

Engineering Solutions & Design, Inc.

SOLID WASTE PLANNING, DESIGN AND CONSTRUCTION SERVICES

Two Park Square 6565 Americas Pkwy NE, Ste 200 Albuquerque, NM 87110

T: (800) 298-1851 www.esdworks.com 51 Corporate Woods 9393 W. 110th Street, Ste 500 Overland Park, KS 66210

October 25, 2018

Mr. Fonda Apostolopoulos, Project Manager Voluntary Clean-Up Program Colorado Department of Public Health and Environment 4300 Cherry Creek Drive South, Building B-2 Denver, CO 80246

> RE: Application for Voluntary Clean-Up Remediation of Existing Landfill on Property Located in the Northwest Quarter of Section 1, Township 14 South, Range 67 West in Colorado Springs, CO

Dear Mr. Apostolopoulos:

On behalf of MVS Development, LLC, I am submitting two copies of the referenced document. The review fee of \$2,000.00 is being forwarded separately. We appreciate the opportunity to submit this application and your consideration of our request. Improvements are planned for the entire property; and, significant improvements are planned to address the existing abandoned landfill, which will be of benefit to the citizens of Colorado Springs. As requested, we are also submitting one copy of the application to the City of Colorado Springs.

Should you have any questions regarding this matter, please do not hesitate to contact me at: (800) 298-1851 Ext. 1.

Sincerely, ENGINEERING SOLUTIONS DESIGN, INC. Jack P. Ch

APPLICATION FOR VOLUNTARY CLEAN-UP

Remediation of Existing Abandoned Landfill Mesa Valley Springs Property Colorado Springs, Colorado

> Prepared for **MVS Development, LLC** 5300 DTC Parkway, Ste 270 Greenwood Village, CO 80111

Prepared by Engineering Solutions & Design, Inc. 9393 W. 110th Street, Ste 500 Overland Park, KS 66210 (800) 298-1851

October 25, 2018

TABLE OF CONTENTS

CHECKLIST				
GENERAL INFORMAT	ION			
PROGRAM DESCRIPT	TION			
Introduction.				
Site History .				
Site Character	rization			
Remediation F	Plan			
Certification P	rocess			
APPENDIX A	Site Investigation 1986			
APPENDIX B	Soil Investigation August 2005			
APPENDIX C	Soil Boring Investigation November 2005			
APPENDIX D	Groundwater Sampling and Methane Monitoring Report April 2006			
APPENDIX E	Subsurface Investigation for Mesa Valley Springs January 2007			
APPENDIX F	Assessment Report - Mesa Valley Landfill Investigation 2018			
APPENDIX G	Groundwater Sampling Results 2011 and 2018			
APPENDIX H	Drawings			
APPENDIX I	Final Cover Analysis			
APPENDIX J	Soil Sampling Program			
APPENDIX K	Erosion Protection Program			
APPENDIX L	Materials Management Plan			
APPENDIX M	Response to Discovery of Asbestos Plan			
APPENDIX N	Landfill Gas Generation Analysis			
APPENDIX O	Stormwater Detention Pond			

VOLUNTARY CLEANUP AND REDEVELOPMENT ACT CHECKLIST AND INFORMATION COMPARISON TABLE

This table provides a checklist of information that may be included in a Voluntary Cleanup Program application. Although not all information requirements apply to all sites, the applicant should review this list carefully and include in the application any information that is relevant to the property in question. The table should be submitted in the application, with the page numbers in the application where this information can be found inserted into the last column. This is not an application requirement, but it does greatly assist the reviewer.

This table may also be used to compare the information normally contained in Phase I and Phase II Environmental Audits, with the requirements of the Voluntary Cleanup Program application. Since these audits are commonly performed, the table will assist owners in determining any <u>additional</u> information that may be needed, if you have already performed a Phase I or Phase II audit.

DIRECTIONS FOR COMPARISON TABLE INTERPRETATION

The table that follows is organized like the one below.

PI PII VC I. Gen	eral Information Page
------------------	-----------------------

The first three columns provide the comparison between the information requirements of Phase I (PI) and Phase II (P II) Environmental Audits and the Voluntary Cleanup Program application (VC). In each column you will either see a blank space, a zero (0), a plus sign (+) or a minus sign (-). These can be interpreted as follows:

- + means requirements are more detailed than other documents
- means requirements are less detailed than other documents
- 0 means requirements are similar to other documents

a blank means that the requirement does not exist for that document

So, for example, if you saw a (+) in the VC column, it means that there are additional information requirements for the Voluntary Cleanup Program application in comparison to the audit reports for that item. If there was a (0) in the VC column, then the information contained in the Phase I or Phase II audit is adequate for the Voluntary Cleanup Program application.

The fourth column provides the checklist of information items required in the Voluntary Cleanup Program application.

The fifth column provides a place for you to insert the page number from the Voluntary Cleanup Program application that pertains to this informational item. If the applicant fills this portion out and returns the table with the application, it greatly assists the reviewer in finding information within the application.

VOLUNTARY CLEANUP, ASTM PHASE I, ASTM PHASE II COMPARISON

ΡI	P II	VC	I. GENERAL INFORMATION	Page
0	0	0	Name and address of owner	GI-1
0	0	0	Contact person and phone number	GI-1
0	0	0	Location of property	GI-1
-	+	+	Type and source of contamination	GI-1
		+	Voluntary Clean-up (VC) or No Action Determination (NAD)	GI-1
0		0	Current Land Use	GI-1
		+	Proposed Land Use. Proposed future land use is not covered in a Phase I or II	GI-1
			assessment. A voluntary cleanup approval is contingent upon this item.	

ΡI	PII	VC	II. PROGRAM INCLUSION	Page
-		+	Is the applicant the owner of the property for the submitted VC or NAD? In a	
			Phase I assessment, the owner is not always the party preparing the	GI-1
			assessment. The Voluntary Cleanup Program requires owner/designated	GI-1
			representative to complete the submittal.	
-		+	Is the property submitted for the VC or NAD the subject of corrective action	
			under orders or agreements issued pursuant to provisions of Part 3 of Article	
			15 of this Title or the federal RCRA 1976 as amended? Although Phase I	NO
			assessments review state records for RCRA corrective actions, the Voluntary	
			Cleanup Program requires details of a corrective action for an eligibility determination.	
_		+	Is the property submitted for the VC or NAD subject to an order issued by or	
-		Т	an agreement with the Water Quality Control Division pursuant to Part 6 of	
			Article 8 of this Title? Although Phase I assessments review state records,	NO
			detail is not discussed. If Water Quality has issued a permit, the applicant is	NO
			ineligible.	
-		+	Is the property submitted for the VC or NAD a facility that has or should have	
			a permit or interim status pursuant to Part 3 of Article 15 of this Title for	
			treatment, storage or disposal of hazardous waste? Although Phase I	
			assessments review state records, detail is not discussed. For the Voluntary	NO
			Cleanup Program, details of permits or interim status are necessary for an	
			eligibility determination. Based on the site specifics of the permitted facility,	
			the applicant may qualify for the program.	
-		+	Is the property submitted for the VC or NAD subject to the provisions of Part	
			5 of Article 20 of Title 8 (Underground Storage Tanks) CRS or of Article 18	
			of this Title (RCRA)? Although Phase I assessments review state records,	
			detail is not discussed. For the Voluntary Cleanup Program details of	NO
			Underground Storage Tank or RCRA requirements are necessary to make an $12/22/28$, the	
			evaluation. In some cases (e.g., tanks were removed prior to 12/22/88), the applicant may be eligible for the program.	
_		+	Is the property submitted for the VC or NAD listed or proposed for listing on	
-			the National Priorities List of Superfund sites established under the federal act	
			(CERCLA)? Although Phase I assessments review state records, detail is not	
			discussed. For the Voluntary Cleanup Program, details of CERCLA action	NO
			are necessary to make an evaluation. In some cases, the applicant may not be	
			eligible for the program.	

ΡI	P II	VC	III. ENVIRONMENTAL ASSESSMENT	Page
0	0	0	Qualified environmental professionals must submit environmental	
			assessments. The applicant must submit documentation, in the form of a	GI-1
			statement of qualifications or resume.	
0	0	0	The applicant should provide the address and legal description of the site and	
			a map of appropriate scale identifying the location and size of the property.	GI-1
0		0	The applicant should describe the operational history of the property in detail,	
			including the most current use of the property.	GI-1
0		0	A description of all business/activities that occupy or occupied the site as far	
			back as record/knowledge allows.	PD1
-		+	A brief description of all operations that may have resulted in the release of	
			hazardous substances or petroleum products at the site, both past and present,	
			including the dates activities occurred at the property and dates during which	
			the contaminants were released into the environment. Although Phase I & II	
			assessments may reveal the release of hazardous substances or petroleum	PD1
			products, the exact dates and quantities may not be discussed. For the	
			Voluntary Cleanup Program, the dates of activities, releases, etc., are	
			necessary for an evaluation of eligibility.	
_		+	A list of all site-specific notifications made as a result of any management	
-		Т	activities of hazardous substances conducted at the site, including any and all	
			Environmental Protection Agency ID numbers obtained for management of	
			hazardous substances at the site from either the state or the Environmental	
			Protection Agency. The Phase I assessment will reveal whether a facility has	
				NA
			an Environmental Protection Agency ID number, but will not list the	
			notifications made as a result of management activities of hazardous	
			substances. This information is necessary for a Voluntary Cleanup Program	
0		0	evaluation.	
0		0	A list of all notifications to county emergency response personnel for the	
			storage of reportable quantities of hazardous substances required under	NA
0		0	Emergency Planning and Community Right-to-Know statutes.	
0		0	A list of all notifications made to state and/or federal agencies, such as	
			reporting of spills and/or accidental releases, including notifications to the	
			State Oil Inspection Section (OIS) required under 8-20-506 and 507 and 25-	NA
			18-104 CRS 1989 as amended and 6 CCR 1007-5 subpart 280.50 Part 3 of the	
			OIS regulations, etc.	
-	-	+	A list of all known hazardous substances used at the site with volume	
			estimates and discussion of relative toxicities. A Phase I & II assessment does	
			not require such detail, however, the hazardous substances used, volumes and	NA
			toxicities are important for a VC in the overall evaluation of risk and sampling	
			efforts.	
-		+	A list of all wastes generated by current activities conducted at the site and	
			manifests for shipment of hazardous wastes off site. A Phase I & II	NA
			assessment does not require such detail, however, the manifest information is	1171
<u>.</u>			important for a VC evaluation, as in the above item.	
		+	A list of all permits obtained from state or federal agencies required as a result	
			of activities conducted at the site. A listing of all permits is beyond a Phase I	NT 4
			or II assessment. These are important for the Voluntary Cleanup Program so	NA
			the Department can evaluate what potential sources may be at the site.	
0		0	A brief description of the current land uses, zoning and zoning restrictions of	
-		1	all areas contiguous to the site.	PD-6

ΡI	ΡII	VC	III. ENVIRONMENTAL ASSESSMENT	Page
			The applicant shall describe the physical characteristics of the site, including a	
			map to scale, and an accompanying narrative showing and describing the	
			following, utilizing historic knowledge as well as current data:	
0	0	0	Topography	PD-3
0	-	0	All surface water bodies and waste water discharge points	NA
0	-	0	Ground water monitoring and supply wells	PD-3
0	-	0	Facility process units and loading docks	NA
0		0	Chemical and/or fuel transfer and pumping stations	NA
0		0	Railroad tracks and rail car loading areas	NA
0		0	Spill collection sumps and/or drainage collection areas	NA
0		0	Wastewater treatment units	NA
0		0	 Surface and storm water runoff retention ponds and discharge points 	PD-3
0		0	Building drainage or wastewater discharge points	NA
0		0	All above or below ground storage tanks	NA
0		0	Underground or above ground piping	NA
0		0	Air emission control scrubber units	NA
0		0	• Water cooling systems or refrigeration units	NA
0		0	• Sewer lines	NA
0		0	• French drain system	NA
0		0	Water recovery sumps and building foundations	NA
0		0	Surface impoundments	NA
0		0	Waste storage and/or disposal areas/pits, landfills	PD-3
0		0	Chemical or product storage areas	NA
0		0	Leach fields	NA
0		0	Dry wells or waste disposal sumps	NA
0			If ground water contamination exists or the release has the potential to impact	
			ground water, the applicant should provide the following information for	
			areas within a one-half mile radius of the site:	
	0	0	• The state engineers office listing of all wells within one-half mile	
			radius of the site, together with a map to scale showing the	PD-4
			locations of these wells.	
	0	0	• Documentation of due diligence in verifying the presence or	
			absence of unregistered wells supplying ground water for domestic	APP-D
			use, when the potential for such wells is deemed likely as in older	AFF-D
		-	residential neighborhoods, or in rural areas.	
	0	0	• A statement about each well within the half-mile radius of the site,	APP-D
			stating whether the well is used as a water supply well or ground	AFF-D
	0	0	water monitoring well.	
	U	0	 Lithologic logs for all on-site wells; copies of field log notes may be appropriate 	NA
	0	0	 be appropriate. Well construction diagrams for all on site wells showing screened 	
		0	• Well construction diagrams for all on-site wells showing screened interval, casing type and construction details including gravel pack,	NA
	1		interval, bentonite seal thickness and cemented interval.	11/1

ΡI	P II	VC	III. ENVIRONMENTAL ASSESSMENT	Page
	0	0	• Description of the current and proposed use of on-site ground water in sufficient detail to evaluate human health and environmental risk pathways. In addition, the applicant will provide a discussion of any state and/or local laws that restrict the use of onsite ground water.	PD-4
			The applicant should provide information concerning the nature and extent of any contamination and releases of hazardous substances or petroleum products that have occurred at the site, including but not limited to:	
	-	+	 Identification of the chemical nature and extent, both onsite and offsite, of contamination that has been released into soil, ground water or surface water at the property, and/or releases of substances from each of the source areas identified, including estimated volumes and concentrations of substances discharged at each area, discharge point, or leakage point as per Section 25.16.308(2)(b). Although Phase II assessments identify the nature of contamination, the extent is not always fully defined. For Voluntary Cleanup Program purposes, the source, nature, extent and estimated volumes of the release are important in the overall evaluation of risk and eligibility. 	PD-4
	0	0	• A map to scale showing the depth to ground water across the site, direction and rate of ground water movement across the site using a minimum of three measuring points.	APP A-G
	0	0	• A discussion of all hydraulic tests performed at the site to characterize the hydrogeologic properties of any aquifers onsite and in the area.	APP A-G
	0	0	 All reports and/or correspondence, which detail site soil, ground water and/or surface water conditions at the site, including analytical laboratory reports for all samples and analyses. 	APP A-G
	0	0	 A discussion of how all environmental samples were collected, including rationale involved in sampling locations, parameters and methodology, a description of sampling locations, sampling methodology and analytical methodology and information on well construction details and lithologic logs. All sample analyses performed and presented as part of the environmental assessment should be appropriate and sufficient to fully characterize all constituents of all contamination that may have impacted soil, air, surface water and/or ground water on the property. The applicant should use Environmental Protection Agency approved analytical methods when characterizing the soil, air, surface water and/or ground water. 	APP A-G

ΡI	PII	VC	IV. APPLICABLE STANDARDS/RISK DETERMINATION	Page
	_	+	The applicant should provide a description of any applicable standards/guidance (federal, state, or other) establishing acceptable concentrations of constituents in soils, surface water, or ground water, for the proposed land use. Although a Phase II assessment evaluates applicable regulations for the current land use, it does not cover the proposed land use that may be different (e.g., the current land use is industrial and the proposed land use is residential, which likely has more conservative levels for contaminant concentrations).	PD-8

ΡI	P II	VC	IV. APPLICABLE STANDARDS/RISK DETERMINATION	Page
	-	+	The applicant should provide a description of the human and environmental exposure to contamination at the site based on the property's current use and	
			any future use proposed by the property owner, including:	
	0	0	• A table or list for site contaminants indicating which media are contaminated and the estimated vertical and areal extent of contamination in each medium.	NA
	-	+	 A table or list of site contaminants, indicating the maximum concentrations of each contaminant detected onsite in the area where contaminant was discharged to the environment, and/or where the worst effects of the discharge are believed to exist. A Phase II assessment will evaluate the extent of site contaminants, not the maximum point or worst effects. The Voluntary Cleanup Program requests this item so that an understanding of the source and nature of the contaminants can be made as it relates to risk. 	APP A-G
	-	+	• A table or list for site contaminants indicating whether the contaminant has a promulgated state standard, the promulgated standard and the medium the standard applies to. A Phase II assessment will not necessarily compare the site contaminants with state standards. This is important to evaluate whether the remedy will meet risk-based cleanup objectives.	APP A-G
	-	+	• A description and list of potential human and/or environmental exposure pathways pertinent to the present use of the property. A risk determination is not usually completed as part of a Phase II assessment; the VC will use risk as part of the overall evaluation.	NA
		+	• A description and list of potential human and/or environmental exposure pathways pertinent to the future use of the property. (A risk determination is not usually completed as part of a Phase II assessment; the Voluntary Cleanup Program will use risk as noted above. Phase II assessments also do not evaluate future use of the property.)	PD-3
	-	+	• A list and map defining all source areas, areas of contamination or contaminant discharge areas. Phase II assessments do not always show source areas. The Voluntary Cleanup Program requires that these areas be defined to indicate the proximity of contaminant with respect to receptors and sampling efforts.	PD-3
	-	+	 A discussion of contaminant mobilities, including estimates of contaminants to be transported by wind, volatilization, or dissolution in water. For those contaminants that are determined to be mobile and have the potential to migrate and contaminate the underlying ground water resources, the applicant should also evaluate the leach ability/mobility of the contaminants. This evaluation should consider, but not be limited to the following: leachability/mobility of the contamination, health-based ground water standards for the contamination; geological characteristics of the vadose zone that would enhance or restrict contaminant migration to ground water, including but not limited to grain size, fractures and carbon content; and depth to ground water. This evaluation, and any supporting documentation, should be included in the plan submitted. A Phase II assessment usually does not include a risk determination. However, the Voluntary Cleanup Program will evaluate the risk involved with the proposed cleanup in order to evaluate the application. 	PD-8

