	1.033E-01	


Vaal		Carbon dioxide		NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
000	3.348E+02	1.829E+05	1.229E+01	5.245E+00	1.463E+03	9.831E-02	
001	3.185E+02	1,740E+05	1.169E+01	4.989E+00	1.392E+03	9.351E-02	
002	3.029E+02	1.655E+05	1.112E+01	4.746E+00	1.324E+03	8.895E-02	
003	2.882E+02	1.574E+05	1.058E+01	4.514E+00	1.259E+03	8.462E-02	
004	2.741E+02	1,497E+05	1.006E+01	4,294E+00	1.198E+03	8.049E-02	
005	2.607E+02	1.424E+05	9.570E+00	4.084E+00	1.139E+03	7.656E-02	
006	2.480E+02	1.355E+05	9.104E+00	3.885E+00	1.084E+03	7.283E-02	
007	2.359E+02	1.289E+05	8.660E+00	3.696E+00	1.031E+03	6.928E-02	
007	2.339E+02 2.244E+02	1.226E+05	8.237E+00	3.516E+00	9.808E+02	6.590E-02	
009	2.135E+02	1.166E+05	7.836E+00	3.344E+00	9.329E+02	6.268E-02	
		1.109E+05	7.453E+00	3.181E+00	8.874E+02	5.963E-02	
010	2.031E+02		7.090E+00	3.026E+00	8.442E+02	5.672E-02	
011	1.932E+02	1.055E+05	6.744E+00	2.878E+00	8.030E+02	5.395E-02	
012	1,837E+02	1.004E+05		2.738E+00	7.638E+02	5.132E-02	
013	1.748E+02	9.548E+04	6.415E+00	2.604E+00	7.266E+02	4.882E-02	
014	1.662E+02	9.082E+04	6.102E+00		6.911E+02	4.644E-02	
015	1.581E+02	8.639E+04	5.805E+00	2.477E+00	6.574E+02	4.417E-02	
016	1.504E+02	8.218E+04	5.522E+00	2.357E+00		4.202E-02	
017	1,431E+02	7.817E+04	5.252E+00	2.242E+00	6.254E+02	4.202E-02 3.997E-02	
018	1.361E+02	7.436E+04	4.996E+00	2.132E+00	5.949E+02	1	
019	1.295E+02	7.073E+04	4.752E+00	2.028E+00	5.659E+02	3.802E-02	
020	1.232E+02	6.728E+04	4.521E+00	1.929E+00	5.383E+02	3.617E-02	
021	1.172E+02	6.400E+04	4.300E+00	1.835E+00	5.120E+02	3.440E-02	
022	1.114E+02	6.088E+04	4.091E+00	1.746E+00	4.870E+02	3.272E-02	
023	1,060E+02	5.791E+04	3.891E+00	1.661E+00	4.633E+02	3.113E-02	
024	1.008E+02	5.509E+04	3.701E+00	1.580E+00	4.407E+02	2.961E-02	
2025	9,592E+01	5.240E+04	3.521E+00	1.503E+00	4,192E+02	2.817E-02	
026	9.124E+01	4.984E+04	3.349E+00	1.429E+00	3.988E+02	2.679E-02	
027	8.679E+01	4.741E+04	3.186E+00	1.360E+00	3.793E+02	2.549E-02	
028	8.256E+01	4.510E+04	3.030E+00	1.293E+00	3.608E+02	2.424E-02	
029	7.853E+01	4.290E+04	2.883E+00	1.230E+00	3.432E+02	2.306E-02	
030	7,470E+01	4.081E+04	2.742E+00	1.170E+00	3.265E+02	2.194E-02	
031	7.106E+01	3.882E+04	2.608E+00	1.113E+00	3.105E+02	2.087E-02	
032	6.759E+01	3.693E+04	2.481E+00	1.059E+00	2.954E+02	1.985E-02	
:033	6.430E+01	3.512E+04	2.360E+00	1.007E+00	2.810E+02	1.888E-02	
2034	6.116E+01	3.341E+04	2.245E+00	9.581E-01	2.673E+02	1.796E-02	
	5.818E+01	3.178E+04	2.135E+00	9.114E-01	2.543E+02	1.708E-02	
035			2.031E+00	8.669E-01	2.419E+02	1.625E-02	
2036	5.534E+01	3.023E+04 2.876E+04	1.932E+00	8.246E-01	2.301E+02	1.546E-02	
2037	5.264E+01		1.838E+00	7.844E-01	2.188E+02	1.470E-02	
038	5.007E+01	2.736E+04		7.462E-01	2.082E+02	1.399E-02	
2039	4.763E+01	2.602E+04	1.748E+00		1.980E+02	1.330E-02	
040	4.531E+01	2.475E+04	1.663E+00	7.098E-01	1.884E+02	1.266E-02	
2041	4.310E+01	2.354E+04	1.582E+00	6.752E-01			
042	4.100E+01	2.240E+04	1.505E+00	6.422E-01	1.792E+02	1.204E-02	
043	3.900E+01	2.130E+04	1.431E+00	6.109E-01	1.704E+02	1.145E-02	
044	3.710E+01	2.027E+04	1.362E+00	5.811E-01	1.621E+02	1.089E-02	
2045	3.529E+01	1.928E+04	1,295E+00	5.528E-01	1.542E+02	1.036E-02	
2046	3.357E+01	1.834E+04	1.232E+00	5.258E-01	1.467E+02	9.856E-03	
2047	3.193E+01	1.744E+04	1.172E+00	5.002E-01	1.395E+02	9.376E-03	
2048	3.037E+01	1.659E+04	1.115E+00	4.758E-01	1.327E+02	8.918E-03	
2049	2.889E+01	1.578E+04	1.060E+00	4.526E-01	1.263E+02	8.483E-03	
2050	2.748E+01	1.501E+04	1.009E+00	4.305E-01	1.201E+02	8.070E-03	