ΡI	P II	VC	IV. APPLICABLE STANDARDS/RISK DETERMINATION	Page
		+	The applicant should then provide, using the information contained in the application, a risk-based analysis of all exposure pathways, which details how the proposed remediation will obtain acceptable risk levels. A Phase II assessment usually does not include a risk analysis, however, the Voluntary Cleanup Program requires this analysis to show that the remediation propose will attain an acceptable risk or break pathways.	PD 8-9
		+	The Voluntary Cleanup Program includes remediation whereas a Phase I or II assessment does not. Usually remediation is considered a Phase III assessment. The following are the requirements for the clean-up proposal.	PD 8-9
		+	• A detailed description of the remediation alternative, or alternatives selected, which will be used to remove or stabilize contamination released into the environment or threatened to be released into the environment	PD 3
		+	• A map identifying areas to be remediated, the area where the remediation system will be located if it differs from the contaminated areas, the locations of confirmation samples, the locations of monitoring wells, areas where contaminated media will temporarily be stores/staged and areas where contamination will not be remediated.	NA
		+	• Remediation system design diagrams showing how the system will be constructed in the field.	NA
+ • A remediation system operation and maintenance plan that describes, at a minimum, how the system will be operated to en that it functions as designed without interruptions and a sampli program that will be used to monitor its effectiveness in achieve	• A remediation system operation and maintenance plan that describes, at a minimum, how the system will be operated to ensure that it functions as designed without interruptions and a sampling program that will be used to monitor its effectiveness in achieving the desired goal.	NA		
		+	• The plan should describe the sampling program that will be used to verify that treatment of the contaminated media has resulted in attainment of the proposed cleanup goals.	PD 8-10
		+	• The plan should include a schedule of implementation	PD 8
		+	The cleanup completion report is necessary to demonstrate that the remediation was completed according to the application. Again, since remediation is involved, the report is beyond the scope of a Phase I or II assessment. The following items should be included in the completion report.	
		+	• A final list of all site contaminants, along with the remaining concentrations, and any deviations from the original plan.	PD 8-10
		+	• A final list defining which media are contaminated and the estimated vertical and areal extent of contamination to each medium.	PD 8-10
		+	A final list and map defining all source areas, areas of contamination or contaminant discharge areas.	PD 3-10
			Soil Contamination: Remediation by Excavation Only:	
		+	• One confirmation sample per 500 ft ² as measured at the base on the excavation OR two confirmatory samples, whichever method results in the collection of the most samples.	PD 8-10

ΡI	P II	VC	IV. APPLICABLE STANDARDS/RISK DETERMINATION	Page
		+	• One composite sample from each wall of the excavation. In excavations of an irregular shape, one composite sample for every 100 lineal feet of wall. For excavations grater than 5000 ft ² , preparation of a grid for randomization of sampling.	APP J
		+	• Explanation of the sampling method in the narrative as well as any modifications to 1 and 2 above used to better characterize the remedial efforts.	PD 3-10
		+	• If contamination is to be left in place, an additional sample should be collected from the area of the worst contamination, as verified or with a field-sampling device.	PD 3-10
		+	Depth of samples collected	PD 3-10
		+	Provision of waste disposal manifests	NA
			In-Situ Soil Remediation	
		+	• Completion of a minimum of two soil borings, with at least one completed in the area identified in the site assessment as the area of highest contamination. For larger areas of contamination, one boring per 10,000 ft ² of plume area.	NA
		+	 Completion of the borings should employ a field-screening device and borings should be logged. 	NA
		+	• Soil sample submitted for analysis from each boring would be the sample with the highest field screening or one located at the ground water interface for each boring.	NA
		+	Ground Water Remediation	
		+	• Field testing should include aquifer and contaminant characteristics such as gradient, partition coefficients, original contaminant levels, etc.	NA
		+	• At each regular monitoring event, a map showing ground water flow direction, depth to ground water and sampling locations	NA
		+	Tabular presentation of data collected	NA
		+	Summary of Voluntary Cleanup Program participation	PD 3-10
		+	Summary of field activities, remedial activities, any deviations from original plans	PD 3-10
		+	Pertinent figures and drawings of remedial system	NA
		+	Conclusions made after remedial activities are completed	NA

Application for Voluntary Clean-up of Existing Landfill Located within Mesa Valley Springs Property Colorado Springs, Colorado

GENERAL INFORMATION

Property Owner:	MVS Development, LLC 5300 DTC Parkway, Suite 270 Greenwood Village, CO 80111
Contact Person:	Mr. Ted Waterman (505) 248-1688
Property Location:	Southwest Corner of Van Buren Street and Centennial Boulevard; Section 1, Range 67 West, Township 14 South; Colorado Springs, Colorado
Type and Source of Contamination:	Municipal Solid Waste and Construction Debris
Voluntary Clean-up:	Yes
Current Land Use:	Vacant Land
Proposed Land Use:	Planned Unit Development; Residential Housing
Environmental Professionals Utilized:	Site Investigations and Soil Borings, 1986 Lincoln DeVore, Inc. Colorado Springs, CO
	Site Investigations and Soil Borings, 2005, 2006, 2007, 2011, and 2018 Kleinfelder, Inc. Colorado Springs, CO
	Site Analysis, Reconsolidation Program, and Application Preparation, 2006, Reapplication 2011, and Reapplication 2018 Engineering Solutions & Design, Inc. Overland Park, KS

All individuals working on this project as a part of the environmental professional's team each possess more than 12 years of experience in site assessments, solid waste site analysis, and the development of closure plans and site improvements.

2090/Waterman Folder/VCUP Application 2018 Folder/Final VCUP Document Folder/General Information V01 10-22-2018 RSC

PROGRAM DESCRIPTION

INTRODUCTION

MVS Development, LLC (MVS) purchased a 48-acre property within the limits of Colorado Springs, Colorado, for the purpose of developing it as a residential community (see location map provided in Figure 1). A portion of this property – approximately 17.9 acres – is underlain by an old abandoned landfill. To allow for the optimal development of this property and to limit the impact of this landfill on future homeowners, MVS desires to consolidate the landfill into a smaller area and properly close it, which will significantly reduce any impact the landfill may have on surrounding properties and the environment.

SITE HISTORY

The subject property is located in Section 1, Range 67 West, Township 14 South, within the limits of Colorado Springs, Colorado (see site map provided in Figure 2). The entire parcel is 48 acres, of which 17.9 acres is underlain by an abandoned landfill, which is located in the middle to eastern portion of the property. The landfill appears to have been located within a large gully or stream that ran north-to-south through the site. The natural terrain of the area slopes to the south, southeast.

Numerous investigations have been performed at the site, with the first detailed investigation occurring in 1986. These investigations have included various assessments of the landfill and have included a number of soil borings into the landfill.

Aerial photographs of the site together with information from these investigations indicate that the landfill was active from the 1950's to at least 1966. Soil borings taken in 1986 and 2005 indicate the landfill follows the general course of the gully described above. The depth of solid waste appears to vary from less than 5 feet to over 40 feet. Cover over the solid waste also varies, with soil cover on portions of the landfill being less than 1 foot to more than 25 feet. The greatest depth of cover appears to be in the southern portion of the landfill.

Based upon a review of Colorado Department of Health and Environment (CDPHE) records, the landfill was not registered or permitted by the state or county. Further, from the types of materials found in the test pits and soil borings taken at the site, the landfill contains both municipal and construction wastes. The test pits, soil borings, and surface conditions indicate that the solid waste was not compacted or uniformly placed.

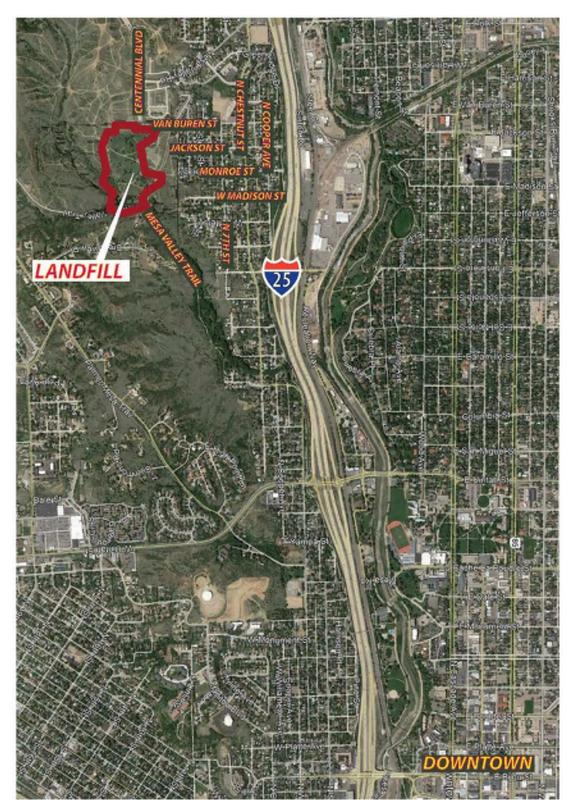


FIGURE 1. LOCATION MAP

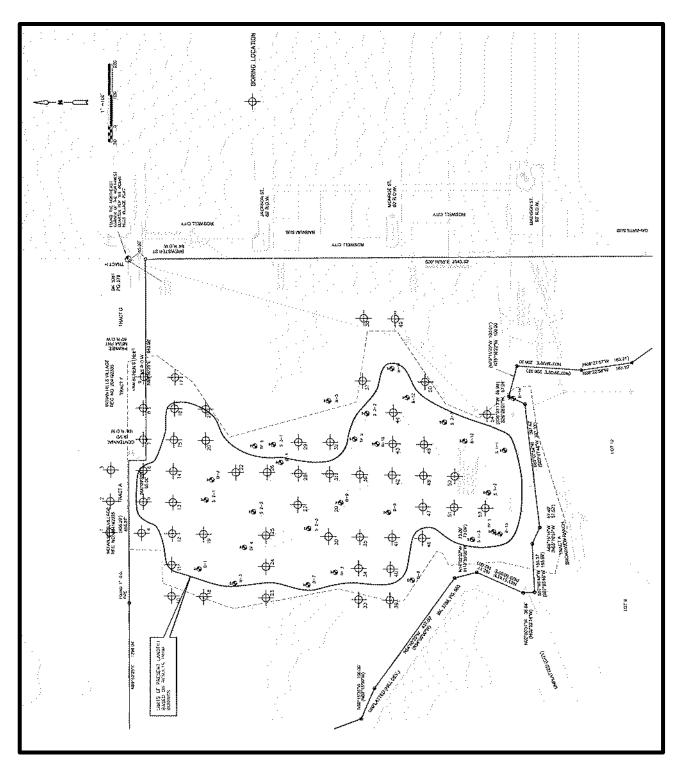


FIGURE 2. SITE MAP

SITE CHARACTERIZATION

As indicated previously, numerous investigations have been conducted on the landfill site. These investigative studies include:

"Landfill Site Assessment", Lincoln Devore, Inc., August 12, 1986 (see Appendix A).

"Delineation and Evaluation of Existing Landfill", Kleinfelder, Inc., August 26, 2005 (see Appendix B).

"Soil Boring Investigation", Kleinfelder, Inc., November 30, 2005 (see Appendix C).

"Groundwater Sampling & Methane Gas Monitoring", Kleinfelder, Inc., April 3, 2006 (see Appendix D).

"Subsurface Investigation", Kleinfelder, Inc., January 17, 2007 (see Appendix E).

"Assessment Report", Kleinfelder, Inc. August 23, 2018 (see Appendix F).

A total of 50 soil borings, 5 test pits, 19 gas monitoring wells, and 20 groundwater wells were completed as a part of these six investigative studies. The following paragraphs describe the results of these investigations.

The soil borings and test pits excavated in 1986, 2005, and 2018 indicate the landfill follows the general course of a gully that bisects the property from north to south. The depth of solid waste appears to vary from less than 5 feet to more than 40 feet. Cover over the solid waste also varies, with soil cover on portions of the landfill being less than 1 foot to more than 25 feet. The greatest depth of cover appears to be in the southern portion of the landfill.

Groundwater depths vary at the site and appear to be related to drainage in the area and the relatively shallow bedrock, which varies in depth from 11 feet to a little less than 60 feet under the landfill. Groundwater depth varies from 11 feet to over 40 feet. The occurrence of groundwater appears to mirror the existing stream or gully channel through the existing landfill. In addition to these groundwater depths, groundwater wells were located in the sections of land that incorporated the site as well as those sections to the north, northwest, and east. It is important to note that all residential, commercial, and industrial units within the city limits must be connected to the city's water supply system.

Fifteen gas monitoring wells were installed and sampled in 2005. These wells were sampled for landfill gas over a two-day period and methane concentrations ranging from 2% to 60%, by volume, were recorded in 8 of the wells. In 2006, another 4 gas monitoring wells were installed and sampled. Methane was not detected in any of these 4 wells.

Seven groundwater wells were sampled for landfill gas in July 2018 using a 4-gas monitor. Kleinfelder, Inc. collected measurement of methane (CH₄), hydrogen sulfide (H₂S), and oxygen (O₂) at these 7 wells. Methane and depressed oxygen levels were detected in 2 wells; therefore, air samples were collected from these wells and submitted to an accredited laboratory for methane analysis. Analytical results indicate methane concentrations of 82.4%, by volume, in one well; and, a second well had a methane concentration of 0.399%, by volume. There was no detection of methane in the other five wells.

It is not surprising to find areas of high gas readings because of the shallow groundwater and age of the landfill. Because of the soils utilized to cover the landfill and the variance in the depth of the soil cover over the site, the generation of landfill gas may occur and could be sustained for a number of years if the site remains in its present condition. Landfill gas generation is likely occurring because proper final cover was not installed, surface and groundwater is infiltrating into the solid waste, and the solid waste is poorly consolidated or compacted.

Soils at the site are silty sand and clayey materials that vary in consistency dependent on the amount of sand mixed with the clay. The clay material appears to be at the base of the landfill and the soil borings indicate that the solid waste material is mixed with the silty sands, which were also utilized to cover the landfill. The landfill material appears to consist of woods, plastics, newspaper, glass, metals, rubber, and some construction and demolition debris.

The properties around the subject property are mostly zoned for residential or planned unit development (see Figure 3). The subject property is zoned for planned unit development (see Figure 4). These zoning maps in Figure 3 and 4 include the project location and properties within one-half mile of the project.

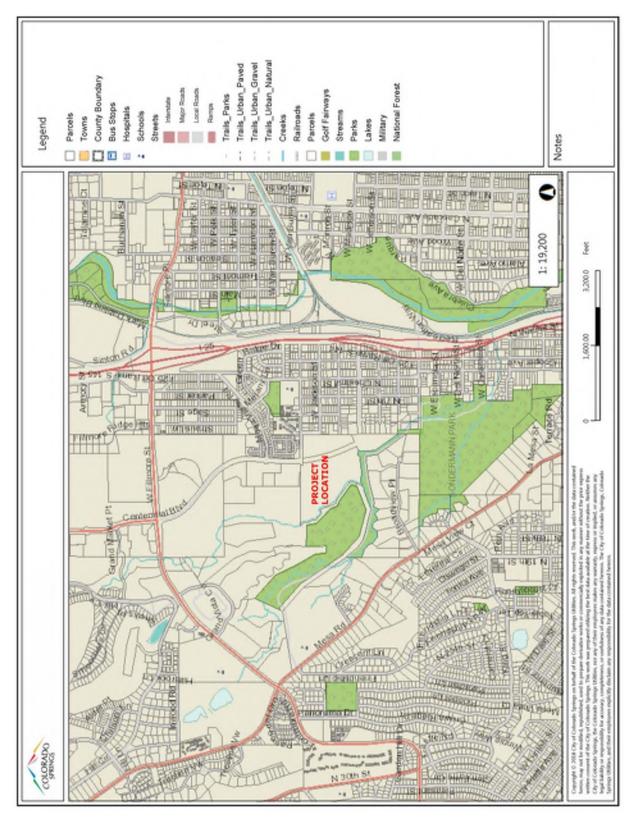


FIGURE 3. ZONING MAP OF AREA SURROUNDING THE PROJECT LOCATION.

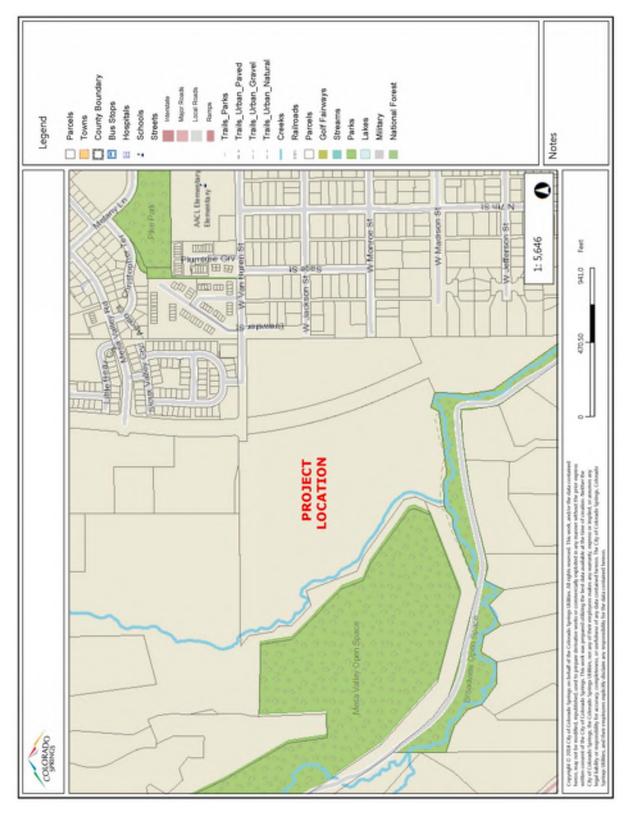


FIGURE 4. ZONING MAP OF PROJECT LOCATION.

REMEDIATION PLAN

The centerpiece of the remediation plan is the consolidation of the landfill to provide a more environmentally-secure site that also allows for reclamation of a portion of the landfill. Based on site investigations, solid waste deposited in the landfill consists of a large amount of wood, paper, plastics, metals, and some construction and demolition debris. Because no CDPHE records exist regarding this landfill, it is suspected that the site was utilized as an open-dump site with limited or no supervision. Further, it is also likely that little, if any, effort was made to compact the waste. Given these circumstances, it is probable a number of voids exist within the landfill. In addition, because the site was not properly operated, it is expected that a large amount of the fill at the site was soil from other construction sites. Because of the amount of soil found in the various borings taken at the site, it is anticipated that a significant portion of the landfill is comprised of soil.

The age, types of waste, and varying depths of the solid waste in the abandoned landfill make it a prime candidate for consolidation. The consolidation process will involve exposing and excavating the existing solid waste, relocating the waste, and consolidating the waste into a much smaller and more secure landfill cell. The drawings provided in Appendix H provide a 15-step process for the consolidation and closure of the landfill. Consolidation will keep the landfill footprint within the limits of the existing landfill and over the deepest portions of the existing landfill. Solid waste in the shallower portions of the existing landfill will be relocated to the new consolidated landfill area and the area of consolidation will be recompacted to increase available air space.

The final cover for the consolidated landfill will meet the requirements of the State of Colorado, Department of Public Health and Environment, Solid and Hazardous Waste Commission/Hazardous Materials and Waste Management Division, "Regulations Pertaining to Solid Waste Disposal Sites and Facilities, Part B, Section 3, Subsection 3.5, Closure Requirements." The final cover will be designed to address the control of surface water run-off, water infiltration, and landfill gas generation. The final cover's vegetation will be designed to blend into the proposed development. An analysis of final covers and which are most applicable for the consolidated landfill area is provided in Appendix I.

In those areas of the existing landfill where solid waste will be excavated, the excavation will continue until clean soil has been reached. Procedures to be followed in sampling the soil to determine if the soil is clean is provided in the Soil Sampling Program found in Appendix J.

If it is found that the source of water within the landfill is the result of water following the old gully channel, a clay barrier will be installed between the solid waste and the channel to control water flowing freely into the consolidated landfill. This barrier, in conjunction with the compaction and consolidation of the solid waste, will reduce the introduction of water into the landfill.

Throughout the relocation process the materials excavated will be monitored to determine if any of the materials are potential harmful or hazardous. A Materials Management Plan has been developed for this project and can be found in Appendix L.

Efforts to address future erosion problems associated with the consolidated landfill are described in the Erosion Protection Program located in Appendix K. This program describes the approach that will be followed to control erosion of the site once the final cover is installed.

Table 1 provides the estimated quantities of material to be relocated and consolidated as a part of this project. These quantities are based upon available data and may vary based on the actual amount of material discovered during the consolidation process. The final design of the landfill consolidation will include systems to control groundwater infiltration from the gully channel, landfill gas migration, and surface water infiltration. These systems will be designed to function as simplistically as possible and with as little mechanical operation as possible. By establishing these systems and consolidating the landfill, the potential risk to the environment is substantially reduced.

Existing Landfill Size	17.9 Acres
Consolidated Landfill Size	3.6 Acres
Area Reclaimed	14.3 Acres
Amount of Solid Waste Relocated	190,000 Cubic Yards
Amount of Solid Waste Compacted in Place	175,000 Cubic Yards
Minimum Amount of Soil Backfill Required	185,000 Cubic Yards

TABLE 1.
ESTIMATED QUANTITIES OF MATERIALS

In addition to relocating and consolidating the existing solid waste, the southern-most portion of the abandoned landfill will be developed into a detention pond for the site as well as for the new Centennial Boulevard. Appendix O provides information on the proposed approach to develop the stormwater detention pond.

It is anticipated that work at the project location will commence as soon as possible after acceptance of this application. Engineering work will begin as soon as the application is submitted and should be completed within 45 days. The anticipated length of time for completion of the remediation work is 90 to 120 days.

CERTIFICATION PROCESS

As a part of the project, all activities relating to the consolidation of the landfill will be observed, confirmed as complete, and certified by a Professional Engineer registered in Colorado, who will certify the:

- Area where solid waste is removed is clear of solid waste;
- Actual depth of the solid waste in consolidated sections of the landfill;
- Groundwater controls are properly installed;
- Landfill gas controls are properly installed and functioning;
- Drainage system around the consolidated landfill is properly installed;
- Detention pond liner system is properly installed;
- Final cover is properly installed; and
- Final cover is properly revegetated.

A report presenting these certifications will be provided to CDPHE with photographs of the work and all test results. In addition to these certifications, the final design for the consolidation project, the final cover, and any groundwater and landfill gas control systems will be provided to CDPHE prior to commencing any work at the site.

2090/Waterman Folder/Waterman VCUP Application 2018 Folder/Program Description V01 10-25-2018 RSC

Appendix A Site Investigation 1986

LANDFILL SITE SECTION 36, TWP. 13S. R67W OF THE 6TH P.M. VAN BUREN AND CENTENNIAL EL PASO COUNTY, COLORADO

PREPARED FOR

- ----

Mr. A. C. Nicholson, Architect 2993 Broadmoor Valley Road Suite 200 Colorado Springs, CO 80915

PREPARED BY

Lincoln DeVore, Inc. 1000 West Fillmore Street Colorado Springs, Colorado 80907

TABLE OF CONTENTS

l

INTRODUCTION	l
PROJECT DESCRIPTION	1
PROJECT SCOPE	1
SCOPE	1
SITE DESCRIPTION	2
FINDINGS	2
GENERAL	2
FILL MATERIAL AND BEDROCK	-3
GROUNDWATER	4
DEPTH OF FILL	4
LIMITATIONS	5

APPENDIX Boring Site Location Plan Boring Location Plan Geologic Map and Boring Location Plan Boring Logs

August 12, 1986

Mr. A. C. Nicholson, Architect 2993 Broadmoor Valley Road Suite 200 Colorado Springs, CO 80915

RE: Landfill Site, Section 36, Twp. 13S., R67W of the 6th P.M., near Van Buren and Centennial.

Dear Mr. Nicholson:

At your request, Lincoln DeVore has drilled six test borings on the site of an existing landfill, covered and abandoned, on the east flank of the Mesa, Colorado Springs, Colorado. The site of the fill is centered approximately 2000' west of Sage Street between Madison Street and Mesa Valley Road in northwestern Colorado Springs. This site lies along the route of Centennial Blvd. as proposed.

Project Scope

The purpose of this explanation was to drill exploration borings generally along the west and south edges of the fill. The results of these borings were then to be added to the results of previous borings in the fill to obtain an approximate depth of fill pattern. The previously drilled borings did not cover the west and south sides of the fill. Types of materials found in the fill were also to be reported.

Scope

The scope of our geotechnical exploration consisted of a surface reconnaissance, a geophoto study, subsurface exploration, laboratory testing, analysis of field and laboratory data, and a review of geologic literature.

For the purposes of this study, the depth of uncontrolled fill was the only site factor to be determined at various points. No further work was intended or ordered. Therefore, few samples of the material's found were taken and no laboratory work was completed other than laboratory examination of the material to verify field classification. Landfill Site - Van Buren & Centennial August 12, 1986 Page -2-

Site Description

The existing, abandoned landfill lies over a large gulley which existed in the side of the Mesa prior to placing the fill. The surface of the landifll is rough, but is reasonably level eastwest except for the grades constructed for drainage purposes. This fill lies between two ridges east and west of the fill, which connect to the north of the fill, near Mesa Valley Road, extended. The fill is bounded on the south by an unnammed intermittent stream which discharges into Monument Creek near Caramillo St. This stream was displaced slightly by the fill, but a channel still exists and is open to carry the intermittant flow across the toe of the fill.

Field Exploration

The field exploration was performed on August 1, 1986 and consisted of a site reconnaissance by our geotechnical personnel and the drilling of 6 exploration borings over the fill. The locations of these borings were marked by others and the borings were drilled as staked except for No. 5. This boring was moved <u>+</u> 90 feet southeast due to poor access of the marked pont. Boring locations are shown on the attached location plan.

The borings were drilled to depths varying from 15' to 30' and all borings were bottomed in the Pierre Shale formation. All exporation borings were drilled using a CME 45 drill and 4 inch solid stem auger. Samples were taken rarely, but both the modified California sampler and Shelby tubes were used. Logs describing the subsurface soils found are presented in the attached figures.

The lines defining the change between soil types or rock materials on the boring logs and soil profiles are determined by interpolation and are therefore approximations. The transition between soil types may be abrupt or may be gradual.

Findings:

General

Previous exploration borings were drilled on this landfill by Lincoln DeVore and the approximate fill depths found have been used in this report to supplement the information found by these recent borings. Previous borings were drilled in 1968, 1976, 1983 and 1985. Those borings pertinent to the site were located on the topographic map and the depth to the bottom of the fill was recorded. In addition to the six exploration borings drilled Landfill Site - Van Buren & Centennial August 12, 1986 Page -3-

for this report, the logs for 10 previously drilled borings were used to estimate the depth of fill material on the site.

The site area is largely undeveloped and appears not to have been changed or disturbed appreciably since the landfill was covered over. Topographically the site slopes to the south, draining into an unnamed, intermittant stream. The oversite flow tends to be concentrated in shallow swales due to the roughness of the surface. At least two areas on the surface of the fill are depressed, allowing the ponding of some rain water. Erosion has cut into the fill at the sourtheast corner, leaving a depressed area over the old stream bed caused by removal of the landfill soil and debris. If lack of maintenance continues, erosion will increase by head cutting.

Fill Material and Bedrock

The fill material in the landfill is predominately a lean, silty, slightly sandy clay. It appears to have originated from the weathering of the native local Pierre Shale and has been mixed with some sandy soils. This mixing either is the result of natural colluvial action in the borrow area or is the result of mixing soils during the fill process. This fill material is generally soft, moist to wet and generally of medium plasticity. In place density is low, indicating that it was not properly compacted when placed.

The types of debris found within the clay matrix consisted of various kinds of household waste for the most part. Glass, metal, plastics and tile were all found together with some pieces of furniture and wood. The debris contained quite a bit of paper and other rapidly degrading organic material also, although none was found which could be recognized. The amount of decomposed organics in layers indicates this. Except in borings 5 and 6, no evidence of garbage or gas producing material was found. In these two borings however, the emission of detrimental gases should be expected. Testing for gas was outside the scope of work so that no tests were conducted. The amount of organics and the odor indicate that gases will be produced in this area, No definately toxic material could be identified however. visually, but tests should be performed prior to removing the fill or constructing buildings on the fill to definitely verify the presence or absence of such material.

Pierre Shale bedrock was encountered in the bottom of all exploratory borings. The top foot to two feet of this bedrock was found to be weathered and consists of a medium to high plastic, stiff to very stiff clay. Below this weathered layer the bedrock is hard to very hard and is dry. Due to its plastic Landfill Site - Van Buren & Centennial August 12, 1986 Page -4-

properties and low moisture content, the Pierre Shale should be considered to be expansive. Other than the thin weathered zone, no liner was found at the bottom of the landfill.

Groundwater

Groundwater was found in exploration borings 1 and 6. The other borings encountered wet fill immediately above the claystone, but no free water level was established. Since the landfill occupies an old filled gully, it appears that seepage moves down the surface of the claystone until it reaches a stabilized level near the center (deepest portion) of the old gully. At this point, it collects, forming a water surface. The level of this water surface is primarily dependent on the speed it can exit from the fill into the intermittent stream south of the fill.

The presence of groundwater in borings 1 and 6 thus indicates that these points are near the deepest part of the filled gully. Comparison with topographics taken before 1964 (USGS) verify this. No direct comparison of topography can be made due to scaling problems and the normal innaccuracies of air photos, but careful measurements indicate that the lowest line of the old gully follows a meandering line from a point about 80' east of boring 1 to a point about 100' east of boring 6. This lowest line is not straight, but appears to be west of previous borings 2 and 6 and between previous borings 3 and 5.

The level of this groundwater is shown on the boring logs for the date of measurement, August 1, 1986. This water level will vary depending on outside environmental influences and may vary as much as 5 to 6 feet from the measured elevation. Maintenance work on the eroded area of the fill at the southeast corner could also change the water level considerably.

Depth of Fill

The depth of the landfill material, as identified in the six borings drilled, ranges from 7 feet to 26 feet. The average depth of the fill found in these 6 borings is thus 14.9 feet. This is misleading, however, since the site was once a relatively "V" shaped gully. Combining all exploratory borings drilled in the landfill and excluding those drilled outside its limits, the depth of fill was found to range from 4 feet (PTB#7) to 40 feet (PTB#2). Simple averaging of the 17 borings shows an average depth of 18.3' actually measured in borings.

The sides of the unfilled gully were relatively steep prior to placing the landfill. As a result, the depth of fill is such that the borders of the landfill cannot be encroached upon very Landfill Site - Van Buren & Centennial August 12, 1986 Page -5-

far before the fill exceeds 8' depth - or basement elevation. In most cases, edge encroachment is restricted to 50' or less. One exception to this appears to be in the north portion of the landfill, near Van Buren Street extended. In this area, encroachment exceeding 100' is possible around the endges of the landfill.

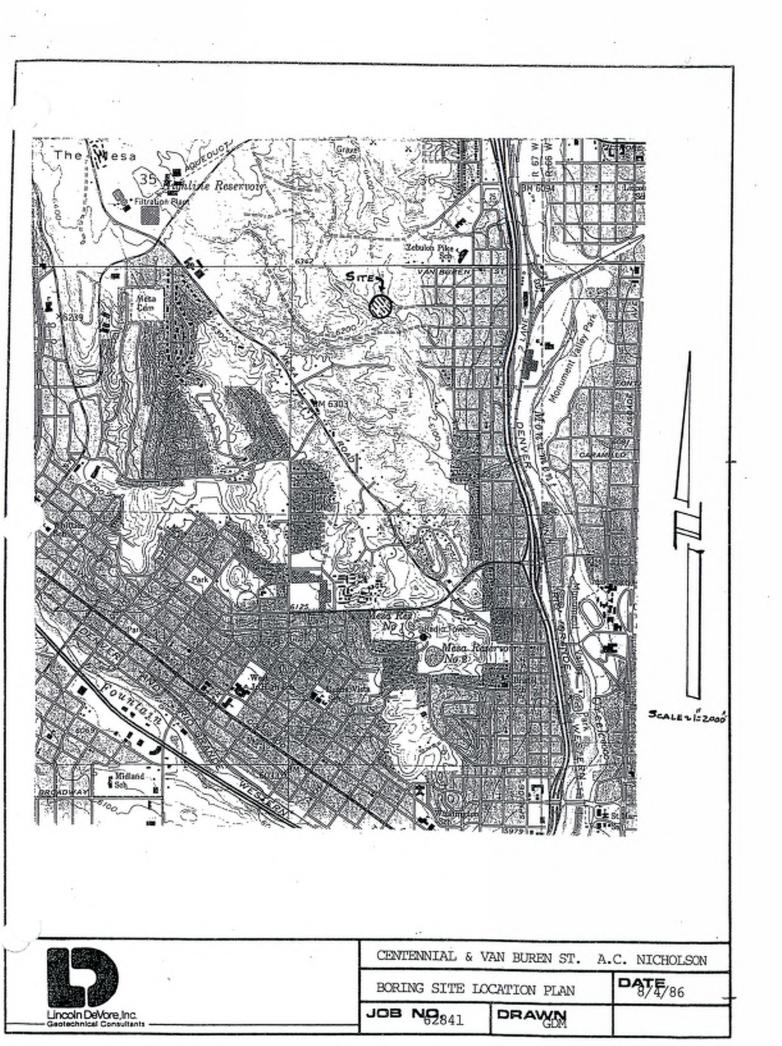
A very generalized topographic map has been prepared to show our best estimate of subsurface contours. Since these have been drawn on the basis of 17 exploratory borings and measured sections from a 1947 topography of the site, these subsurface contours cannot be fully accurate and should not be interpreted as such. They will serve to give a general indication of landfill depth, however, and can be used for preliminary estimating purposes.