	Carbon dioxide			NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2051	2.614E+01	1.428E+04	9.595E-01	4.095E-01	1.142E+02	7.676E-03	
2052	2.487E+01	1.358E+04	9.127E-01	3.895E-01	1.087E+02	7.302E-03	
2053	2.365E+01	1.292E+04	8.682E-01	3.705E-01	1.034E+02	6.946E-03	
2054	2.250E+01	1.229E+04	8.259E-01	3.525E-01	9.833E+01	6.607E-03	
2055	2.140E+01	1.169E+04	7.856E-01	3.353E-01	9.354E+01	6.285E-03	
2056	2.036E+01	1.112E+04	7.473E-01	3.189E-01	8.897E+01	5.978E-03	
2057	1.937E+01	1.058E+04	7.108E-01	3.034E-01	8.463E+01	5.687E-D3	
2058	1.842E+01	1.006E+04	6.762E-01	2.886E-01	8.051E+01	5.409E-03	
2059	1.752E+01	9.573E+03	6.432E-01	2.745E-01	7.658E+01	5.145E-03	
2060	1.667E+01	9.106E+03	6.118E-01	2.611E-01	7.285E+01	4.894E-03	
2061	1.586E+01	8.662E+03	5.820E-01	2.484E-01	6.929E+01	4.656E-03	
2062	1.508E+01	8.239E+03	5.536E-01	2.363E-01	6.591E+01	4.429E-03	
2063	1.435E+01	7.837E+03	5,266E-01	2.247E-01	6.270E+01	4.213E-03	
2064	1.365E+01	7.455E+03	5.009E-01	2.138E-01	5.964E+01	4.007E-03	
2065	1.298E+01	7.092E+03	4.765E-01	2.034E-01	5.673E+01	3.812E-03	
2066	1.235E+01	6.746E+03	4.532E-01	1.934E-01	5.397E+01	3.626E-03	
2067	1.175E+01	6.417E+03	4.311E-01	1.840E-01	5.133E+01	3.449E-03	
2068	1.117E+01	6.104E+03	4.101E-01	1.750E-01	4.883E+01	3.281E-03	
2069	1.063E+01	5.806E+03	3.901E-01	1.665E-01	4.645E+01	3.121E-03	
2070	1.011E+01	5.523E+03	3.711E-01	1.584E-01	4.418E+01	2.969E-03	
2071	9.617E+00	5.254E+03	3.530E-01	1.506E-01	4.203E+01	2.824E-03	
2072	9.148E+00	4,997E+03	3.358E-01	1.433E-01	3.998E+01	2.686E-03	
2073	8.701E+00	4,754E+03	3.194E-01	1.363E-01	3.803E+01	2.555E-03	
2074	8.277E+00	4.522E+03	3.038E-01	1.297E-01	3.617E+01	2.431E-03	
2075	7.873E+00	4.301E+03	2.890E-01	1.233E-01	3.441E+01	2.312E-03	
2076	7.489E+00	4.091E+03	2.749E-01	1.173E-01	3.273E+01	2.199E-03	
2077	7.124E+00	3.892E+03	2.615E-01	1.116E-01	3.114E+01	2.092E-03	
2078	6.777E+00	3.702E+03	2.487E-01	1.062E-01	2.962E+01	1.990E-03	
2079	6.446E+00	3.522E+03	2,366E-01	1.010E-01	2.817E+01	1.893E-03	
2080	6.132E+00	3.350E+03	2.251E-01	9.606E-02	2.680E+01	1.801E-03	
2081	5.833E+00	3.186E+03	2.141E-01	9.137E-02	2.549E+01	1.713E-03	
2082	5.548E+00	3.031E+03	2.037E-01	8.692E-02	2.425E+01	1.629E-03	
2082	5.278E+00	2.883E+03	1.937E-01	8.268E-02	2.307E+01	1.550E-03	
2083	5.020E+00	2.743E+03	1.843E-01	7.865E-02	2.194E+01	1.474E-03	
2085	4.775E+00	2.609E+03	1.753E-01	7.481E-02	2.087E+01	1.402E-03	
	4.775E+00 4.543E+00	2.482E+03	1.667E-01	7.116E-02	1.985E+01	1.334E-03	
2086 2087	4.321E+00	2.361E+03	1.586E-01	6.769E-02	1.888E+01	1.269E-03	
		2.307E+03	1.509E-01	6.439E-02	1.796E+01	1,207E-03	
2088	4.110E+00	2.136E+03	1.435E-01	6.125E-02	1.709E+01	1.148E-03	
2089	3.910E+00 3.719E+00	2.032E+03	1.365E-01	5.826E-02	1.625E+01	1.092E-03	