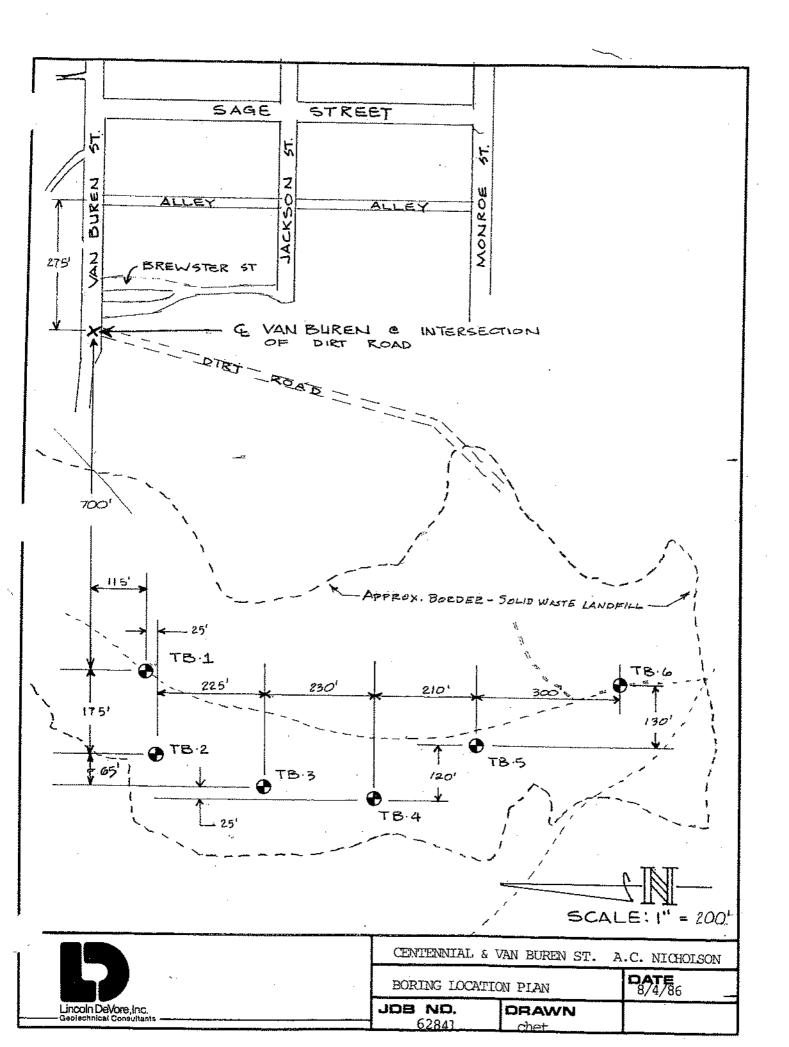
The topography shown on the attached approximate depth of fill sketch was produced by aerial photographic methods. In working with this topography, it was noted that the elevations given did not match the USGS elevations by between 25' and 30'. This is about the difference between the USGS mean sea level datum and the old City of Colorado Springs datum. It may well be that this topography was based on the city datum. If so, modern topography will not match the elevations shown, but the slopes and general shape of the topography would be valid. Caution should be used in transferring the elevation data on this sketch to any map of the area. A full topographic survey, based on USGS datum should be completed prior to using the area for any possible construction.

Limitations

The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time whether they be due to natural processes or the works of man on this or adjacent properties. In addition, changes in acceptable or appropriate standards may occur or may result from legislation or the broadening of engineering knowledge. Accordingly, the findings of this report may be invalid, wholly or partially by changes outside of our control. Therefore, this report is subject to review and should not be relied upon after a period of 3 years.

Lincoln DeVore makes no warranty, either expressed or implied, as to the findings, recommendations, specifications or professional advice, except that they were prepared in accordance with generally accepted professional engineering practice in the field of geotechnical engineering.


If you have any questions after reviewing this letter report, please do not hesitate to contact the undersigned engineer. This Landfill Site - Van Buren & Centennial August 12, 1986 Page -6-


opportunity to be of professional service is sincerely appreciated.

Respectfully submitted,

LINCOLN-DeVORE, INC George D. Mofr Professional E By: Reviewed by: Ro 1 Proi iec mgineer

GDM/wp LD Job No. 62841

	[]				z		T]
L II			BORING NO. 1 ELEVATION:		ATIO NCE	IN-SITU DENSITY (PCF	RE T [%]	
DEPTH (FT	SYMBOL	PLE		···	ETR/	IT U SITY	STU	
DEF	SYM	SAMPL	DESCRIPTION		PENETRATION RESISTANCE	IN-SITU DENSIT	MOISTURE CONTENT [4]	ļ
				-		1		
	$\langle \rangle \rangle$		-	1				
5'	$\langle \rangle \rangle$		- -	-				
-	$\langle \rangle \rangle$		-	-				
	$\backslash \rangle$		 -	-				
10 -	\backslash		FILL, CL, clay, silty, medium plasticity, cont debris of plastic, ceramics, some metal, conta	ains uns _				
			carbonaceous material, soft, moist to wet	-				
	\mathbf{N}			-				_
15	\searrow		<u> </u>	-				
-	\backslash							
	>>	$\left \right $	· · · · · · · · · · · · · · · · · · ·	`				
20 -	2.23		PIERRE FORMATION, CL/CH, clay with some silts minor sands, hard to very hard, iron staining,	& _				
	a		& sulphate deposits, grey to black, moist to w	ret -				
	e a	, [-				
25	<u>_</u>	-		-				
_			TOTAL DEPTH OF BORING: 25' GROUND WATER AT 15' AT TIME OF BORING					
				-	:			
305			· · · · ·					
_				_				
-		F						
			·					
	INCO)L			REN		RATION	
E 1 E	OCONGINEE		E GRAND JUNCTION, PUESLO, A.C.NICHOLSON S. GLENWOOD SPRINGS		0		/ <u>4/86</u> 8/1/86	

DRILLED 8/1/86

,

				,. <u></u>									
I I	_				BORING NO. 2		NO	Щ		CFJ		4.1	
DEPTH (FT SYMBOL SAMPLE				E	LEVATION:		PENETRATION	ANC	IN-SITU	ΓYΓ	MOISTURE		
I I	SVMBOL		<u>SAMPI</u>				Ц Ц	SIS1	SITI	NSI	IST IST		
			SA		DESCRIPTION		PE	Щ	-	DEI	О И	S	
	-			-									
	Ţ,	\searrow			-	-							
	+				FILL, CL, clay, silty, with som medium plasticity, soft, moist,	e sand layers, ¯ contains debris ¯							
5'				•	of plastics & household type tr	ash, organic layers							
	-			-	н	-							
	\mathbb{Z}	9	f	-					•				
10	-12	\land	-	-	PIERRE FORMATION, CL/CH, clay,	with some silts,&							
	\mathbf{V}			-	minor sands, hard to very hard, weathered, iron staining & sulp	brown, slightly							
	1			•									_
155	\mathbb{I}	2				-							
- 11	-		-					ĺ					
	-				TOTAL DEPTH OF BORING: 15'								
-	-		-	. 1	NO GROUND WATER ENCOUNTERED DURI	ING DRILLING							
20			L			-							
-	-		-										
-													
25 -	-		-										
-													
-	4		-	•		4							
30			Ĺ										
- 02	-												
-	1					_							
	-		+										
	1		-	-									
		• •			T	LOG OF SUBSURFA		_	XPI	OF		ON	
	LIN De\	10	R	E	GOLORADO: COLORADO SPRINGS, GRANO JUNCTION, PUEBLO,	CENTENNIAL & VAN BU A.C. NICHOLSON	IREN	D	ATE	8/4	4/86		
ENGINEERS - GEOLOGISTS			R	S -	GLENWOOD SPRINGS	JOB NO. 62481	_	ł			> 8/		6

		-	7			<u>, </u>			··			\ \
				BORING NO. 3		PENETRATION	щ		CE	 	1	
DEPTH (FT)		ш	E	LEVATION		AT	AN	_	DENSITY IPCF	MOISTURE	r z	
HT H	BO					ETF	IST.	1 L	SIT	STI	ΤE	
DEF	SYMBOL	SAMPL		DESCRIPTION		EN	ŝ	N-SITU	N N	ē	NO	
-		Ť	<u> </u>				L.L				<u> </u>	
					-							
	\land		ŀ									
-			-									
5 L			-		· •							
			-	FILL, CL, clay, silty, with som medium plasticity, soft, moist,	e sand, layers,							
			-	glass, metal, tile & pipe, orga	nic layers.							
104			-									
-					-							
-	99		_									
15	<i>q</i>		-									
	2		- _ 1	PIERRE FORMATION, CL/CH, silty,	with minor sand							
_	es /			layers, high plasticity, hard to weathered near formational surfa	o very hard,							
-	0			sulphate deposits, grey to black	c, moist							
20			<u> </u>	•	-							
-			-		-		ļ					
			 1	IOTAL DEPTH OF BORING: 20'	-							
25			- 1	NO GROUND WATER ENCOUNTERED DUI	RING DRILLING							
												
					-							
			-									
-			-		-							
-			-		-							Ì
-		ł	-		-							
· -[
				<u></u>	LOG OF SUBSURFA	CE	E	XPI	_OF	AT		
				GOLORADO: COLORADO SPRINGS, GRAND JUNCTION, PUEGLO,	CENTENNIAL & VAN BU A.C. NICHOLSON	REN	D	ATE	8/	4/8	6	
DEVORE GRAND JUNCTION, PUEGLO, A.C. NICHOLSON GEOLOGISTS GLENWOOD GPRINGS JOB NO. 62481							1	RIL				ē -

.

	r	1	1			·····	7		T		<u> </u>		1
Ē				BORING NO.4			LOL	Ц		PCF	ш	[<u>%</u>]	
I	5 5	Ш					TRA	TAN	2	ITΥ	TUH	ENJ	
DEPTH [FT	SYMBOL	SAMPL		DESCRIPTION			PENETRATION	RESISTANCI	IN-SITU	DENSITY (PCF	MOISTURE	SONT	
	\uparrow	Ţ							=		2	-	
-	$\left[\right]$					-							
-			-	FILL, CL, clay, silty, with som medium plasticity, soft, moist,	e sand lay	yers,							
5'-	$\langle \rangle$		-	debris of glass, metal, etc	, numerous	organic -							
-	\square			layers									
	000					_							
- 10						-							
	1 all		-	PIERRE FORMATION, (TOP 2' WEATHE silty, with some sandy, areas, h	RED), CL/C	H, _							
	1	ł		hard to very hard, iron stainin grey to black, moist,	g, sulphat	e deposits							_
- 15	28/			grey to brack, morse,		~				it.			
- 11			-										
	4			TOTAL DEPIH OF BORING: 15' NO GROUND WATER ENCOUNTERED DUR	ING DRILLI	NG							
20 -						-							
			_										
			_										
25			-										
-													·
			••••										
30			-										
-													
_													
						·							
.]					<u>.</u>	<u>_</u>							
[]	LINC		N	COLORADO: COLORADO SPRINGS,		SUBSURFA		E	XP	LOR	TAS	ION	-
)F	E-	GRAND JUNCTION , PUEGLO , GLENWOOO GPRINGS	A.C. NICH	DLSON		╀╴	ATE		4/8		
	GEOLOG	iis	TS		JOB NO.	62481		D	RIL	LED	8/.	L/8	6-

DEPTH (FT)	OL		BORING NO. 5 ELEVATION:	PENETRATION	TANCE	U TY [PCF]	ΓURE ≣NT [∞]	
DEPT	SYMBOL	SAMPLE	DESCRIPTION	PENET	RESIS	IN-SITU DENSITY [MOISTURE CONTENT [%]	
- 10 - - -			FILL, CL, clay, silty, with some sandy layers, medium plasticity, firm to soft, brown,moist to we distinct odor, contains debris of wood, glass, bricks, and household trash, organic					
154								-
			becomes moderately stiff at 15.5' (still landfill)					
20 -	2 2 2 2 0 0		PIERRE FORMATION, (TOP 2' WEATHERED), CL/CH, minor sands & silts; moderate to high plasticity, iron stained, sulphate deposits, hard to very hard, grey to black, moist					
25	20	-						
			TOTAL DEPTH OF BORING: 25' NO GROUND WATER ENCOUNTERED DURING DRILLING					
30 -			_					
		المساحد ال						
· • •	1	- 6			ł		l	
	INCO		N COLORADO: COLORAOO SPRINGS, CENTENNIAL & VAN BUI	_		XPLOF	ATION	

<u>____</u>

 DEVORE ENGINEERS. GEOLDGISTS
 GRAND JUNCTION, PUEBLO, GLENWOOD GPRINGS
 C. NICHOLSON JOB NO.
 DATE 8/4/86

[FT]		BORING NO. 6	ATION			RE T [%]	
DEPTH [FT	SYMBOL SAMBIE		PENETRATION	H ICICOU	IN-SITU DENSITY (PCF)	MOISTURE CONTENT [4]	
		FILL, CL, clay, silty, slightly sandy, low to medium plasticity, soft, brown to black; very organic & black in layers, strong odor, contains debris of wood, glass, metal, etc					
25		PROBABLE FILL, CL, clay, silty, & minor sands, medium plasticity, soft to firm, wet, does not contain debris or trash, but has strong odor & is organic.					
30	ad a	PIERRE FORMATION, CL/CH, minor sands & silts, moderate to high plasticity, iron stained, hard to very hard, sulphate deposits, grey to black, moist		*******			
35		TOTAL DEPTH OF BORING: 30' GROUND WATER AT 20' AT TIME OF BORING					

LOG OF SUBSURFACE EXPLORATION

.

CENTENNIAL & VAN BUREN A.C. NICHOLSON JOB NO. 62481 DRILLED 8/1/86-

.

TABLE I SUMMARY OF TEST HOLE LOGS

Test Holes 1-4 from Jan, 1976 report. Test Holes 5-7 drilled 11/18/83.

TH-10 - 4.5' Clay cover have are of parently the all ones 4.5 - 33' Landfill 33 - 35' Residual clays No water. TH-20 - 3' Clay cover 3 - 40' Landfill 40 - 47 Residual clays Water at 37 feet. TH-3 0 - 13' Clay cover 13 - 25' Landfill 25 - 30' Residual Clays No water Residual clays and weathered bedrock. TH-4 0 - 20* No water. TH-5 0 - 2.5' Clay cover 2.5 - 32' Landfill Water at 19 feet. Gas probes set at 8 and 16.5 feet. TH-6 0 - 2' Clay cover 2 - 27' Landfill 27 - 30' Clay, possibly residual clays Water at 15 feet. Gas probes set at 8 and 13.5 feet. 0 - 1.5' Clay cover TH-7 1.5 - 9' Landfill Water at 4 feet. No probe set due to shallow groundwater.

Appendix B Soil Investigation August 2005

Delineation and Evaluation of Existing Landfill South of West Van Buren Street Colorado Springs, Colorado

August 26, 2005

Copyright 2005 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited.

An employee owned company

August 26, 2005

Kleinfelder File No. 59292-1

Mr. Ted Waterman, President Waterman, Inc. P.O. Box 27560 Albuquerque, New Mexico 87125

Subject: Delineation and Evaluation of Existing Landfill South of West Van Buren Street Colorado Springs, Colorado

Dear Mr. Waterman:

Kleinfelder is pleased to present the results of our delineation and evaluation of the existing landfill located south of West Van Buren Street in Colorado Springs, Colorado (Subject Site). Our scope of work included; an investigation to delineate the boundary of the landfill area and estimate approximate depth of fill, a limited geotechnical evaluation of existing fill, methane testing within the landfill area to evaluate its potential impact on the proposed park, and methane testing beyond the perimeter of the landfill to evaluate potential impact of any methane migration outside the landfill limits on proposed adjacent developments. This report presents the results of our investigation including analytical data and recommendations.

SUMMARY

This investigation was conducted on a vacant parcel of land located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado.

During this assessment the following tasks were completed:

- Review of existing data/site reconnaissance;
- Subsurface drilling;
- Excavation of exploratory test pits;
- Evaluation of existing fill;
- Installation of methane gas monitoring wells;
- Screening for methane gas; and,
- Laboratory Analysis for methane gas.

Subsurface analysis provided the following information:

- Excessive differential settlement of the solid waste landfill area;
- Large amounts of debris (wood, plastic, paper, cardboard, rubber, glass, aluminum, and metal) exist from ground surface to varying depths throughout the landfill area; and
- Fill material that has the potential to be suitable for use in construction, from a geotechnical standpoint, is only located within a small section of the southern portion of the landfill area. Sampling and testing of the fill material would be recommended to evaluate for any environmental contamination concerns.

Methane gas field and laboratory analysis provided the following information:

- High methane concentrations were found within the boundary of the landfill; and,
- Within the footprint of proposed future development on-site.

<u>SCOPE</u>

This Limited Phase ILESA was conducted in general accordance with our proposal dated June 23, 2005. The purpose of this investigation was to delineate the landfill boundaries, evaluate existing fill, and determine potential methane-related concerns associated with the existing landfill, that have the potential to affect the site development as planned. These concerns were evaluated through intrusive soil drilling, exploratory test pits, and methane gas monitoring. This study did not include investigating other environmental issues such as soil or groundwater contamination.

SITE LOCATION & HISTORY

The Subject Site is a vacant parcel encompassing approximately 48-acres of land, located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado. The site location is indicated on the Site Location Map (Figure 1). The proposed development boundary, within which our investigation was performed, is shown on the Site Plan (Figure 2).

The Subject Site is generally located within the northwest ¼ of the southeast ¼ of Section 1, Township 13 South, and Range 67 West of the 6th PM. The El Paso County Assessor's parcel number is 7401200002. The Subject Site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the Site and the surrounding area slopes down to the south towards the intermittent stream that borders the Subject Site (Figure 2, Appendix A). The topography of the site is irregular, but is dominated in the northeast by a prominent ridge, in the central portion by a valley, in the northwest by a system of ridges. A drainage forms the westerly and southerly side boundaries.

Review of the 1947 and 1966 aerial photographs indicate that a considerable amount of site disturbance occurred between these periods of time. The 1947 photograph 59292/CSP5R051 Page 2 of 9 August 26, 2005 Copyright 2005 Kleinfelder, Inc.

indicated that the site was essentially in its natural condition. The 1966 photograph indicated that most of the ground disturbance had occurred by this time. The historical topography of the landfill area is shown on Figure A-4 in Appendix A.

Previous work performed by Lincoln DeVore at the Subject Site includes the following reports:

- Geologic and Soils Hazard Reconnaissance, Proposed Park Place Development, Colorado Springs, Colorado, dated December 13, 1983, LD Job No. 51013.
- Geotechnical Report, Proposed Centennial Blvd. Project from Fontanero Street to Fillmore Avenue, Colorado Springs, Colorado, dated July 15, 1985, LD Job No. 55146.
- Landfill Site, Section 36, Twp. 13S, R67W of the 6th P.M., near Van Buren and Centennial, Colorado Springs, Colorado, dated August 12, 1986, LD No. 62841.

FIELD INVESTIGATION

Prior to the commencement of field activities at the Subject Site, Kleinfelder prepared a Site-Specific Health and Safety Plan as required by Occupational Safety and Health Administration ("OSHA"), to inform our personnel of the potential hazards that may be encountered and the required procedures to protect worker health and safety. Also, as required by law, Kleinfelder coordinated with utility companies to locate buried utilities in the vicinity of the Subject Site.

Subsurface Investigation

On July 14 and July 15, 2005, Kleinfelder mobilized to the Subject Site with a trackmounted drilling rig equipped with 4-inch continuous flight augers to drill fifteen (15) subsurface borings to delineate the approximate boundary and size of the landfill and also to evaluate what type of wastes were placed in the landfill. A map indicating the location of the borings is presented as Figure A-1 in Appendix A. All borings were drilled through the landfill material to bedrock. Bedrock depths are indicted on the boring logs, which are included in Appendix B. Samples were collected at regular intervals and observed in the field to determine if the soil material was native, soil fill, or landfill. The types of wastes encountered in the soil are also documented on the boring logs. Waste material observed in the landfill included solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. Based on our observations and understanding of the history of the landfill, we expect waste that was placed within the landfill included debris, rubbish, and household waste.

Kleinfelder returned to the site within 24 hours of drilling to measure the static water level in each boring.

Boring iD	Static Water Level (feet below grade)
B-1	*
B-2	11.0
B-3	*
B-4	18.4
B-5	*
B-6	18.9
<u> </u>	*
B-8	*
B-9	15.3
B-10	*
<u>B-11</u>	19.5
B-12	19.3
B-13	20.8
B-14	10.2
B-15	31.7

Table 1 summarizes the static water levels for each boring.

*DRY: Borings were dry and no groundwater was encountered.

During the period between 1947 and 1966, the site was apparently chosen for disposal of waste. Waste encountered in the subsurface investigation indicated that the central portion of the Subject Site was the main area used as a solid waste landfill. It appears that the drainage and valley, in the central portion of the site, was filled with a considerable amount of waste. The maximum thickness of this waste, based on our subsurface investigation, is estimated to be about 40 feet. The borings indicate that the surface soil cover ranges from about ground surface to 20 feet in thickness. Soil was also found layered and mixed within the solid waste landfill layer.

The Site is underlain by bedrock of the Pierre Shale. This formation consists of dark gray to brown, clay shale with a few interbedded fine-grained sandstone and limestone beds. The Pierre Shale is typically dense to hard where unweathered, thin-bedded, expansive and rich in sulfates. The depth to bedrock ranged from 11 feet at the northwest corner to 57 feet in the central portion of the Subject Site.

The approximate boundary of the landfill was mapped using data compiled from this investigation and previous reports completed by Lincoln DeVore. This landfill boundary is shown on Figure A-2 in Appendix A.

Methane Gas Assessment

The production of methane gas is a problem that is linked to abandoned landfills. Methane gas is generated by the decomposition of natural or man-made organics in a aerobic environment. The production of methane can vary from point to point in a landfill. Methane gas is explosive in concentrations between 5% and 15% by volume of air. Concentrations greater than 15% may be flammable and methane is also toxic.

Methane is lighter than air and tends to migrate vertically through the landfill to the surface.

On July 14 and July 15, 2005, Kleinfelder mobilized to the Subject Site with a trackmounted drilling ng equipped with 4-inch continuous flight augers to install fifteen (15) methane gas monitoring wells within the existing landfill and also around the perimeter, at the locations indicated on Figure A-3. Boring logs and monitoring well installation records (including depth and materials used) for each methane well, MW-1 through MW-15, are included in Appendix B.

Methane wells were constructed using factory cleaned 1-inch diameter, PVC well casing with 10 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2 to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

On July 19 and July 20, 2005, Kleinfelder performed gas monitoring at the fifteen (15) methane wells installed on the Subject Site. The gas in each well was analyzed using a GasTech Portable Gas Monitor. The meter is designed to measure concentrations of methane (CH₄), hydrogen sulfide (H₂S) and oxygen (O₂). Table 2 summarizes the gases detected in the methane wells.

Monitorian		July 1	9, 2005		July 20, 2005						
Monitoring Location	CH₄ (%LEL)	CH₄ (%GAS)	H ₂ S (ppm)	O ₂ (%)	CH4 (%LEL)	CH₄ (%GAS)	H ₂ S (ppm)	O ₂ (%)			
MW-1	0.0	0.0	0.0	. 20.9	0.0	0.0	0.0	20.7			
MW-2	28.0	2.0	0.0	9.3	29.0	2.0	0.0	4.8			
MW-3	0.0	0.0	0.0	20.7	0.0	· 0.0	0.0	20.9			
MW-4	100	62.0	2.0	0.0	100	60.0	2.0	0.0			
MW-5	0.0	0.0	0.0	20.4	0.0	0.0	0.0	20.4			
MW-6	28.0	2.0	0.0	13.3	23.0	2.0	0.0	15.4			
MW-7	0.0	0.0	0.0	20.9	0.0	0.0	0.0	20.8			
MW-8	0.0	0.0	0.0	· 20.3	0.0	0.0	0.0	20.9			
MW-9	1.0	0.0	0.0	20.2	0.0	0.0	0.0	18.7			
MW-10	100	53.0	1.0	0.0	100	45.0	2.0	0.0			
ŴW-11	63.0	6.0	0.0	7.8	75.0	7.0	0.0	0.0			
MW-12	100	22.0	0.0	6.6	100	18.0	0.0	6.3			

TABLE 2 -SUMMARY OF GAS MONITORING

59292/CSP5R051 Copyright 2005 Kleinfelder, Inc.

August 26, 2005

- 1			1	1						
	MW-13	28.0	2.0	0.0	11.4	23.0	2.0	0.0	12.6	
	MW-14	0.0	0.0	0.0	18.3	0.0	0.0	0.0	18.9	
	MW-15	100	. 49	0.0	0.0	100	50.0	1.0	0.0	
- r	Viatani Cili 10	/ 1							i 1	4

Notes: CH_4 (% LEL) = CH4 (% Gas) ==

H₂S Ξ O_2 =

Methane % of the lower explosive limit (LEL) % Methane Gas by volume Hydrogen Sulfide parts per million by volume Oxygen % by volume

In the three monitoring wells that had the highest concentration of methane gas, an air sample was collected that was sent to an accredited laboratory to confirm the presence and level of methane gas. The three monitoring wells that were sampled were B-4, B-10, and B-15. According to the laboratory analysis, high concentrations of methane gas existed in each of the three wells. The results of the laboratory tests were as follows; monitoring well B-4 consisted of 58.33 % methane gas, monitoring well B-10 consisted of 43.38 % methane gas, and B-15 had 48.77% methane gas. The laboratory data sheets are included in Appendix C.

Existing Fill Evaluation/ Excavation of Exploratory Test Pits

On August 1, 2005, Kleinfelder mobilized to the Site with a John Deere 310G 4X4 #12 Backhoe to excavate exploratory test pits, labeled as TP-1 through TP-5, and to evaluate existing fill for potential construction use. Test pits locations are mapped on Figure A-1. All five-test pits were excavated to approximately fifteen feet below existing grade. Significant amounts of debris were observed in four of the five exploratory test pits. The waste generally included wood, plastic, paper, cardboard, rubber, glass, aluminum, and metal. The thickness of the debris was greater than the total depth excavated of fifteen feet in four of the five test pits (TP-2 to TP-5). These four test pits did not contain material that could be used as construction fill during the development of adiacent areas.

The first exploratory test pit (TP-1) was located at the southern end of the existing landfill. The test pit was excavated to approximately fifteen feet as well. No waste was observed within the test pit to the total depth investigated. The material observed in the test pit consisted of a sandy lean clay with gravel and cobbles. However, based on the borehole that was drilled within close proximately to this test pit, debris was encountered at that location at approximately 16 feet. Site photographs from the excavation of the test pits are included in Appendix D, except for TP-1.

<u>CONCLUSIONS</u>

Environmental Hazards

Environmental hazards, which exist on the Site, include methane gas and excessive differential settlement of the solid waste landfill area. Significant levels, based on local and federal guidelines, of methane exist in eight of the fifteen methane wells constructed on site. This is consistent and anticipated with the placement of high

organic content and uncontrolled fill on the site. Methane gas is explosive in concentrations over 5% by volume in ambient air and can be produced for many decades from the initial deposition of wastes similar to those found in a landfill. Methane gas becomes a hazard if it is allowed to collect in poorly ventilated areas including crawl spaces, basements, utility vaults, or other enclosed spaces. On this site, the methane hazard can probably be mitigated by simple avoidance of the solid waste landfill area. Given the potential for gas development and possible gas mitigation into planned site development, additional protective measures must be implemented. These measures should be developed following additional investigation and be consistent with proposed site use, which we understand may include a park.

As a past site used for disposal of solid wastes, it is likely that the site is subject to Colorado Department of Public Health & Environment (CDPHE) explosive gas requirements for solid waste disposal sites. These regulations, found in Title 6 of the Code of Colorado Regulations (CCR), Section 1007-2, Part 1, state that "The concentration of explosive gases generated by the facility for solid waste disposal shall not exceed:

(A) Twenty-five percent [25%] of the lower explosive limit (LEL) (one percent [1%] by volume in air for methane) within facility structures (excluding gas control or recovery systems); and

(B) At the boundary, the lower explosive limit which is five percent (5%) by volume in air for methane."

Considering this rule, it is likely that any future development of the site would need to consider monitoring of any structure developed on the site as well as monitoring of the site perimeter in order to maintain compliance with these rules. The development of a vapor intrusion model and/or additional analysis to determine sufficient mitigation controls may be required as part of construction design.

Subsurface Hazards

Subsurface hazards, which exist on the Subject Site, are associated with large amounts of debris and other waste existing at ground surface and at differing depths throughout the existing landfill area. The only location within the boundary of the existing landfill that fill material may have the potential to be used in construction would be a small section of the southern portion of the landfill near boreholes B-14 and B-15. The ground surface surrounding B-14 was free of landfill debris and the upper fifteen feet of B-15. However, landfill debris was encountered in B-15 at approximately sixteen feet.

RECOMMENDATIONS

Kleinfelder recommends that a meeting be scheduled with CDPHE to discuss the planned development of the subject site, and what controls or mitigation would be considered by the agency. This limited Phase II ESA was performed for the purpose of evaluating methane levels on the known landfill area and also determine the location and depth of the landfill. Based on this assessment and the previous Lincoln DeVore

Page 7 of 9

August 26, 2005

reports, Kleinfelder and CDPHE will be able to provide guidance as to compatible land development and public safety considerations.

Since high methane concentrations were found throughout the site, any development of the site would have to address methane issues, including surface emission potential as well as migration issues. In addition, CDPHE may or may not require additional assessment activities such as additional long-term methane monitoring wells and/or soil and groundwater sampling as part of the site assessment. Additional work may include, but would not be limited to, probing of the site perimeter to check for methane migration on proposed areas of development. Also, by assessing the volume of solid waste that has been placed on the site, or how big the volumetric area of solid waste is on the subject site, the long-term production of methane gas could be calculated by using a landfill gas emissions model. This would provide necessary information as to how long the site will continue to produce methane over the years. If buried utilities are installed across the solid waste landfill area, the utility trenches may provide additional avenues for methane migration. As a result, methane venting may be required along the utility corridors.

It should be noted that presence of methane does not necessarily exclude the site from future development. Many successful methane mitigation and remediation solutions, both passive and active, have been developed and demonstrated on similar sites in the past. However, to adequately engineer appropriate remediation and management of the known landfill area, a more extensive understanding of the methane gas production potential, gas migration, permeability of soils onsite and groundwater flow direction may need to be assessed through additional investigation at the Site. This type of study would also require a detailed knowledge of proposed development in order to provide a thorough and meaningful evaluation/design.

Kleinfelder also recommends that fill material located within the boundary of the existing landfill, with the exception of the soil found at the southern edge, not be used in the planned development of the Subject Site. Large amounts of landfill debris are encompassed within soils throughout the landfill area. Kleinfelder also recommends that soil samples be collected and analyzed at an accredited laboratory for contamination, prior to the excavation of any fill material from the southern portion of the landfill area.

LIMITATIONS

The limited sampling performed during this investigation was performed to provide a general indication of methane production within the study area. Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of work on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of work was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report is beyond the scope of our work and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since

such detailed services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

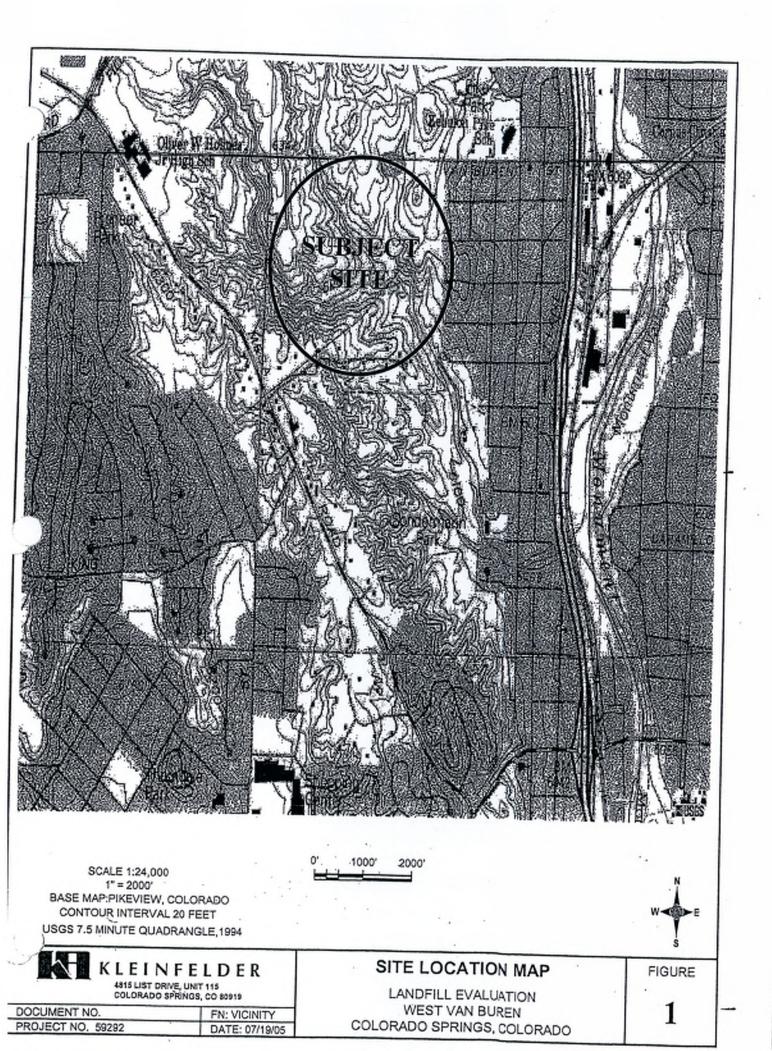
Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

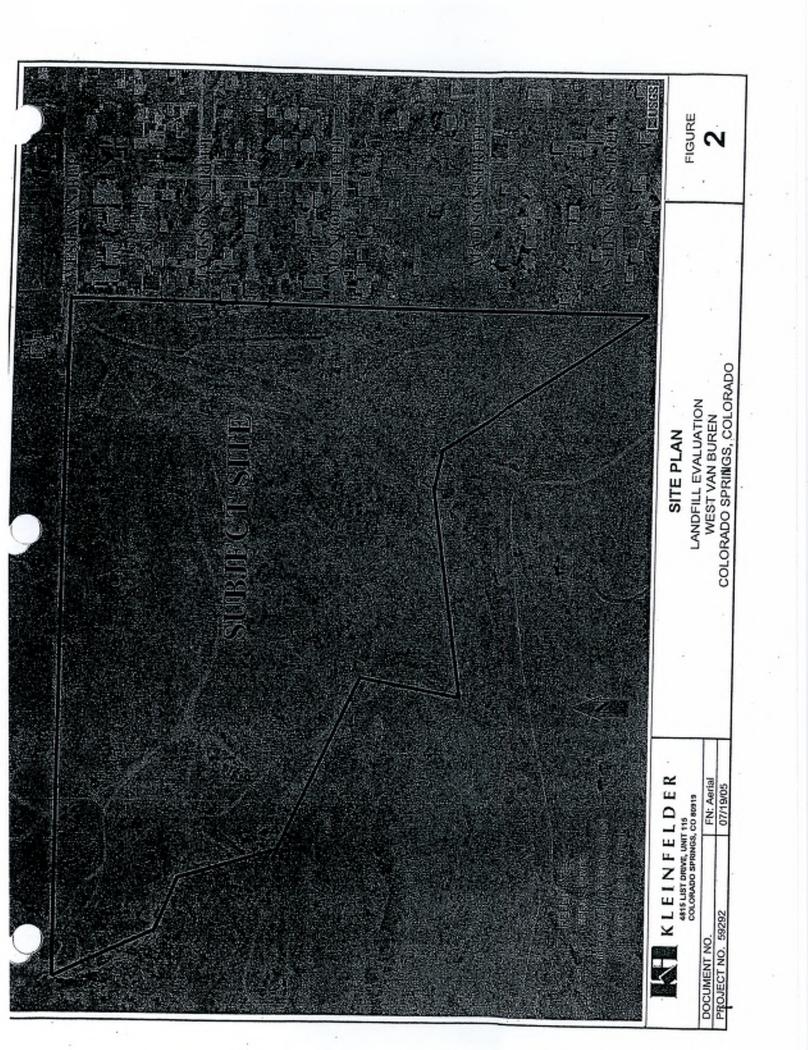
The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at (719) 632-3593.