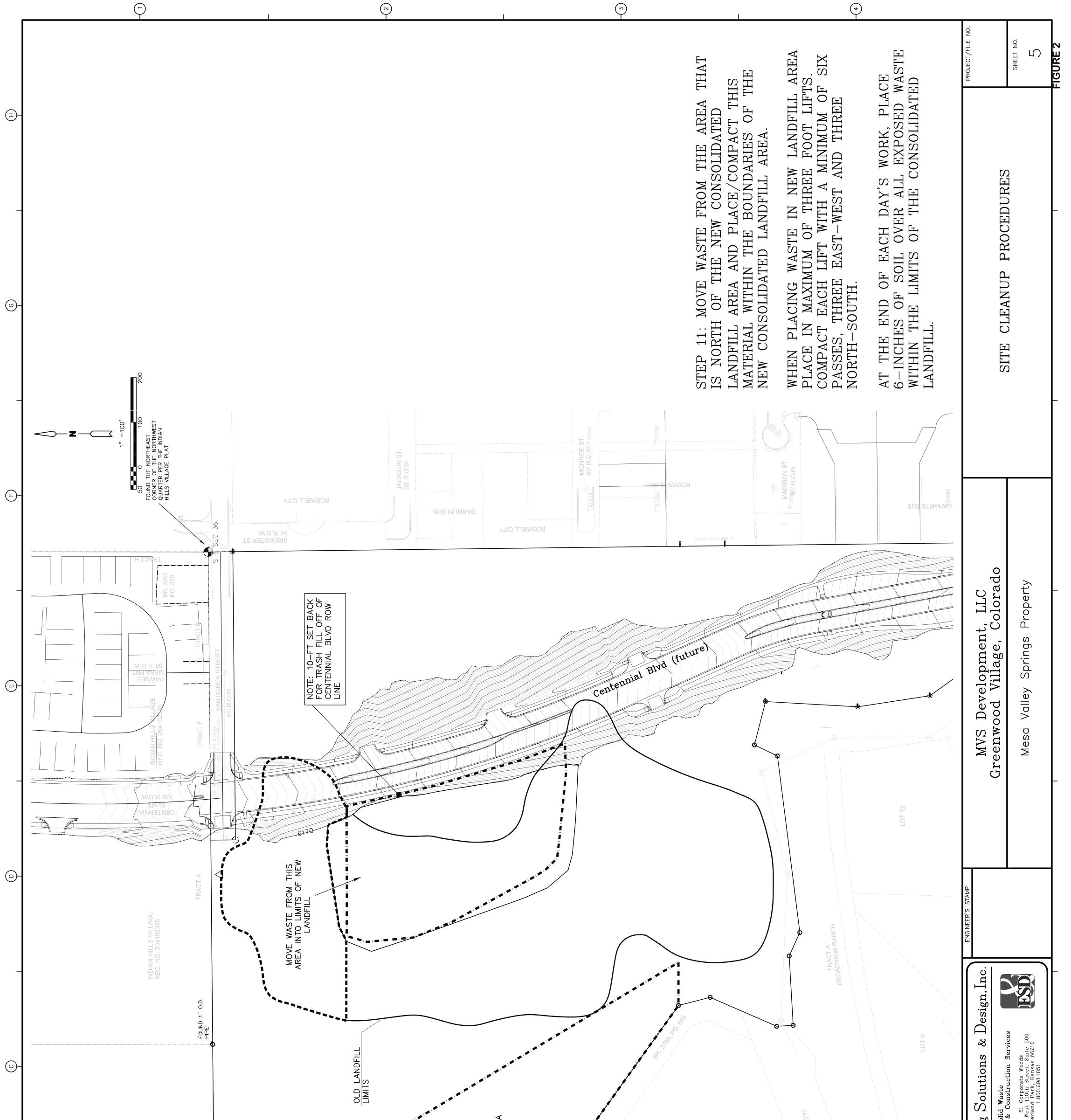
Appendix I Drawings



	0
0.3	20.
SPACE	SPACE
PRINT	MODEL
LTSCALE	LTSCALE

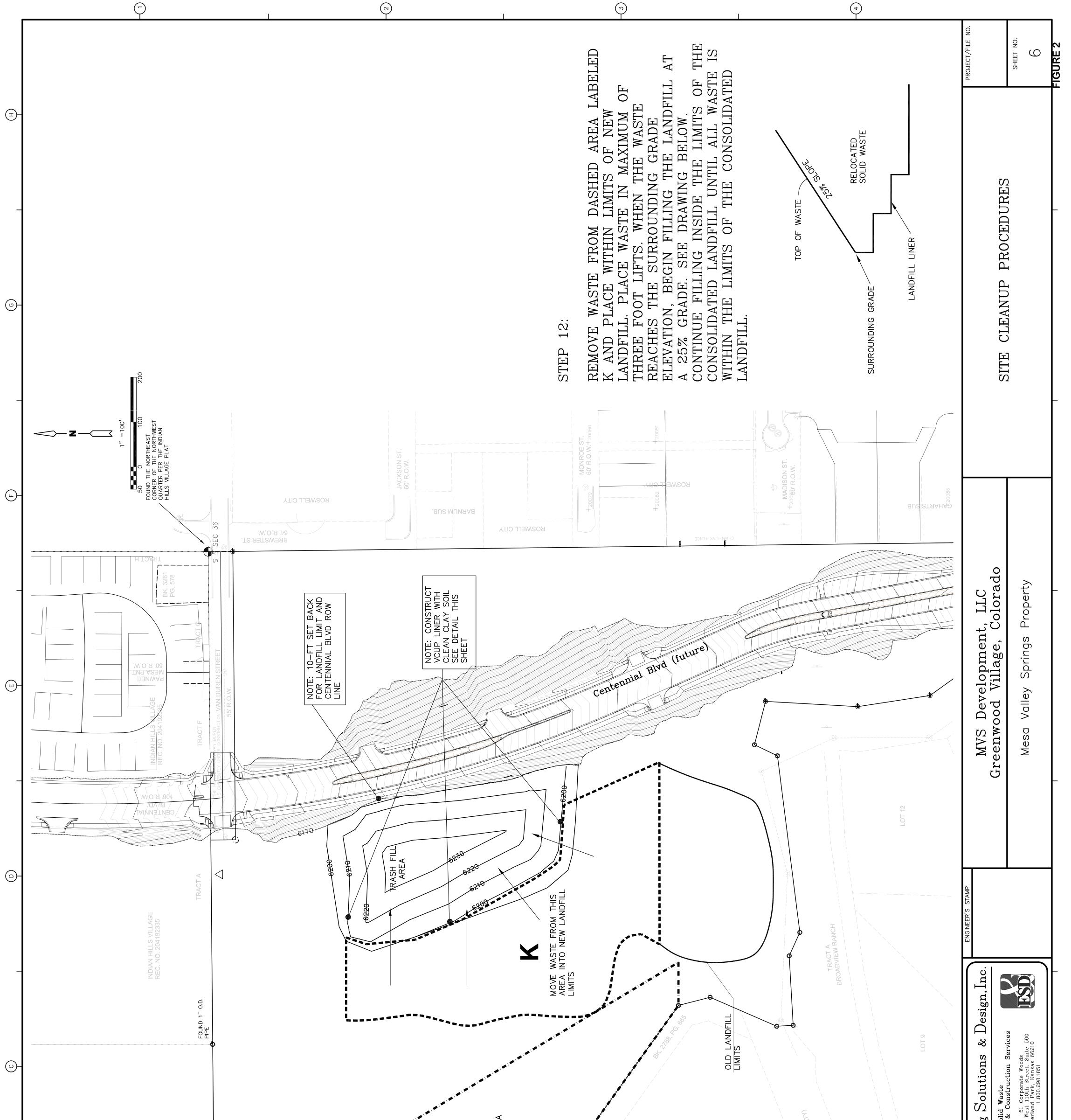
<u>(m)</u>-

<!--

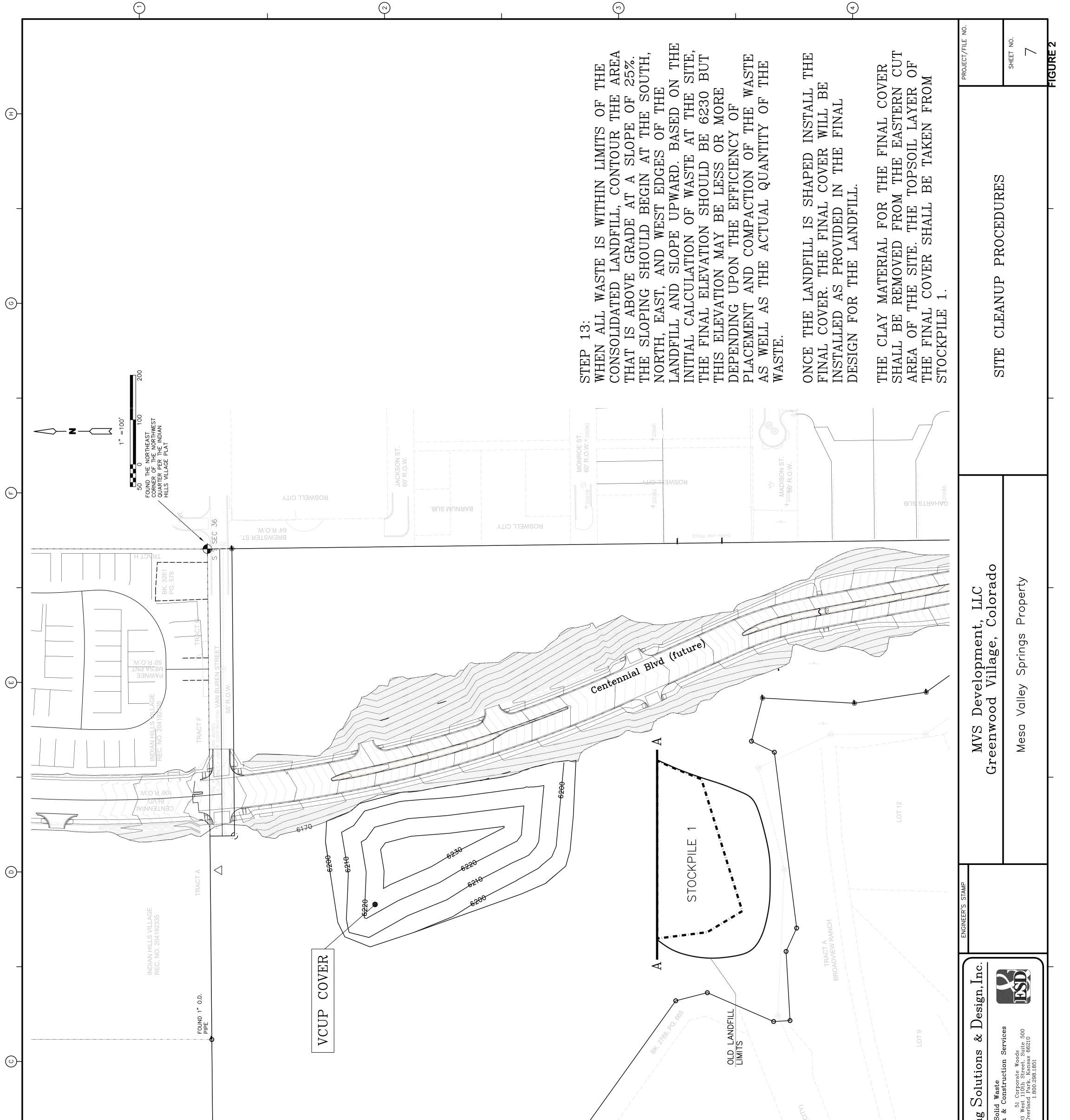


| 0.3
20.0 | |
|--------------------|--|
| SPACE | |
| PRINT
MODEL | |
| | |
| LTSCALE
LTSCALE | |

| CEAN FILL AREA |
|--|
| CLEAN FILL CLEAN FILL CLEAN FILL FILL FILL FILL FILL FILL FILL FIL |
| |


<u>(m)</u>-

<!--


| 0.3
20.0 |
|----------------|
| PACE
SPACE |
| RINT S
ODEL |
| |
| LTSCALI |
| |

| - | | CLEAN FILL AREA | The second secon | Engineering | Specializing in Soli
Planning, Design & | 9393 W
Over' | |
|-----|------------|-----------------|--|--------------|--|-----------------|-----------------|
| (B) | | ATTED COM | | ш <u>.</u> . | BY: | 20 | FILE:
XREFS: |
| - | BERTY LINE | UNITLA
I | | | | | REVISIONS |
| < | | | | | | | |
| | | | | | | | EV. DATE
0. |

| 0.3
20.0 |
|----------------|
| PACE
SPACE |
| RINT S
ODEL |
| |
| LTSCALI |
| |

| - | | CLEAN FILL AREA | The second secon | Engineering | Specializing in Soli
Planning, Design & | 9393 W
Over' | |
|-----|------------|-----------------|--|--------------|--|-----------------|-----------------|
| (B) | | ATTED COM | | ш <u>.</u> . | BY: | 20 | FILE:
XREFS: |
| - | BERTY LINE | UNITLA
I | | | | | REVISIONS |
| < | | | | | | | |
| | | | | | | | EV. DATE
0. |