Respectfully submitted,

KLEINFELDER, INC.

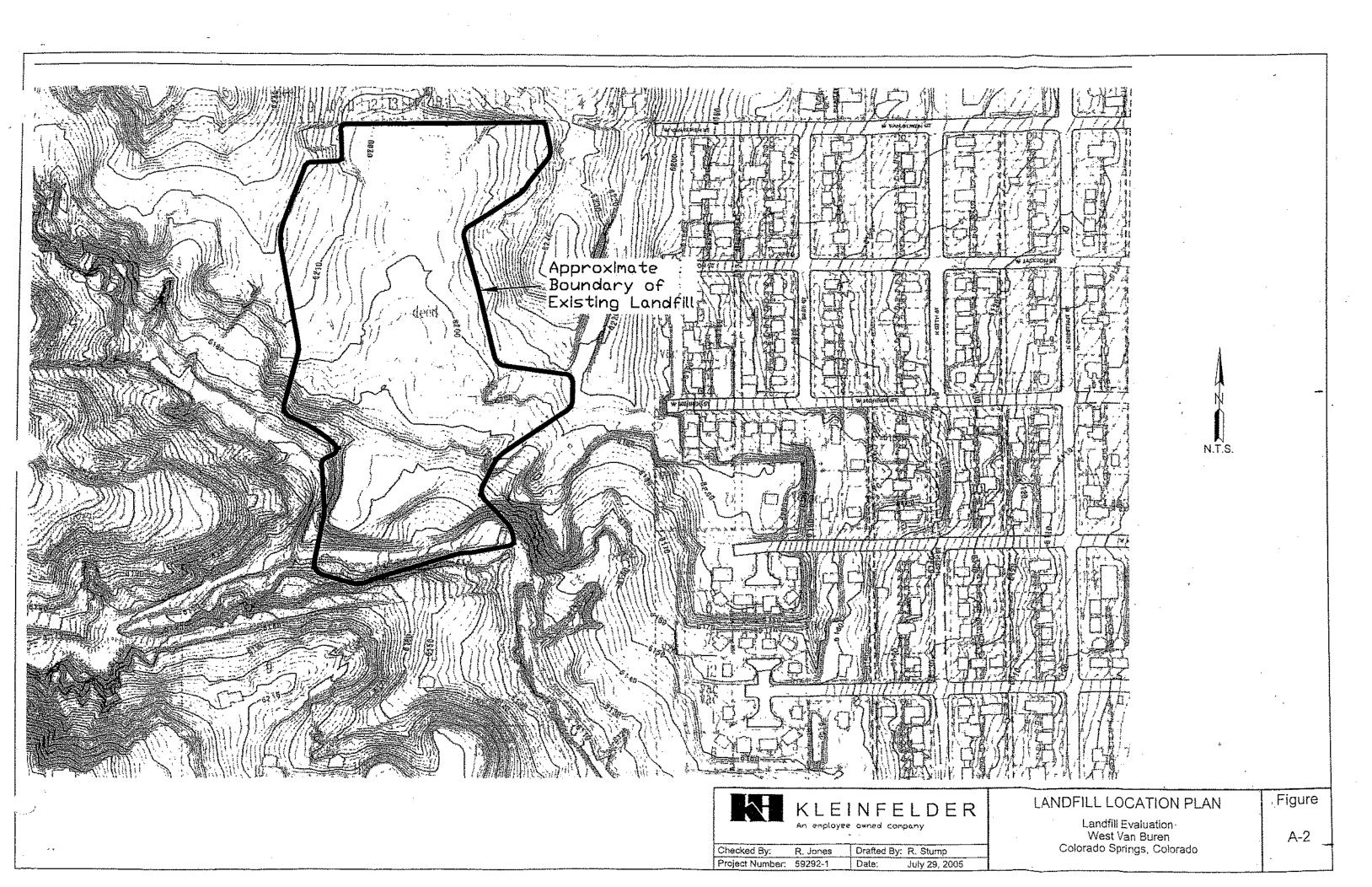

Rickey L. . In

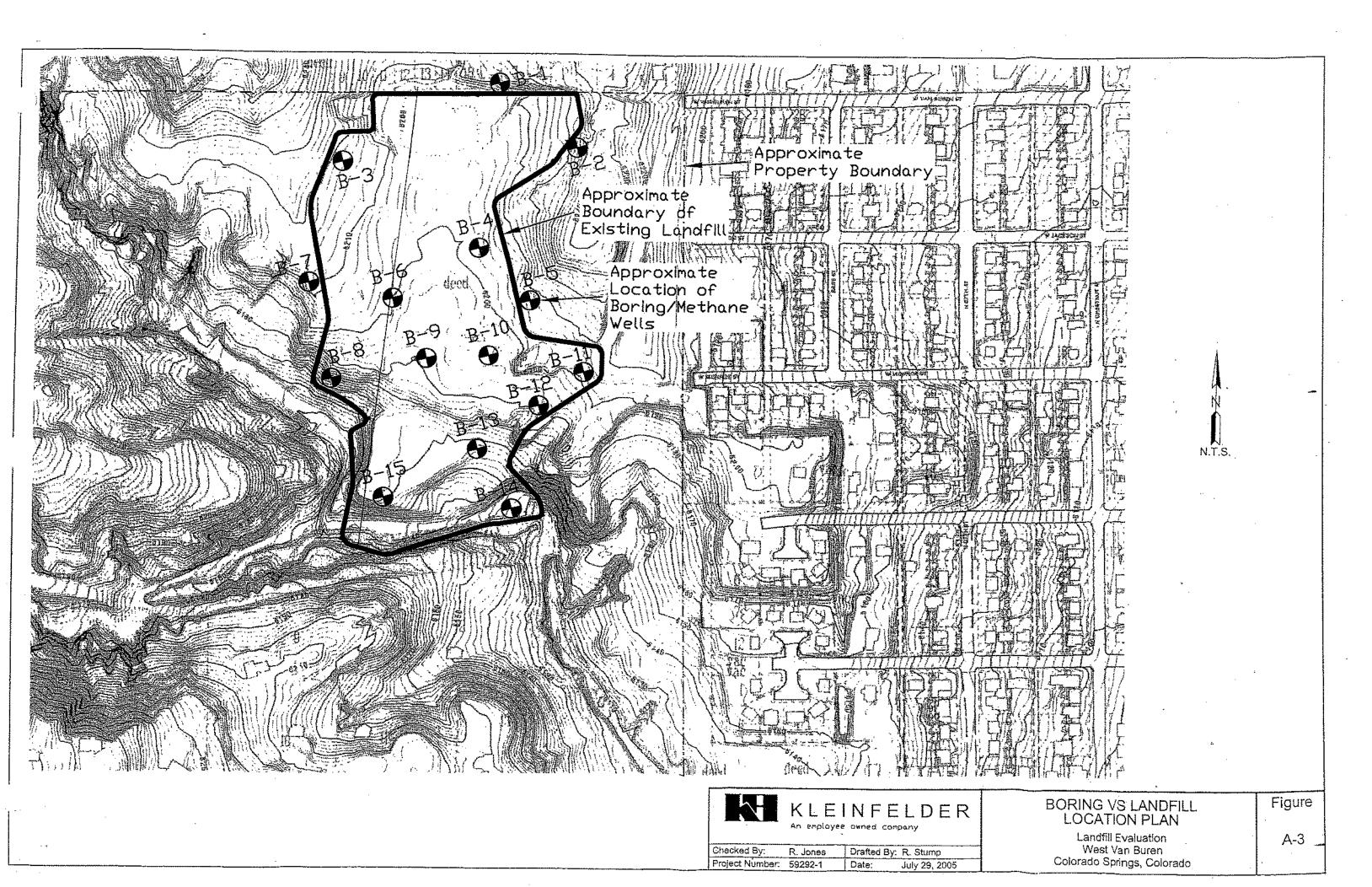

Staff Environmental Scientist

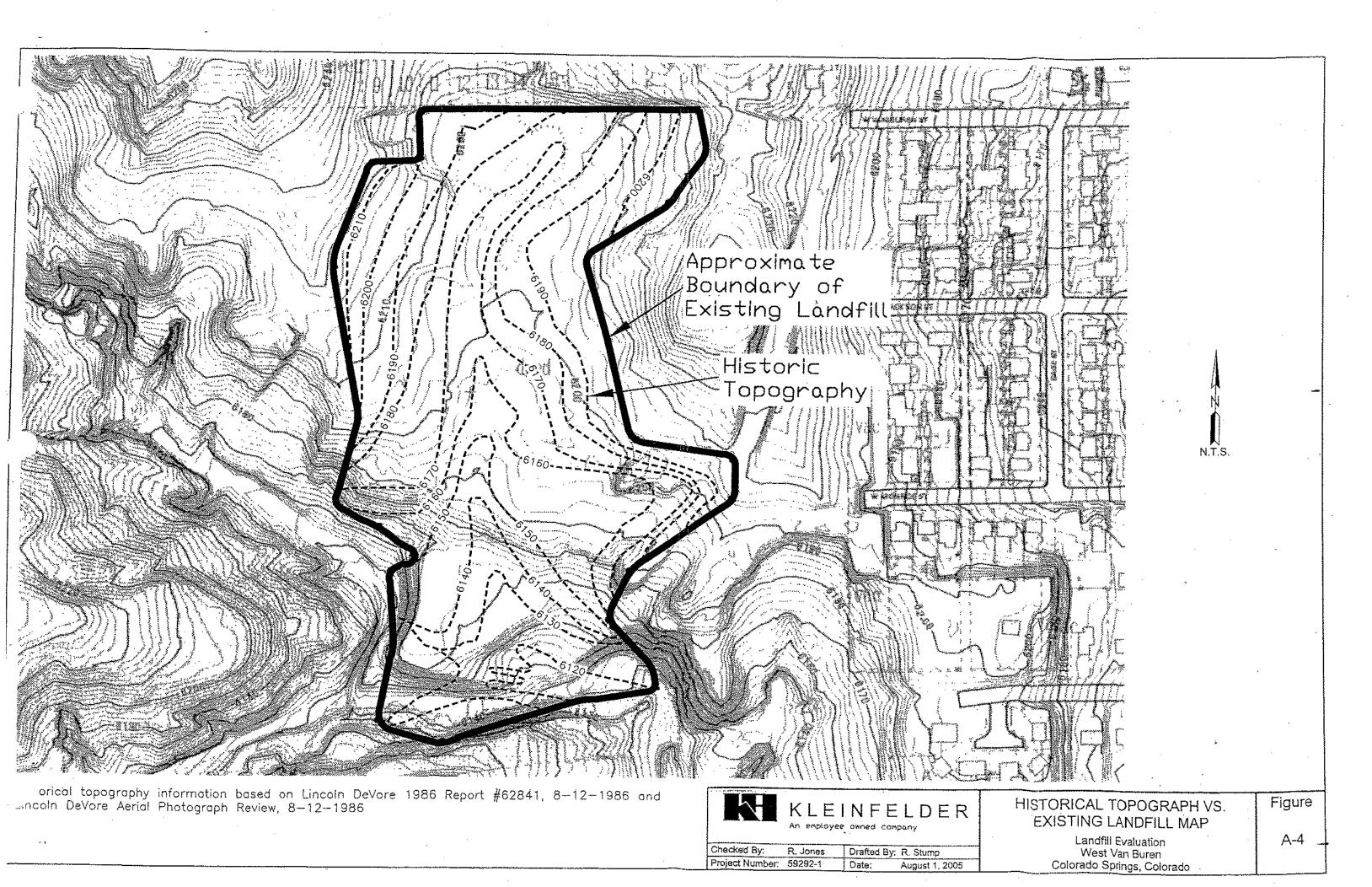
William J. Barfiere, P.E. Area Manager

RLJ:WJB:ss

KLEINFELDER




APPENDIX A


.

Boring Location Plan

APPENDIX B

Logs of Test Borings

59292-1	ENVIRONMENTAL BO	RING LE	GEND	SHEET OF 1
	PROJECT NAME Landfill Evaluation		LOCATION	
Q			× 1 \$	
	DESCRIPTION	BLOW	LABORATORY SAMPLES P.J.D. READINGS	(bbmv) symple Type
GR SILTY GRAVE GC CLAYEY GRAVE GC CLAYEY GRAVE SW WELL GRADE SW WELL GRADE SW WELL GRADE SP POORLY GRA SM SILTY SAND SC CLAYEY SAND SC SC WELL GRA SC SM SILTY, CL SANDSTONE CLAYSTONE WATER LEVEL AN WATER LEVEL AN WATER LEVEL AN MEASURED WATE	DED GRAVEL L /EL D SAND DED SAND Y or SILT, LOW PLASTICITY ADED GRAVEL w/ SILT ADED GRAVEL w/ CLAY GRADED GRAVEL w/ CLAY GRADED GRAVEL AVEY GRAVEL ADED SAND w/ SILT ADED SAND w/ CLAY GRADED SAND w/ CLAY	Indicates number of blows required to drive the identified sampler 6 inches with a 140 lb. hammer falling 30 inches.	LAB SAMPLE INTERVA	

-

59292-1		LOG OF	BORIN	IG 1		SHE	et 1 of 1
DRILLING EQUIPMENT CME 55 (w/ AL	TOHAMMER	PROJECT NAME Landfill Evaluati	on		LOCATION SE	E TEST	BORING
	1	HAMMER DATA: WT. 140 LBS. DROP 3(ACE N/	A TO	TAL DEPTH	30
STARTED: 07/1		LING AGENCY Spectrum Exploratio				HOLE DATE AT	
COMPLETED: 07/1	5/05 LOG	GED BY .R. Jones		••••••••		<u> </u>	Priterio -
BACKFILLED:	SUR Gra	FACE CONDITIONS Iss and Weeds		<u> </u>	······		
o DEPTH (FEET) SYMBOL		LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	SAMPLE TYPE	NOTES
	Y, stiff to v debris or oc	O, with debris (rubber, glass, me oth), strong organic odor, dry, b ery_stiff, moist, brown. for.	rown.	20 30 35	<u> </u>		2' STICK UP BENTONITE SIZ GO IO IO/20 SAND IO/20 SAND IO/20 SAND IO/20 SAND IO/20 SAND
	• .			50/6			

59292-1 RILLING QUIPMENT	LOG OF BORING 2 SHEET 1 OF 2	2
CME 55 (w/ AUTOHAMME		
	HAMMER DATA: WT. 140 LBS. DROP 30 INCHES SURFACE N/A TOTAL DEPTH OF HOLE 50	
	DRILLING AGENCY Spectrum Exploration DEPTH 11.0 DATE AT DRILLING	
	OGGED BY R. Jones	
BACKFILLED:	rass and Weeds	
(FEET)	LOG OF MATERIAL AND REIT AND R	
FILL, Silty SA strong organ	ND, with debris (plastic, glass, rubber), ic odor, moist, light brown. th debris (glass, plastic), soft, moist, black	
Sondy CLAY, st	iff to very stiff, moist, brown to block.	
	EINFELDER	-