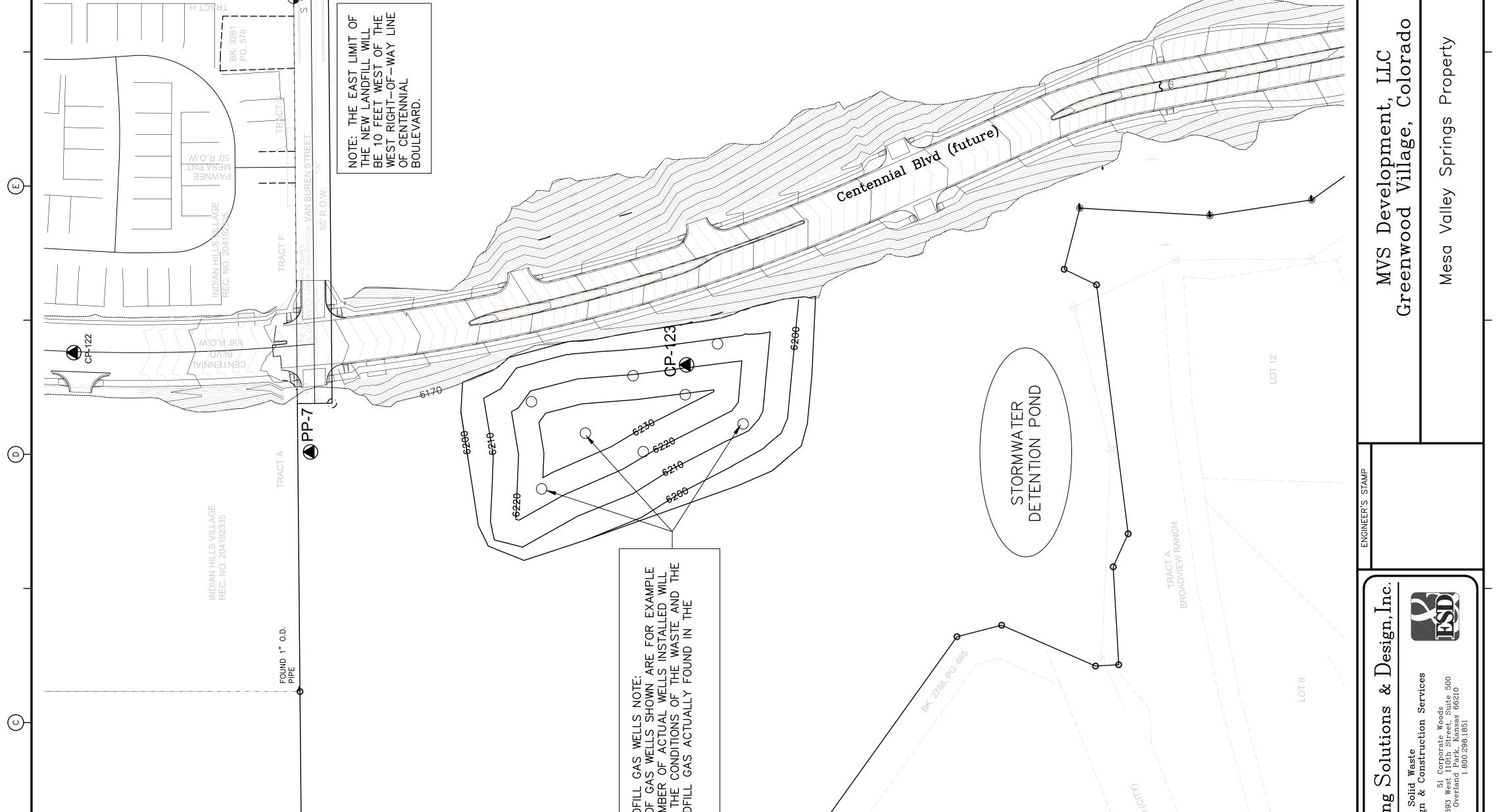
| _ | H, noineering | Specializing in Sol
Planning, Design & | 9393 V
9393 V | |
|---|---------------|---|------------------|---|
| B | BY: | DRAWN BY: MDK
SHEET CHK'D BY: JPC | | FILE:
XREFS: |
| < | | | | DATE REVIS _E PRINT SPACE 0.3 |

ISCALE = PRINI SPACE C TSCALE = MODEL SPACE

| ZIEP 14:
A LANDFILL CAS MONTORING SYSTEM WILL BE | HE LANDFILL. THIS SYSTEM
HE LANDFILL. THIS SYSTEM
INCH PVC SCHEDULE 40
DE THAT WILL BE INSTALLED
THE LANDFILL. THE VERTICA
CONNECTED TO A COLLECTIC
TRANSPORT THE LANDFILL
SITE FLARE SYSTEM. | TEP 15:
N THE AREA SHOWN ON THE
TORMWATER DETENTION PON
ONSTRUCTED DIRECTLY ADJA
ORTION OF THE PUBLIC CHA
ORTION OF THE PUBLIC CHA
E IMPROVED BY THE DEVEL
TILL OVERLAY EXISTING WAST
ILL OVERLAY EXISTING WAST
NDER SEVENTEEN TO TWENT
NDER SEVENTEEN TO TWENT
NDER SEVENTEEN TO TWENT
NDER SEVENTEEN TO TWENT
NDER SEVENTEEN TO TWENT
RILL MATERIAL SHALL BE REN
TLL MATERIAL SHALL BE REN
TLL MATERIAL SHALL BE REN
TLL MATERIAL SHALL BE REN
REPARTION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TREPARATION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TREPARATION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TREPARATION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TREPARATION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TREPARATION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TREPARATION FOR THE INSTA
ILL MATERIAL SHALL BE REN
TO TWENT SHALL BE REN
TO TWE SEVENTEEN TO TWENT
ILL MATERIAL SHALL BE REN
TO TO TRASH LAY
THE EXISTING TRASH LAY
REPARATION FOR THE INSTA
ILL ONCE THE PREPARAT | BUILT ON TOP OF THE SOLID WASTE. A
40-MIL HDPE LINER WILL BE INSTALLED OVER
THE 24-INCH SOIL LAYER. AN ENGINEERED
PERCOLATION SOIL LAYER WILL BE INSTALLED
THAT WILL HAVE A COMPLETED DEPTH OF
APPROXIMATELY TEN FEET. THE PERCOLATION
LAYER WILL BE THE BASE OF THE NEW
DETENTION BASIN WHICH WILL BE CONSTRUCTED
ON TOP OF THE PERCOLATION LAYER. THE
TOTAL AREA ENCOMPASSED BY THE DETENTION
BASIN WILL BE APPROXIMATELY ONE-ACRE. | SITE CLEANUP PROCEDURES SHEET NO. SHEET NO. SHEET NO. |
|--|--|--|---|---|
| ROSWELL CITY
REWSTER ST.
64' R.O.W.
REWSTER ST.
BREWSTER ST.
1" = 100'
1" = 10'
1" r>BARNUM SUB.
60'R.O.W. | CHAIN-LINK FENCE | CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE20086
CE2008 | |

(~)

 $(\overline{})$


(I)-

_

(L)-

(m)

(4)

| | VERTICAL LANDFILL
THE NUMBER OF G
ONLY. THE NUMBER
ON THE
LEVEL OF LANDFILL
MASTE. | | Engineering | Specializing in Solic
Planning, Design & | 9393 We
0verl | |
|------|---|----------------------------|-----------------------------------|---|--|-------------------------------------|
| (II) | | נס .
ירייאנה שלי | DESIGNED BY: JPC
DRAWN BY: MDK | SHEET CHK'D BY: JPC | APPROVED BY: JPC
DATE: OCTOBER 2018 | FILE:
XREFS: |
| | BROPERTY LINE | | | | | DATE REVISIONS
= PRINT SPACE 0.3 |
| | | | | | | NO. |

LTSCALE = PRINT SPACE 0.3 LTSCALE = MODEL SPACE 20.0

Appendix J Final Cover Analysis

FINAL COVER ANALYSIS

INTRODUCTION

After the solid waste is properly consolidated, the landfill will receive a final cover designed to protect the landfill and allow for the area to be used as open space. This document addresses options and analysis of final covers for the proposed consolidated landfill.

FINAL COVER OPTIONS

For this site, the final cover must be capable of supporting native vegetation and, possibly foot traffic. Because of this anticipated use, it will be important to select a final cover that provides protection as well as flexibility to accommodate future uses of the site.