59292-1	LOG OF BO	RING Z		SHEET	2 OF
DRILLING EQUIPMENT CME 55 (W/ AUTOHAM			Loc	TEST BO	ORING LAN
YPE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 INCHES	SURFACE N/	A TOTA	nl depth Hole	50
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	DUNDWATER	NONE D	ATE AT (DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones				
BACKFILLED:	SURFACE CONDITIONS Grass and Weeds		<u></u>		
S DEPTH (FEET) SYMBOL	LOG OF MATERIAL	BLOW	LABORATORY SAMPLES	SAMPLE TYPE WELL	NOTES
30 31 32 33 34 35 36 37 38 39 39 30 30 30 30 30 30 30 30 31 32 33 33 34 35 36 36 37 38 38 38 38 38 38 38 38 38 38	AY, stiff to very stiff, moist, brown to black d).	4 5 6			
0		16 25 36			
6BEDROCK: to moist, 7	CLAYSTONE, hard to very hard, slightly moist brown to gray.	· · ·			
	• ·				

юјест NO. 59292-1	LOG OF B	ORING 3		SHEET 1 OF	1
ILLING UIPMENT IME 55 (w/ AUTOHAMMER) PROJECT NAME Landfill Evaluation		LOCATION SEE	TEST BORING	
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 INCH	IES SURFACE N/A	TQTAL OF HOL	DEPTH 20	
	RILLING AGENCY Spectrum Exploration	GROUNDWATER	IONE DATE		3
	GGED BY R. Jones		۰ 		
BACKFILLED: SU Gr	RFACE CONDITIONS case and Weeds		···		I
(FEET) SYMBOL	LOG OF MATERIAL	BLOW	LABORATORY SAMPLES	SAMPLE TYPE WELL	s
- glass, galvani odor.	ND, with gravel, debris (rubber, plastic zed wire), dry, light brown, strong org YSTONE, hard to very hard, slightly m in to gray.	onic 32 50 pist		1' STICK L BENTONITE	5' RISER
		50/6			
	TINFELDER				

PROJECT NO. 59292-1	LOG OF	BORIN	G 4		SHEET	1 of 2
RILLING QUIPMENT CME 55 (w/ AUTOHAMMER)	PROJECT NAME Landfill Evaluati			LOCATION SE	E TEST B	ORING
	AMMER DATA: WT. 140 LBS. DROP 3		ACE N/	TOT	AL DEPTH	45
STARTED: 07/15/05 DRILL	ING AGENCY Spectrum Exploratio	1 246.97			HOLE	DRILLING
	ED BY R. Jones		· · · · ·			
BACKFILLED: SURF. Gras	ACE CONDITIONS is and Weeds	-				······································
C (FEET)	LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	SAMPLE TYPE WELL	NOTES
0 1- FILL, Silty SAND organic odor, m 3- 4- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5	, with debris (plastic, wood), st hoist, light brown.	trong		<u> </u>	2023 2023 2023 2023 2020 2020	I' STICK UP EX BENTONITE TO
FILL, CLAY, with stiff, moist, blac	debris (wood, plastic), soft to k to brown.	medium			111111111 1111111111111111111111111111	SCREEN
	- -				111123	10/20 SAND
			3 5 5			-10' 0.010*
	· · ·					
			4			
	· · · · · ·		4			
			and the second			
		I				

PROJECT NO. 59292-1	LOG OF	BORIN	G 4		SHEET	2 of 2
ORILLING EQUIPMENT	PROJECT NAME		<u> </u>	LOCATION SEE	TEST B	
CME 55 (w/ AUTO	······································		ACE	TOTAL	TION P	
STARTED: 07/15/				OF H	DLE	45
COMPLETED: 07/15/		GROUNDWA DEPTH		18,4 DA	E AT I	DRILLING
BACKFILLED:	SURFACE CONDITIONS	4		*****		
	Grass and Weeds	<u> </u>	<u> </u>	<u> </u>		
DEPTH (FEET) SYMBOL	LOG OF MATERIAL		BLOW	ATOR	ТҮРЕ Ц	
1 î	COD OF WALLIAL		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	LABORATORY SAMPLES	SAMPLE 1 WELL	NOTES
30			16		3	
	CLAY, with debris (wood, plastic), soft to moist, black to brown (continued).	nedium	28 45			
32	, stiff, moist, brown, no debris.					
54						
15						
7						
8-1/1-8		[
	. ·					
2						
BEDRO	DCK: CLAYSTONE, hard to very hard, slightly	moist				
to ma	bist, brown to gray.					
5						
5-1	,	,]				
	•					
	· · ·					
				1		
-						
\neg						
						ĺ
-						
<u> </u>	· · · · · · · · · · · · · · · · · · ·					
N: LOGS	KLEINFELDER					

PROJECT NO. 59292-1	LOG OF	BORIN	G 5		SHEET	1 of 1
RILLING QUIPMENT CME 55 (w/ AUTOHAMM	PROJECT NAME			LOCATION SE	E TEST B	ORING LAN
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 IN	CHES SURF	ACE N/A	TOT	AL DEPTH HOLE	20.5
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWA DEPTH				DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones	ULL III				
BACKFILLED:	SURFACE CONDITIONS Grass and Weeds					
				2.0		
SYMBOL	LOG OF MATERIAL		BLOW	PLES	PLE TYPE WELL	NOTES
4	-	-	ਛਨੂ	LABORATORY SAMPLES	SAMPLE WELL	NOTES
CLAY, Verv	stiff, moist, brown, no debris, no odor			<u> </u>	ស	2' STICK UP
4/1	and, mose, brown, no bebits, no boor					BENTONITE U
2-1/1						2
3-1/1					8-8	
7/1						SCREEN-
			•			S
						10/20 SAND
						SLO
		,				0.010
		(16 33			0.0
$\frac{1}{\lambda}$			37			-10.
1/1						
7/1						
7/)						
			ļ			
		j I				ă L
to moist, bro	AYSTONE, hard to very hard, slightly m wn to gray.	loist	50/6			
-					· .	ļ
	· ·		[1
				•		
4						
						ĺ
			l	· · · ·		
	EINFELDER					

PROJECT NO. 59292	-1	LOG OF BORING 6 SHEET 1 OF	2
RILLING QUIPMENT CME 55 (V	V/ AUTOHAMN	IER) PROJECT NAME Landfill Evaluation LOCATION SEE TEST BORING LOCATION PLAN	·
YPE OF BIT	4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 INCHES SURFACE ELEVATION N/A TOTAL DEPTH 58	
STARTED:	07/15/05	DRILLING AGENCY Spectrum Exploration GROUNDWATER 18.9 DATE AT DRILLING	
COMPLETED:	07/15/05	LOGGED BY R. Jones	
BACKFILLED:		SURFACE CONDITIONS Grass and Weeds	-
SYMBOL		LOG OF MATERIAL ABORATORY ABORATORY ABORATORY ABORATORY ABORATORY	<u> </u>
		with gravel, fine to coarse grained, moist,	
	FILL, CLAY, medium sti	with debris (glass, wood, plastic), soft to ff, moist, light brown.	
	Dark clay ic	nyer at 10'	
	¥ ÷	3 2 2	
	•		
LOGS	KL	EINFELDER	┢

PROJECT NO	92-1	LOG OF	BORIN	NG 6		SHEET	7 2 OF 2
DRILLING EQUIPMENT	(w/ AUTOHAMME	PROJECT NAME			LOCATION SE	E TEST E	ORING
TYPE OF BIT		HAMMER DATA: WT. 140 LBS. DROP 30	SUR	RFACE N/	TO	TAL DEPTH	58
STARTED	07/15/05	DRILLING AGENCY Spectrum Exploration	[<u></u>		0F 18.9	DATE AT	DRILLING
LAT COMPLE	TED: 07/15/05 1	LOGGED BY R. Jones	UEPIN				DATELING
BACKFIL	LED:	SURFACE CONDITIONS Grass and Weeds					
FC 0				_ v	S	138E	1
DEPTH (FEET) SYMBOI		LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	MELL WELL	NOTES
				۳ <u>۵</u>	SAIC	SAMPLE	
31	FILL, CLAY,	with debris (glass, wood, plastic), s	oft to	7			
32	medium stiff	f, moist, light brown (continued).		8			
33	\bigotimes						
34	X						
35-	\bigotimes						
36	\bigotimes						
37	×						
38	\bigotimes						
39	X	- - -		ļ., ļ.			
40	×						
' =	Silty to sond	y CLAY, soft to medium dense, mo	ist, light	0 .4			
42				5			
43		·					
44-	1						
45-	1		÷				
46							
47	1		-				
48	1						
49	1						
50	1						
51	1						ĺ
52-	1						
53-	1						
54-	1	· · ·					
55-	1						
56	1						
57	<u></u>	· · · · · · · · · · · · · · · · · · ·	·····				
	BEDROCK: CLA to moist, brov	YSTONE, hard to very hard, slightly wn to gray.	moist				
59		· · · · · · · · · · · · · · · · · · ·					
.60							
FN: LOGS	KL	EINFELDER					
		······································				<u></u>	

PR	OJECT NO.		100			·····		·
DR	59292	j	PROJECT NAME	OF BORI	NG /	LOCATION CE	SHEET	· · · · · · · · · · · · · · · · · · ·
<u>م</u> ا	<u>ME 55 (w</u>					LOCATION SEI	E TEST B	ORING LAN
۲۶ 	E OF BIT	4" AUGER	HAMMER DATA: WT. 140 LBS. DRO		IRFACE EVATION N/A		AL DEPTH HOLE	25
DATE			RILLING AGENCY Spectrum Explor	ation GROUNE DEPTH	WATER	NONE (DATE AT	DRILLING
^d	BACKFILLED:	Ś	OGGED BY R. Jones URFACE CONDITIONS	——				<u> </u>
	L		Frass and Weeds		<u> </u>			
DEPTH	(FEET) SYMBOL		LOG OF MATERIAL		BLOW COUNTS	ABORATORY SAMPLES	PLE TYPE WELL	NOTES
			· · · · · · · · · · · · · · · · · · ·		BS	SAN	SAMPLE	, ioneo
1.		FILL, Silty SA	ND, with some gravel, with del	oris (glass,				2' STICK UP
2.		dense, moist	inized wire, rubber), medium de , brown.	ense to				BENTONITE CL
3-	\rightarrow							2
4-							111	
5-								z
6-	-2000							SCREEN
7-								10/20 SAND
8-				·				10/20 SAND CHILD
 							111	0.010"
. 1					24 32			,
12-					42			10,
13								
- 14—								
15								
16—								
17								
18— -								
19— -								
20-					14			
21		BEDROCK: CLAY	STONE, hard to very hard, slig	htly moist	20 35			
22		to moist, brow	n to gray.					
24—						•		
25			· · · · · · · · · · · · · · · · · · ·	······				
26								
								Ì
_u			е.,					
29—								
30 —								
FN: I		K L E	EINFELDER					

Subscription LOG OF BORING 8 Setter 1 or 1 Belleviller CMC 55 (w/ AuroHammer) Monacer water and start with the data with the subscription	PROJECT NO. 5929	 2_1				 } (00	<u></u>				. <u></u>					. 1
Processor Of BIT 4" AUGR Induces park with 140 Leb. Deco 50 Modes Statistics Of Processor Of Procesor <td>DRILLING</td> <td></td> <td></td> <td>PROJECT</td> <td>NAME</td> <td></td> <td></td> <td>··</td> <td>·</td> <td>ING</td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>·]</td>	DRILLING			PROJECT	NAME			··	·	ING		·				· · · · · · · · · · · · · · · · · · ·	·]
Image: Second																	
Howellette: 000PLCTED: 07/15/05 Longe 000PLCTED: 07/15/05 Longe Howellette: 07/15/05 Longe 0 0 0 0 Howellette: 07/15/05 LOG OF MATERIAL 0 0 0 Howellette: 0 LOG OF MATERIAL 0 0 0 1 Sandy CLAY, medium stiff, moist, brown, no debris or 0 0 0 2 Sandy CLAY, medium stiff, moist, brown, no debris or 0 0 0 1 Sandy CLAY, medium stiff, moist, brown, no debris or 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 <			Υ <u></u>					··	<u>5</u>			Ά	10 0F	HOLE	-тн 	30	
ANCAPULED: SURFACE CONSIDING Orass and Weeds Efficiency Orass and Weeds Interview Sandy CLAY, medium stiff, moist, brown, no debris or odor. Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, brown, no debris or odor. Image: Sandy CLAY, medium stiff, moist, groy. Image: Sandy CLAY, medium stiff, moist, groy. Image: Sandy CLAY, with weathered claystone fragments, maist, groy. Image: Sandy CLAY, with weathered claystone fragments, maist, groy. Image: Sandy CLAY, moist, brown to groy. Image: Sandy CLAY, moist, brown to groy.			ļ				Explo	ration	DEPTH	IDWAIER		NONE		DATE _	AT	DRILLING	3
LOG OF MATERIAL Sandy CLAY, medium stiff, moist, brown, no debris or Sandy CLAY, medium stiff, moist, brown, no debris or Sandy CLAY, medium stiff, moist, brown, no debris or Sandy CLAY, with weathered cloystone frogments, moist, groy. CLAY, with weathered cloystone frogments, moist, groy. BEDROCK: CLAYSTONE, hard to very hord, slightly moist to moist, brown to gray. BEDROCK: CLAYSTONE, hard to very hord, slightly moist			SURFA	CE CONDIT	IONS	165		·						-			
Sandy CLAY, medium stiff, moist, brown, no debris or odor.			Gras	s and V	Needs						<u> </u>	<u> </u>					
Sandy CLAY, medium stiff, moist, brown, no debris or odor.	4			LOG C	OF MAT	ERIAL				RI OW	COUNTS	ABORATOR	SAMPLES	SAMPLE TYPE	WELL	NOTE	s.
	$ \begin{array}{c} 1 \\ - \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	CLAY, with w	veothe	red clay	stone	fragme	ents, r	noist, (gray.	235		<u> </u>			[1411] + 11111 + 111111	BENTONITE	0.010" SLOTTED SCREEN5' RISER
KLEINFELDER					<u> </u>					50/6	s	<u> </u>				··	
	IN: LOUS	KL	Ŀ	N F	£ L	DE	R		····								

•

59292		· 1	OJECT NAME Landf	ill Eval		BORIN	<u> </u>	LOCATION	SEE T LOCAT	SHEET	
PE OF BIT	4" AUGER		IER DATA: WT. 14		·		FACE N/	1	TOTAL D	EPTH	<u>'LAN</u>
STARTED:	07/15/05			trum Expl		GROUNDY DEPTH		<u> </u>	OF HOLE		DRILLING
COMPLETED:	07/15/05	LOGGED				DEPTH				<u> </u>	UKILLING
BACKFILLED:		SURFACE	CONDITIONS and Weeds				·····			,	·
		01035	unu weeds					<u>ک</u>		Ψ	
(FEET) SYMBOL			LOG OF MATE	RIAL			BLOW COUNTS	LABORATORY SAMPLES		SAMPLE TYPE WELL	NOTES
	FILL, Silty	SAND, w	rith grovel, dr	y, brown.							1' STICK UP BENTONITE
_XXX	Š										RISER
_XXX											1
_XXX											2 SCREEN
-800									Ì		
										1111	SLOTTED
										1 1 1	
	· · · ·			···	····					1111 1111	10/20 SAND
	FILL, Silty	SAND to	CLAY, with g s), dense (so	ravel, with	debris					1111 1111	10.0
	(clay), moi	st, brown	n, strong orge	anic odor.	eaium s	(IT)				1111	
							2		E		
\rightarrow							11				
	¥										
-2000											
							· .				
							5				
							6 6				
											i
LOGS -	KKK		· · · · · · · · · · · · · · · · · · ·	~ ~ ~		1			<u>L</u>	<u>I</u>	

RILLING QUIPMENT	LOG OF PROJECT NAME Landfill Evaluation			LOCATION	SEE TES	T B(ORING	
CME 55 (w/ AUTOHAMME WPE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 II		ACE N /		TOTAL DEPT		····	
	DRILLING AGENCY Spectrum Exploration	GROUNDWA		15.3	OF HOLE		50	
	LOGGED BY R. Jones	DEPTH		15.5		ALL	DRILLING	-
BACKELLED.	SURFACE CONDITIONS Grass and Weeds	-						-
				<u>ک</u>				·
SYMBOL	LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	SAMPLE TYPE	' WELL	NOTES	
1-FILL, Silty S (plastic, woo	AND to CLAY, with gravel, with debris od, glass), dense (sand) to medium : t, brown, strong odor (continued).	stiff	3 3 3					
	- - #							
			4 5 7					
Silty SAND, T	noist, gray.		7					
BEDROCK: CL to moist, bro	AYSTONE, hard to very hard, slightly win to gray.	moist						
	· · · ·							
	· .							