There are a number of final covers that could be utilized for this site: (1) prescribed cover; (2) composite cover; (3) monolithic cover; (4) evapotranspiration cover; and (5) capillary barrier cover. A description of each cover is provided in the following paragraphs.

The prescribed cover is comprised of two layers: (a) an infiltration layer typically at least 18 inches thick and (b) a vegetative layer that is a minimum of 6 inches thick. The first layer, which must be a minimum of 18-inches thick, is an infiltration layer that is comprised of material that has a permeability of no greater than 1×10^{-5} cm/sec. This first layer is covered by a 6-inch vegetative layer. Based on the geotechnical testing conducted at this site (see Appendix B, C, D, E, and F) the on-site soils have the potential to meet the permeability requirements for this type of final cover.

The composite cover consists of a 6-inch soil base (on-site soils can be utilized) overlain by a geomembrane with a minimum thickness of 30 mil. A minimum 12-inch soil layer is placed over the geomembrane to protect it and allow for vegetative growth. This protective layer would be a minimum of eighteen inches thick. Based on geotechnical analyses of the on-site soils, these soils would be acceptable for use in this cover.

ALTERNATIVE FINAL COVERS

The monolithic, evapotranspiration, and capillary barrier covers are all considered alternative final covers. Each of these covers must be capable of providing equivalent protection as the prescribed or composite cover. The monolithic cover consists of one layer of soil and is typically utilized in low precipitation areas or where there is a significant amount of soil available. The soil layer has a thickness of at least 30 to 48 inches. The actual thickness is based on the results of computer modeling that identifies the thickness of the soil needed to be equivalent to the prescribed cover. Based on the laboratory testing conducted on the on-site soils, the soils have a hydraulic conductivity of 1.18×10^{-6} cm/sec or greater. This result indicates that the on-site soils, when properly compacted, can provide sufficient protection for final cover.

The evapotranspiration cover is comprised of one layer that is capable of supporting significant vegetative growth which is placed over a compacted subgrade. The utilization of vegetation is critical to the function of the cover as the vegetation is utilized to absorb precipitation that infiltrates the cover. A silty or loam type of soil is best for this type of cover, although sandy or clayey soils can be utilized if they are mixed with compost or other materials that will allow for vegetative growth. The type of vegetation used for this cover should be carefully considered because roots that have been left by vegetation that has died off due frost can become conduits for precipitation.

The capillary barrier cover is a variation on the evapotranspiration cover. This cover utilizes vegetation to absorb precipitation that infiltrates the cover and also includes a coarse and sand layer that creates a barrier to the migration of precipitation from the vegetative soil to the sand. A disadvantage to this cover is availability of sands or similar materials.

DETERMINATION OF FINAL COVER

It is important to identify the optimal cover for this consolidated landfill site. As noted previously, the landfill will be utilized as open space. Walking trails and certain native vegetation may be established on portions of the consolidated landfill. Because of these uses, it is necessary that the final cover can support vegetation, allow for foot traffic, be flexible in its ability to respond to these uses, and be easily repaired. In addition to identifying the proper cover, it is important to establish a maximum slope for the landfill area to better control the impact of erosion on the final cover. To accomplish this, the maximum slope should be 25% or 4:1.

Given the proposed use of the site and the slope criteria, the recommended optimal final cover should be either the evapotranspiration or capillary barrier final cover. These two covers offer the best potential for vegetative growth, can respond to foot traffic, and will be the most flexible given the soil circumstances at the site. More importantly, given the low permeability of the on-site soils, any precipitation that reaches the bottom of the final cover will be retained on the surface of the subsoil. The cost of installing the final cover and the estimated level of effort to maintain it should determine which final cover is selected for use on the consolidated landfill area. Considering the cost to import the fine and coarse sand, the capillary barrier cover would be more expensive to install due to material, hauling, and placement costs.

As noted earlier the evapotranspiration final cover may have maintenance issues due to potential impacts from certain vegetation. By choosing the proper vegetation and conducting regularly scheduled inspections of the cover, the impact of unacceptable vegetation can be controlled. It is anticipated that the cost for these maintenance efforts would be less than the costs for installing the capillary barrier final cover.

2090/Waterman Folder/VCUP Application 2018/Final VCUP Document Folder/Appendix I-Final Cover Analysis V01 10-22-2018 RSC

Appendix K Soil Sampling Program

SOIL SAMPLING PROGRAM

INTRODUCTION

Once properly consolidated, the landfill will receive a final cover designed to protect the landfill and allow for the area to be utilized as open space. To ensure the soils that are directly adjacent to and below the existing landfill are clean and free of any contaminants, these soils will be sampled as outlined in the following program.

SOIL SAMPLING PROGRAM

To confirm that all solid waste and contaminants associated with the solid waste have been removed during the excavation of the existing landfill, the soils directly adjacent to and below the existing landfill will be sampled. Samples will be taken at the side walls and bottom of the excavation once all of the solid waste is removed.

The sampling procedure involves two steps. The first step is to insert a 1-inch probe into the side wall and bottom of each excavation, which will penetrate the side wall and bottom at least 2 feet. The probe will be removed and the resulting hole will be checked for landfill gas and other volatile organics utilizing a gas/vapor meter. If the test is positive, the excavation will be allowed to ventilate to remove the vapors including VOCs.

Once the vapors have diminished or if the test results indicate the vapors/gases are below minimum concentration levels, then a sample of the soil will be taken. This sample will be placed in a container of adequate size to allow for testing the soils for all metals listed on the following page.

Once the results of the soil samples are obtained and the samples are found to contain no contaminants, the area sampled will be backfilled. If any contaminants are found, the excavation will be further expanded until clean soil is found. Once clean soil is encountered, the sampling process is ended and the next area of concern will be tested.

It is anticipated that there will be a minimum of four excavations – one on each side of the landfill. A minimum of four different locations within each excavation will be randomly selected for sampling. If there are significant contamination issues within an excavation, more samples will be taken.

As a part of the final design for the consolidated landfill, a detailed specification will be prepared for this sampling procedures. The specification will be submitted to CDPHE and results of all sampling tests will be provided in the Engineer's Report which will be submitted to CDPHE when the landfill consolidation is completed.

Metals to be Tested for From Soil Samples Gathered from the Bottom and Side Walls of the Excavations

| Magnesium | Cobalt |
|-----------|----------|
| Sodium | Lead |
| Potassium | Nickel |
| Calcium | Selenium |
| Antimony | Silver |
| Arsenic | Thallium |
| Barium | Zinc |
| Beryllium | Sulfate |
| Cadmium | Nitrite |
| Chromium | Nitrate |
| Copper | Vanadium |

2090/Waterman Folder/VCUP Application 2018/Final VCUP Document/Appendix J-Soil Sampling Program V01 10-24-2018 RSC

Appendix L Materials Management Plan

MATERIALS MANAGEMENT PLAN

INTRODUCTION

The process of consolidating the landfill will require relocating wastes at the site. To ensure the materials uncovered during the consolidation process are properly handled and any materials uncovered that are determined to be hazardous or suspected of being hazardous are properly segregated and removed from the site for proper disposal, the following materials management plan has been developed.

RELOCATION PROCESS

The relocation process will involve: (1) removing the cover materials presently in place over the existing landfill; (2) consolidating the landfill material, using a compactor, within the limits of the consolidated landfill footprint; (3) excavating solid waste outside the footprint of the consolidated landfill; (4) observing the excavated materials and checking for unacceptable materials; (5) placing and compacting the excavated solid waste; and (6) placing a final cover over the consolidated landfill. This process will be accomplished in distinct phases.

The excavated solid waste will be removed utilizing either backhoes, scrapers, or large loaders. The solid waste that is excavated will be processed to remove soil from the solid waste. The solid waste will then be moved to the consolidation area utilizing trucks or loaders, depending on the distance to the consolidation area. The solid waste will be placed in the consolidation area and compacted. All solid waste that is excavated and processed will be placed in the consolidation area and, all solid waste placed and compacted during the day will be covered at the end of the work day.

OBSERVATION PROCEDURES

The solid waste that is excavated and processed will be observed throughout the process. Observations will be made by the equipment operators and on-site construction quality assurance personnel. Materials will be monitored as they are excavated and any anomalies (such as 55-gallon metal drums, discolored waste, any noxious or inconsistent odors, or the presence of liquids) will be cause the excavation process to stop and the identified problem waste will be segregated.

Problem waste will be collected in a loader bucket and sent to a designated retention area, outside of the consolidation limits and the excavation limits. The retention area will be fenced and will have a minimum two-foot berm around it to control any liquids. Further, the area will be gated, and the gate will be locked at all times except when problem waste is brought to the retention area or when the problem waste is inspected and/or tested by trained personnel.

Once a problem waste is inspected and/or tested and its characteristics are determined, removal of the waste material will be coordinated with a company specializing in the handling of the specific waste. If it is determined the problem waste is not hazardous and it is acceptable, it will be removed from the retention area and placed in the reconsolidation area.

A record of observed materials will be made on a daily basis. The location of the excavation will be noted each day. In addition, an estimate of the quantity of material removed will be determined.

Observations will also be conducted at the processing area. Any material that is determined to be a problem waste will be removed from the area and sent to the retention area. If a problem waste is identified all processing activities will stop until the problem waste is removed.

PROBLEM SOLID WASTE PROCESSING

As noted in the previous sections, problem solid waste will be placed in a retention area for assessment and final disposition. Problem wastes will be tested for their characteristics and the materials that comprise the problem solid waste. If the material is determined to be hazardous, a company that specializes in disposing the specific material will be contacted. This company will come to the site, stabilize the material for transport, and remove it from the site. A list of companies that specialize in determining the type of waste and/or processing and disposing of the waste will be assembled for use during the consolidation process. Companies specializing in handling the following types of materials will be compiled.

- Asbestos
- Petroleum Contaminated Soils
- PCBs
- Acids and Alkaline
- Hazardous Chemicals
- Animal Waste
- Tires and Contaminated White Goods

If it is determined that the problem waste can be disposed within the consolidation area, it will be moved to the consolidated area for final disposal. No problem solid waste will remain on-site for more than 24 hours unless it is stabilized and controlled to eliminate its potential of becoming air borne or liquid is not being discharged from the problem waste.

SITE PROTECTION

To protect the site and surrounding properties from potential contamination, a number of steps will be taken including:

- The area around the landfill will be graded to keep all run-off within the landfill limits throughout the consolidation process.
- 2. The problem waste area soil will be compacted to minimize any absorption of liquids into the soil. When the consolidation project is complete, the retention area will be excavated to a depth of at least five feet or as deep as any liquids may have penetrated and this soil will be removed from the site and sent to a disposal facility that can process this material.
- 3. The retention area will be fenced and bermed. The fence will be utilized to segregate the site and also control blowing debris. The berming will be utilized to keep all liquids and stormwater within the retention area. The soil that comprises the berm will be removed from the site when the consolidation efforts are complete and taken to a facility that can treat contaminated soils.
- 4. The area around the consolidated landfill will be fenced to control access to the site by animals and non-authorized personnel. The fence will also be utilized to capture any blowing debris.
- 5. Daily cover, either temporary or permanent, will be placed over the exposed solid waste in the consolidated area as well as exposed solid waste in the excavation area.

Implementing these steps will address site controls as well as reduce the impact to surrounding properties. The measures taken will be checked on a daily basis to ensure each step is functioning properly. Corrections will be instituted as soon as corrective action is needed or if improvements are warranted. All of the site protection measures will remain in place until the final cover is installed, the cover is vegetated, and the long-term erosion controls are in place.

2090/Waterman Folder/VCUP Application 2018 Folder/Appendix L-Materials Management Plan V01 10-22-2018 RSC

Appendix M Response to Discovery of Asbestos Plan

RESPONSE TO DISCOVERY OF ASBESTOS

INTRODUCTION

This project involves excavating waste from an abandon landfill site that was utilized during the 1950's and 1960's. A list of materials that may contain asbestos that may have been disgarded at the landfill site follows.

- Cement Pipes
- Elevator Brake Shoes
- Cement Wallboard
- Cement Siding
- Boiler Insulation
- Asphalt Floor Tile
- Breaching Insulation
- Vinyl Floor Tile
- Vinyl Sheet Flooring
- Flooring Backing
- Acoustical Plaster
- Decorative Plaster
- Textured Paints/Coatings Ceiling
- Tiles and Lay-in Panels
- Spray-Applied Insulation
- Blown-in Insulation
- Fireproofing Materials
- Taping Compounds (thermal)
- Thermal Paper Products
- Fire Doors

- High Temperature Gaskets
- Caulking/Putties
- Table Tops
- Adhesives
- Laboratory Gloves
- Wallboard
- Fire Blankets
- Joint Compounds
- Fire Curtains
- Vinyl Wall Coverings
- Elevator Equipment Panels
- Spackling Compounds
- Electrical Panel
- Partitions
- Electrical Cloth
- Electric Wiring Insulation
- Chalkboards
- Roofing Shingles
- Roofing Felt
- Base Flashing

- Ductwork Flexible Fabric Connections
- Pipe Insulation (corrugated air-cell, block, etc.)
- Construction Mastics (floor tile, carpet, ceiling, heating and electrical ducts, tile)
- Packing Materials (for wall/floor penetrations)

This project involves excavating an exisitng landfill which includes the exposure and processing of solid waste. Although the various site investigaitons conducted during the past 32 years have not discovered any asbestos at the site (see Appendix A, B, C, D, E, and F), it is possible that asbestos may be discovered during the excavation project.

DISCOVERY OF SUSPECT MATERIAL

It is important to observe the current condition of any suspected asbestos materials encountered to determine whether they are friable or non-friable. Determinations regarding the type of asbestos material encountered and its friability must be made by a Certified Asbestos Building Inspector.

More specific efforts to be taken when sbestos is discovered during active construction activities is presented below. Further, the information presented below outlines procedures for minimizing the potential release of airborne asbestos when suspect asbestos material is discovered.

- 1. Stop work when discovering material that is suspected of containing asbestos.
- 2. Segregate the area suspected of containing asbestos with barrier tape, or other means, and provide site access control.
- 3. Disturb soil as little as possible to perform any initial characterization activities.
- 4. Water area immediately prior to performing any characterization activity that will disturb the material. Maintain wet conditions throughout site characterization activities.
- 5. Cover the disturbed soil with a layer of 6-mil polyethylene material, tarps, or spray with magnesium chloride solution in sufficient amounts to wet the soil to prevent drying and dust generation.

- 6. Utilize a layer of 6-mil polyethylene material to prevent contamination to clean soils during initial characterization activity. This can be accomplished by placing the 6-mil polyethylene material on the ground and then placing the contaminated soil on the material.
- 7. Maintain complete dust control to eliminate any emissions.
- 8. Have a list of asbestos Building Inspectors (with a minimum of six (6) months experience conducting asbestos-contaminated soil inspections and certified in accordance with Colorado Department of Public Health and Environment Air Regulation No. 8, Part B) on site in order to ensure prompt response to any asbestos issue. Allow Building Inspector to properly conduct on-site assessment as described in the "Asbestos-Contaminated Soil Guidance Document" prepared by the Colorado Department of Public Health and Environment, dated April 2007.
- 9. Decontaminate workers by removing any visible soil and dust with damp wipes or cloths, or by the use of a HEPA (high efficiency particulate air) filter equipped vacuum. Place wipes and cloths in a plastic bag and label as "Investigative waste" along with the date, company name, and your name. If additional clothing is available, clothes should be changed and potentially contaminated clothes should be bagged separately from wipes and cloths (it may be possible to clean these clothes if it is determined that asbestos is not present).
- 10. Decontaminate equipment by removal of gross soils and dust, then washing the equipment. Decontamination of equipment should be conducted by a certified asbestos worker wearing proper personal protective equipment (PPE). Materials used for decontamination should be bagged and labeled as above. Decontamination rinse water should be collected and filtered to 5 microns prior to disposal off site, or prior to use for wetting of asbestos contaminated areas that will be removed (this decontanination rinse water cannot be used for worker decontamination).

If areas where decontamination water has been applied are not going to be excavated prior to drying, the surface must be covered or stabilized until excavation occurs to prevent the emissions of any asbestos fibers that were not removed during filtration. If disposal of decontamination water to the sanitary sewer is anticipated, rinse water should be filtered to 5 microns, or in accordance with local requirements if such requirements are more stringent.

- 11. Based upon analytical results of suspect materials, if asbestos is present (or assumed to be present if sampling is not conducted), dispose of bags by double bagging and disposing of as asbestos waste in a properly permitted landfill. If analytical results indicate that no asbestos is present, bags can be disposed of as non-asbestos solid waste.
- 12. Notify the Colorado Department of Public Health and Enviornmentt, Hazardous Materials and Waste Management Division (Division) by calling (303) 692-3320 as soon as possible, but no later than 24 hours after discovery of visible material containing asbestos in the soils or asbestos-contaminated soil. In accordance with Colorado Departmrnt of Public Health and Environment Air Regulation No. 8, Part B the notification must, at a minimum, include:
 - Property location
 - General site description
 - Description of activities involved in discovering asbestos
 - Description of type and amount of material containing asbestos
 - Description of any access and emission controls implemented at the site
 - Property representative's name and phone numbe.
 - Contact name and phone number for the party performing soildisturbing activities

All verbal notifications must be followed up by a written notification. Written notification can be submitted via e-mail to <u>comments.hmwmd@state.co.us</u> or by any other means that will ensure that the notification is received by the Division within 24 hours.

 Submit a Soil Characterization and Management Plan, in accordance with Section 5 of the Colorado Department of Public Health and Environment Air Regulation No. 8, Part B, to the Division for review and approval.

INTERIM PROCEDURES

Depending on the goals of the project and the nature of the asbestos material encountered, site characterization may be as simple as determining the extent of visible material and its friability, or may involve a more thorough investigation of the nature and extent of material present. Prior to and during the site characterization, and until final actions are taken in accordance with an approved Soil Characterization and Management Plan or approved standard procedures, the following interim actions should be implemented, as necessary, based on the nature and friability of material and the size and location of the project, to prevent release of and/or exposure to asbestos fibers.

- 1. Maintain adequately wet conditions on the site until the material is stabilized.
- 2. Apply stabilizing agents to the material as needed.
- 3. Take measures, as necessary, to address asbestos-contaminated soil that may have been tracked to other areas by contaminated equipment. These measures include stabilizing or covering these areas until they can be addressed under an approved Soil Characterization and Management Plan, or by conducting immediate spill response activities.
- 4. Construct wind fences or other wind barriers as appropriate.
- 5. Construct barriers around activity areas.
- 6. Cover soil with polyethylene, or similar material, or spray the soil with a stabilizer.
- Reduce traffic speeds for equipment, trucks and cars through adjacent exposed soil areas.

- 8. Clothing and equipment that have come into contact with the asbestoscontaminated soils should be considered contaminated. Workers and equipment should be decontaminated on site, and dirt and debris should not leave the immediate work area. Decontaminate workers as described in Section 6 of the "Asbestos-Conyaminated Soil Guideance Document", preapred by Colorado Department of Public Health and Environment, dated April 2007.
- 9. Place equipment on a plastic barrier to collect decontamination water for filtering prior to disposal. Decontaminate equipment by removal of gross soils and dust, then wet wash equipment. Materials used for wiping should be bagged and labeled (see labeling specification as previously delineated).
- 10. Dispose of bagged decontamination waste materials as asbestos waste in a properly permitted landfill.
- Decontamination water should be processed as described in Sections 5and 6 of the "Asbestos-Contaminated Soil Guidance Document" prepared by the Colorado Department of Public Health and Environment, dated April 2007.

2090/Waterman Folder/VCUP Application 2018/Final VCUP Document/Appendix M-Asbestos Plan V01 10-22-2018 RSC

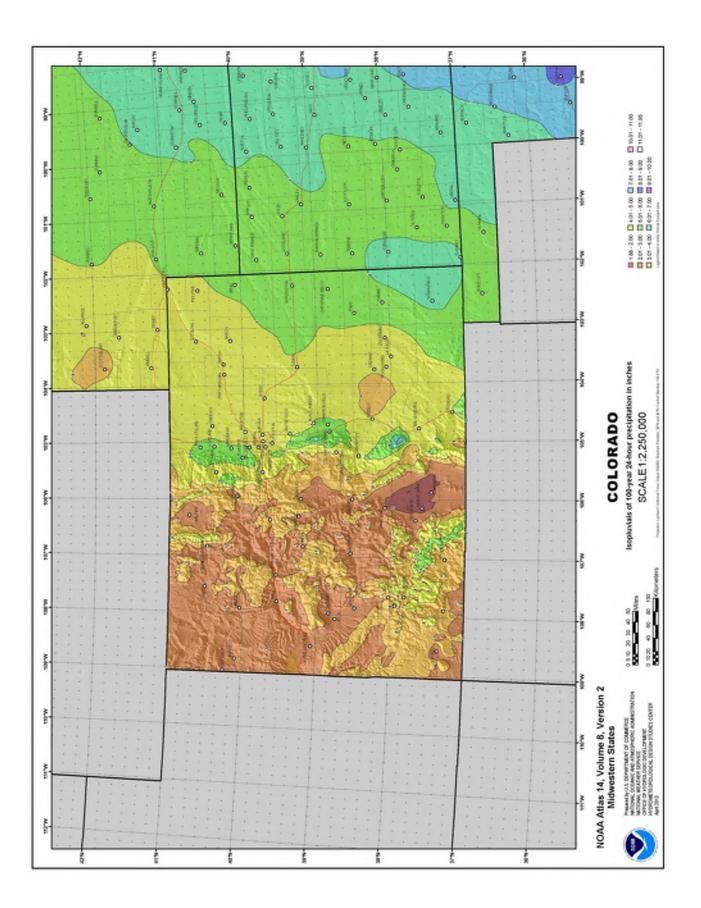
Appendix N Erosion Protection Program

EROSION PROTECTION PROGRAM

INTRODUCTION

A continual issue with any landfill site is the control of erosion. This document addresses the issue of erosion on the consolidated landfill.

STORMWATER POTENTIAL


The Colorado Department of Public Health and Environment requested that the landfill site be capable of controlling the impact of a 100-year, 24-hour storm event. The greatest impact to the site from a 100-year, 24-hour storm event would be erosion. Data from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 8 indicates the anticipated precipitation of a 100-year, 24-hour storm event, at this location, is 5.25 inches (see NOAA map on following page). This type of rainfall event can create an overland flow event which has the potential to create small rivulets, which can create gully erosion depending upon the side slope of the site. The other impact that can occur from this rainfall intensity is the mass movement of the face of the side slope soil.

A 5.25-inch rainfall occurring over the 3.6-acre consolidated landfill site would generate a maximum of 69,000 cubic feet of water. If it is assumed that the rain falls uniformly over the site, then the maximum amount of stormwater that falls on any one acre is less than 19,200 cubic feet. Assuming an infiltration rate of 0.15, the maximum amount of stormwater discharging over the 25% slopes is less than 16,320 cubic feet over a period of 24 hours with an anticipated peak of 9 cubic feet per second for a duration of less than 0.5 hours. These rates of flow and duration would result in limited erosion depending upon the erosion control methods.

EROSION CONTROL METHODS

Many factors affect the rate of erosion. The most important of these are vegetative cover, artificial or temporary cover, soil type, and land slope. Because of the erosive impact of raindrops falling on soil, vegetation provides significant protection against erosion by absorbing the energy of the falling drops and generally reducing the drop size that reaches the ground. Vegetation may also provide mechanical protection to the soil against gully erosion.

Another advantage of vegetal cover is the improved infiltration capacity given the higher organic content of the soil. This infiltration is also complimented by the uptake capabilities of the vegetation.

Artificial or temporary covers include gravels, rip-rap, and straw. These covers create an armoring effect that resist splash erosion. By reducing splash erosion, the impact of major storm events is minimized.

Soil types affect the potential for erosion. Sandy soils have a larger granular structure and take more energy to be moved. Clayey soil binds together better than sandy soil but the clay particles are much smaller and lighter and thus can be dislodged easier.

The most significant impact on soil type is the slope of the surface. Typically, overlandflow velocities are greater on steeper side slopes and the potential for mass movement increases significantly as the slope increases.

METHODS TO ADDRESS EROSION AT THIS SITE

Two erosion control methods will be implemented at this site. The first is to utilize a soil mixed with a good organic component. This soil mix will be utilized on all bare areas of the site. The mix will be comprised of on-site soils mixed with a minimum of 20% compost or similar material to ensure the soil can support and maintain vegetation.

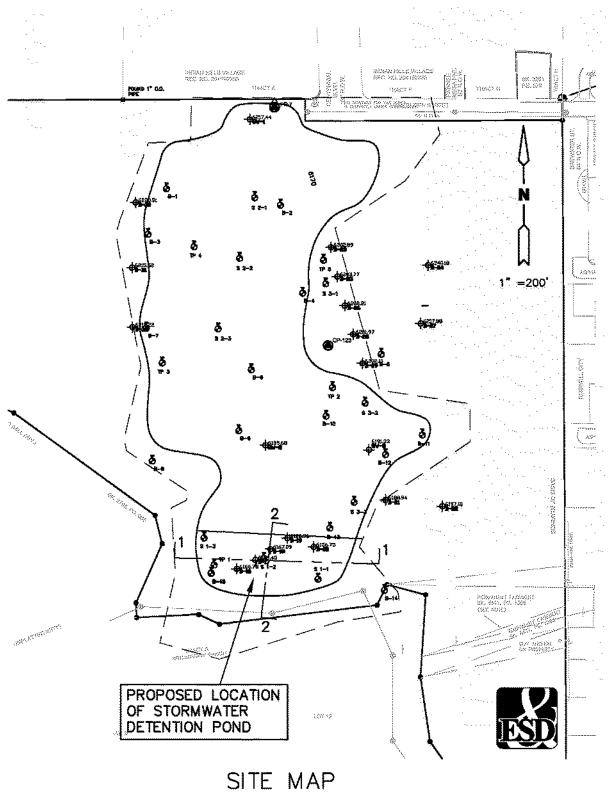
The second will address the protection of the final cover on the consolidated landfill. Once the final cover is installed it will be seeded utilizing a spreader system that is also capable of spreading gravel. The gravel/seed mix (gravel size is 1/4 inch minus with no fines smaller than a #4 sieve) will be hydrated to allow for rapid germination. Native vegetation will be selected for seeding. The site will also be covered with blown-on straw.

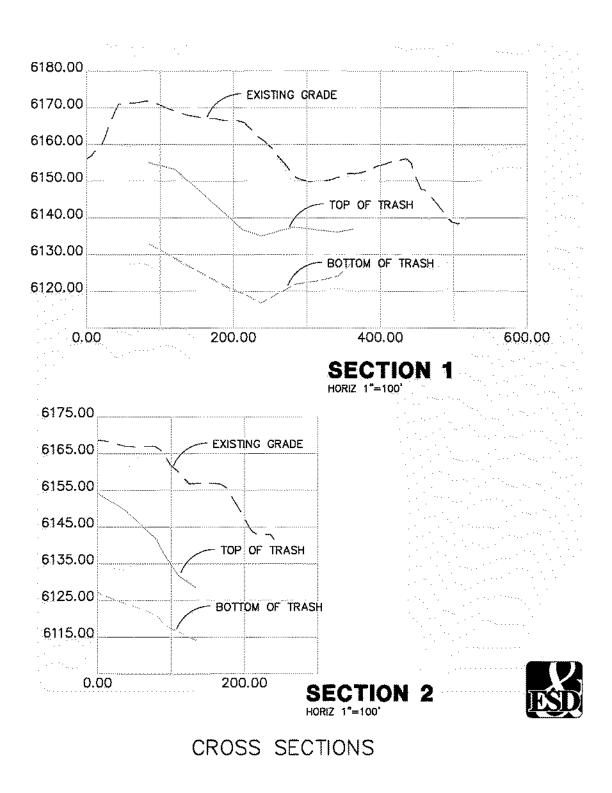
The final cover will be sloped at 25% or 4:1 to minimize side slope erosion. The final lift of the vegetative layer or surface lift will be textured to reduce the potential for stormwater to accelerate on the side slopes. A shallow swale will be located at the toe of the final cover to capture stormwater and move it away from the landfill.

2090/Waterman Folder/VCUP Application 2018 Folder/Appendix K-Erosion Protection Program V01 10-22-2018 RSC

Appendix O Stormwater Detention Pond

STORMWATER DETENTION POND


SITE CONDITIONS


The property that encompasses the abandoned landfill slopes from northwest to southeast. This natural slope has resulted in a series of channels that direct stormwater flow to the southwestern and southeastern portion of the site. Specifically, these channels direct stormwater to the streams that border the western and southern portions of the project site. These streams have allowed soils as well as other materials to discharge randomly from the property.

As a part of the voluntary clean-up efforts, drainage on the site will be refined to allow for better control of stormwater. An integral part of this will be to establish a stormwater detention pond at the southeastern end of the property. As can be seen in the site map on the following page, the area in the southeastern portion of the property is contoured to accommodate a possible detention pond. There is solid waste in this area that is buried at depths varying from five feet to more than 25 feet. Given this circumstance, it is proposed to accommodate both the stormwater detention pond and the solid waste that is at depth in this area.

PRESENT SOLID WASTE PLACEMENT

As can be seen in the cross sections provided on page 3, solid waste in the southeastern portion of the site is buried at two separate depths. As noted in Cross-Section 1, there is a layer of solid waste that is located at depths as shallow as a few feet; and, in Cross-Section 2 solid waste located at depths of 25 feet or more. These two conditions create difficulties in removing the waste. First, the shallow waste varies in location and thickness. This will likely result in an over-excavation of soil which will impact the capacity of the consolidated landfill and could require a higher or wider landfill footprint. Solid waste buried at depths of 25 feet or more will result in the extensive excavation of soil to reach the solid waste as well as excavation of the solid waste. Developing a stormwater detention pond in this area will address these issues.

SOLID WASTE LOCATED AT THE PROPOSED DETENTION POND SITE

The location of the proposed stormwater detention pond is situated over solid waste. Those portions of solid waste that are relatively shallow will be excavated and placed in the consolidated landfill. The portion of the solid waste that is at depth will be left in place. The stormwater detention pond will be excavated to a depth that accommodates the stormwater flow from a predetermined stormwater frequency. As the pond is excavated, it is anticipated that some solid waste may be encountered. If solid waste is encountered, it will be relocated to the consolidated landfill. When excavation reaches its prescribed depth, if any solid waste is exposed it will be covered with soil.

STORMWATER DETENTION POND DEVELOPMENT

A stormwater detention pond, by description, is designed to receive and contain stormwater from a prescribed area. For this site, the stormwater detention pond will be approximately one acre in size and will be designed to accommodate all the stormwater that falls on the site plus a portion of the stormwater that will be generated by the future Centennial Boulevard.

The stormwater detention pond will have a liner system which will be installed over the existing trash and below a ten-foot thick layer of aggregate-soil mix for traditional basin percolation purposes. This liner system will protect the in-place existing solid waste; and from bottom to top, the liner system will be comprised of a:

- Composite soil liner, placed in acceptable lifts resulting in a permeability of at least 1 x 10^{-7} cm/sec;
- Synthetic, flexible membrane liner;
- Soil protective layer; and
- Ten-foot thick aggregate-soil mix percolation layer.

The stormwater detention pond will be designed to contain the stormwater until it either evaporates, seeps into the percolation layer, or is overflow discharged from the pond into the adjacent improved public channel. The area around the pond will be vegetated to reduce erosion and any outlet from the pond will be armored with rocks and an impervious sublayer.

QUALITY CONTROL OF THE POND LINER

The compacted soil liner and the synthetic liner installation will be overseen by on-site quality assurance personnel who will monitor the operation and record all activities related to the liner system installation. This individual will report to the Site Engineer, who will have overall responsibility for the stormwater detention pond.