59292-1LOG OF BORING 10DRILLING EQUIPMENT CME 55 (W/ AUTOHAMMER)PROJECT NAME Landfill EvaluationLOCATION SE LO	E TEST PORING
	CATION PLAN
TOT BILL 4 AUGER MAMMER DATA: WT. 140 LBS. DROP 30 INCHES SURFACE MICHAE TOT	AL DEPTH
STARTED: 07/15/05 ORILLING AGENCY Spectrum Exploration GROUNDWATER NONE	HOLE 41 DATE AT DRILLING
COMPLETED: 07/15/05 LOGGED BY R. Jones	AI DRILLING
SURFACE CONDITIONS	<u> </u>
Grass and Weeds	
COUNTS SAMPLES	MELL TYPE
FILL, GRAVEL, fine to medium groined, moist, brown.	
FILL, CLAY, with debris (plastic, galvanized wire, pper, rubber), soft to medium stiff, moist, black, strong odor.	V20 SAND
	3 0.010
Clover SAND dense to very dense moist table to	
	<u></u>
N: LOGS KLEINFELDER	

BEDROCK: CLAYSTONE, hard to very hard, slightly moist bo moist, brown to gray. 50/5 5-6 6-7 7-7 8-9 9-9 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-7 8-7 8-7 9-7 7-7 8-7 8-7 9-7 7-7 8-7 9-7 7-7 8-7 9-7 7-7 8-7 9-7 7-7 8-7 9-7 7-7 8-7 9-7 7-7 8-7 9-7 7-7 8-7 9-7 7-7 7-7 8-7 9-7 7-7 7-7 8-7 9-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7-7 7	PROJECT NO. 59292	1		LOG OF	BORIN	G 10		s	HEET 2 OF	2
STATED: 07/15/05 DELING AGENT Spectrum Exploration CONTROL LAND AGENT Spectrum Exploration CONTROL ALL ALL ALL ALL ALL ALL ALL ALL ALL A	CME 55 (w	V AUTOHAMM	ER) Land				LOCATION SE	E TES CATION	T BORING N PLAN	• <u> </u>
Big Commutation 07/15/05 Locate br R. Jones BACKFULED: BUMPACE CONDITIONS Ordes and Weeds EED SG SG SG SG SG SG SG SG SG SG SG SG SG	PE OF BIT	4" AUGER	HAMMER DATA: WT. 1	40 LBS. DROP 30 1		ACE N/A	TOT	AL DEPT	บ.	 -
BACKPLED: SURFACE CONDITIONS: Drigss and Weeds ELC: 00 00 00 00 00 00 00 00 00 00 00 00 00	1	07/15/05	DRILLING AGENCY Spe	actrum Exploration	GROUNDW/ DEPTH	ATER h	IONE		AT DRILLING	;
ELE Og LOG OF MATERIAL BOY BOOM 00 Cloyey SANO, dense to very dense, moist, light brown (continued). 14 23 12 Cloyey SANO, dense to very dense, moist, light brown 14 23 13 Cloyey SANO, dense to very dense, moist, light brown 14 23 14 23 15 BEDROCK: CLAYSTONE, herd to very hord, slightly moist 50/5 16 To most, brown to groy.	COMPLETED:	07/15/05		165	1	<u>-</u>		-		
Clayer SAND, dense to very dense, moist, light brown (continued).	BACKFILLED:		SURFACE CONDITIONS Grass and Weeds							
Clayer SAND, dense to very dense, moist, light brown (continued).	ਸ਼ ਼ ਰ			· · · · · · · · · · · · · · · · · · ·		s	S	2		
Clayer SAND, dense to very dense, moist, fight brown (continued).	FEE FEE		LOG OF MAT	ERIAL		NUT	RATC	<u></u> Ц	a NOTES	s
Clayer SAND, dense to very dense, moist, fight brown (continued).	4					۳S	SAN	SAMPI	3	-
22 10 10 11 10 11 10 10 11 10 10	- /////-	Clayey SAN	D, dense to verv d	ense, moist, light l	250%(2	f 1				<u> </u>
BEDROCK: CLAYSTONE, hard to very hard, elightly moist bormaist, brown to gray.	- /////	(continued)	•							
BEDROCK: CLAYSTONE, hard to very hard, slightly moist brown to groy. BEDROCK: CLAYSTONE, hard to very hard, slightly moist brown to groy. BEDROCK: CLAYSTONE, hard to very hard, slightly moist 50/8		1								
BEDROCK: CLAYSTONE, hard to very hard, slightly moist be moist, brown to gray.										
Se									ł	
BEDROCK: CLAYSTONE, hard to very hard, slightly moist 50/6										
BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 50/6 51 51 51 51 51 51 51 51 51 51 51 51 51									ļ	
BEDROCK: CLAYSTONE, hard to very hard, slightly moist bo moist, brown to gray. 50/6		Ŧ					-			
BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. 50/6	58			2						-
to moist, brown to gray.					· .					
to moist, brown to gray.	∩ <u>_////</u>		·····			50 / 6				
	1	BEDROCK: (∖ to moist, b	CLAYSTONE, hard to rown to gray.	very hard, slightly	moist	0/0		H		
	2	·····	<u></u>							
	3-									
	4									
	5									
	6									
	7									
	8									
	9-									
	[
	(
	I									
	- 1			· •.						
)				<u> </u>					

PROJECT NO. 59292	1	LC	G OF E	BORIN	G 11		SHEET	- 1 of 1
DRILLING EQUIPMENT	AUTOHAMMER)	PROJECT NAME	Evaluation	·		LOCATION SE	E TEST E CATION P	
PE OF BIT		HAMMER DATA: WT. 140 LE			ACE N/	TOT	AL DEPTH	23.5
STARTED:			Exploration	GROUNDWA DEPTH			HOLE DATE AT	DRILLING
COMPLETED:		GED BY R. Jones		DEPTH		13.3	<u>A1</u>	DRILLING
BACKFILLED:	SUR	FACE CONDITIONS					÷****	
		iss and Weeds					Ψ	
DEPTH (FEET) SYMBOL		LOG OF MATERIAL			BLOW	LABORATORY SAMPLES	SAMPLE TYPE WELL	NOTES
-0 1 2 3 4 -1 2 -1		medium grained, mois			322			
21- 22- 23-	FILL, CLAY, with soft, wet, black	debris (rubber, galva strong organic odor.	inized wire, co	onvas),	2			
24	BEDROCK: CLAYS to moist, brown	TONE, hard to very h to gray.	nard, slightly r	moist	50/6			
29	•							
30	KIKLE	INFELDE	R	<u>i</u> i	<u>l</u>			

PROJECT NO. 59292-1	LOG OF B	ORING 1	2	SHEET	2 of 2
RILLING QUIPMENT CME 55 (w/ AUTOHAMM	PROJECT NAME		1	TEST BO	DRING
YPE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 IN	CUPSION	TOTAL	DEPTH	AN 31
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATER	19.3 DAT		RILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones	UCP1H		- <u>AI L</u>	MILLING
BAOKEN LEO	SURFACE CONDITIONS Grass and Weeds				
	·····		1 20		
SYMBOL	LOG OF MATERIAL	BLOW	LABORATORY SAMPLES	SAMPLE TYPE WELL	NOTES
0 BEDROCK, (1 (continued).	LAYSTONE, hard to very hard, wet, bla	ck 28		s	
2	······································	/			
3					
	. · · · ·				
		· · [
					ŀ
	. ·				
4					
<u> </u>					
	EINFELDER	······································		<u></u>	

•

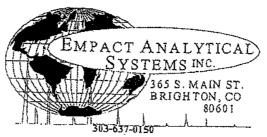
L

59292-1	LOG OF E	BORING	G 12			SHEE	ст 1 ог 2
LLING JIPMENT ME 55 (w/ AUTOHAMMER)	PROJECT NAME Landfill Evaluation			LOCATION	LOCATI	ST ON	BORING PLAN
l	HAMMER DATA: WT. 140 LBS. DROP 30 IN			/A	TOTAL DE OF HOLE	PTH	31
}	LING AGENCY Spectrum Exploration	GROUNDWA DEPTH	TER	19.3	DATE _	AT	DRILLING
	GED BY R. Jones FACE CONDITIONS		: 				
Gro	iss and Weeds		·		<u> </u>		
(FEET)	LOG OF MATERIAL		BLOW COUNTS	LABORATORY SAMPLES	CANDI E TYDE	WELL	
FILL, SAND and	debris (aluminum, newspaper, f. maist, black, strong organic ode		12 8 5				19/20 SAND BENTONTE
BEDROCK; CLAYS	TONE, hard to very hard, wet, blac	k.					
LOGS KIKLE	INFELDER		<u>1</u>		1	L	

.

59292-1		BORING 1	3	SHEET 1 OF 2
RILLING QUIPMENT CME_55_(w/_AUTOHAMM	IER) Landfill Evaluatio	n	LOCATION SEE	TEST BORING
PE OF BIT 4" AUGER	HAMMER DATA: WT. 140 LBS. DROP 30 1	NCHES SURFACE ELEVATION N		L DEPTH
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATER DEPTH		ATE AT DRILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones			
BACKFILLED:	SURFACE CONDITIONS Grass and Weeds			
(FEET)	LOG OF MATERIAL	BLOW COUNTS	SAMPLES	NOTES
	l, fine to medium grained, moist, light	t brown.	·····	
FILL CLAY,	with debris (newspaper, wood), mediu black, strong organic odor.	m stiff, 3 4 4		7' 0.010" SLOTTED
Possible FiLL or debris.	., sandy CLAY, stiff, moist, brown, no	odor 8 12 15		

	CT NO. 9292	- 1		PROJECT		L(DG	OF	BO	RIN	G					SHEET	2 。	F
CME	<u>55 (w</u>	AUTOHAMN			Lan	dfill							LOCATION	SEE	TES ATIO	ST BO	ORING	
	·······	4" AUGER)	AMMER D		140	BS. (ROP 30	INCHE	S SUR	FACE ATION	N/A		TOTAL OF H	. DEP	TH	31.5	
الد		07/15/05	<u> </u>	NG AGEN	CY S	pectrun	n Exp	loration	S S	ROUNDW. EPTH	ATER	2	0.8	DA	JE	AT [RILLIN	G
		07/15/05	LOCCE	D BY	R. Jo	ones		•										-
- BAL	CKFILLED:	T	Gras	s and	Weeds	5			<u> </u>	····			<u> </u>					
C LEET	SYMBOL			LOG	OF MA	ATERIAL					BLOW		LABORATORY SAMPLES		3471 319MAS	WELL	NOTE	s
		Possible Fi	ILL, sc (contir	ndy CL nued).	.AY, st	tiff, mo	pist, b	rown, r	no od	or	9 14		<u> </u>	<u></u>	2	-		
2		BEDROCK,	CLAYS	TONE,	mediu	m hord	, moi	st.		/	20				F			
3										/								
+	į																	
	Į																	
'																		
_																		
-																		
7																		
-					·													
-	ľ										-							
-																		
-																		
-			•															
		•																
]											·							


PR	ојест NO. 59292-1		<u> </u>	OG OF E	RORIN	G 14	w1	SHEET	1 OF 1
	LLING JIPMENT ME 55 (w/ AUTOH		PROJECT NAME	l Evaluation			1	E TEST B	
ΥP	E OF BIT 4" AUG		MMER DATA: WT. 140			FACE N/	, TO	TAL DEPTH	20.5
1	STARTED: 07/15/0		********	um Exploration	GROUNDW DEPTH			HOLE	
DATE	COMPLETED: 07/15/05	5 LOGGE		<u>enpieranon</u>	DEPTH		10.2	<u> </u>	DRILLING
	BACKFILLED:	SURFA	CE CONDITIONS s and Weeds	· · · · · · · · · · · · · · · · · · ·					
			s and weeds			1	 ≿		<u></u>
O DEPTH			LOG OF MATERIA	AL_		BLOW COUNTS	ABORATORY SAMPLES	SAMPLE TYPE WELL	NOTES
1		CLAY, witi	n some gravel, st	iff, moist, brown	n.	3 5 6		111111	1' STICK UP BENTONITE 20 20 20 20 20 20 20 20 20 20 20 20 20
14 - 15 - 17 - 17 - 17 - 17 - 17 - 18 - 17 - 17	BEDROCK to moist	(: CLAYST(, brown t	DNE, hard to very o gray.	hard, slightly r	noist	50	· ·		
س 0ی FN: L	.ogs	1 5 1	NFELD	r p	I	<u> </u>		<u> </u>	
			NELU.	L K					

PROJECT NO. 59292-1	LOG OF E	BORING	15		SHEET	1 OF
DRILLING EQUIPMENT CME 55 (w/ AUTOHAM			LOC	CATION SEE T	EST BO	 DRING _AN
YPE OF BIT 4" AUGER		ICHES SURFACI	N/A	TOTAL D	EPTH	41.5
STARTED: 07/15/05	DRILLING AGENCY Spectrum Exploration	GROUNDWATE	31.7	······································		RILLING
COMPLETED: 07/15/05	LOGGED BY R. Jones					
BACKFILLED:	SURFACE CONDITIONS Grass and Weeds					
o DEPTH (FEET) SYMBOL	LOG OF MATERIAL		BLOW COUNTS	SAMPLES	SAMPLE TYPE WELL	NOTES
1 - FILL, GRA 2 - FILL, GRA 4 - FILL, GRAVE	VEL, fine to coarse grained, medium den ht brown, no debris or odor.	nse, 45 7				1' STICK UP BENTONSTE

-

Billing, CME 55 (w/ AUTOHAMMER) Personance name Londfill Evaluation Londfill Evaluation Londfill Evaluation States 4" AUGER Maase bask with 140 Liss, prov 30 moles States N/A Tork, DEF/R 41.3 States 07/15/05 December 8, Jones States States States N/A Tork, DEF/R 41.3 States 0000 December 8, Jones States States States States N/A Tork, DEF/R 41.3 States Grass and Weeds End States <	PROJECT NO. 59292-1		LOG	OF BO	RING	15			SHEET	2 OF	2
Image: State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State W. 140 Liss Deep 30 modes State Display and State			PROJECT NAME				LOCATION	SEE TE	ST B		
Image: State of the second	YPE OF BIT 4	AUGER HA	MMER DATA: WT. 140 LBS.	DROP 30 INCHES	SURFAC	E N/	1	TOTAL DEF			÷
Contraction or/15/05 LOGOD Fr R. Jones MARKILLD: Stress and Weeds Contraction Stress and Weeds Stress LOG OF MATERIAL Stress and Weeds Stress FILL, GRAVEL; fine to coarse grained, with debria (aloss, paper, wood), medium dense, moist, light brown 3 Stress Continued). Stress	STARTED: 07/	15/05 DRILLIN	IG AGENCY Spectrum Ex	ploration G			i		1 TA		
ELD Orac LOC OF MATERIAL BUSING BUSIN	COMPLETED: 07/	15/05 LOGGET			Cr (1)				At L	MILLING	
FILL GRAVEL, fine to coorse grained, with debris (glioss, poper, wood), medium dense, moist, light brown (continued). BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. BEDROCK: CLAYSTONE, hard to very hard, slightly moist	BACKFILLED:	SURFAC	E CONDITIONS and Weeds								
FILL GRAVEL, fine to coorse grained, with debris (glioss, poper, wood), medium dense, moist, light brown (continued). BEDROCK: CLAYSTONE, hard to very hard, slightly moist to moist, brown to gray. BEDROCK: CLAYSTONE, hard to very hard, slightly moist	1 1	<u> </u>	LOG OF MATERIAL			BLOW COUNTS	ABORATORY SAMPLES	SAMPLE TYPE	TIJAM	NOTES	;
BEDROCK: CLAYSTONE, hard to very hard, slightly moist	31- 52- 53- 4- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5	nass, poper, wo	e to coarse grained, wi od), medium dense, m	th debris oist. light bro	wn	3				<u></u>	
BEDROCK: CLAYSTONE, hard to very hard, slightly moist	-10000										_
BEDROCK: CLAYSTONE, hard to very hard, slightly moist						-					
	BE	DROCK: CLAYSTO	NE, hard to very hard,	slightly mois	1 1	0					
			gray.		_/						
	-										
						ļ					
	- 1										
			·. ·								
											Í
									l		
	LOGS					_					╞

•

NATURAL GAS ANALYSIS

PROJECT NO. : COMPANY NAME : ACCOUNT NO. : PRODUCER : LEASE NO. NAME/DESCRIP :

SAMPLE TEMP. :

COMMENTS :

KLEINFELDER INC ANALYSIS DATE: JULY 22, 2005 SAMPLE DATE : TO: CYLINDER NO. : WATERMAN LANDFILL EVALUATION #59292

B-4 TAKEN @ 3:30 ***FIELD DATA*** SAMPLED BY RICKEY L JONES SAMPLE PRES. :

0507104

AMBIENT TEMP :: GRAVITY :

VAPOR PRES. :

ANALYSIS NO.:

61

JULY 20, 2005

COMPONENTS	NORM. MOLE%	GPM @ 14.65	GPM @
HELIUM	0.00	-	14.73
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.84	-	-
NITROGEN	25.36	. .	-
ĊO2	15.47	_	-
METHANE	58.33	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000
BTU @ 60 DEG F		14.65	
GROSS DRY REAL =		588.3	14.73
GROSS WET REAL =		_	591.5
		578.0	581.3
RELATIVE DENSITY (AIR=	-1 @14.696 PSIA 60F) :	0.8135	
COMPRESSIBILITY FACTO	R :	0.99823	

NOTE: REFERENCE GPA 2261(ASTM D1945), 2145, & 2172 CURRENT PUBLICATIONS

KLEINFELDER

APPENDIX C

Laboratory Data Sheets

NATURAL GAS ANALYSIS

PROJECT NO. : COMPANY NAME : ACCOUNT NO. : PRODUCER : LEASE NO. : NAME/DESCRIP :

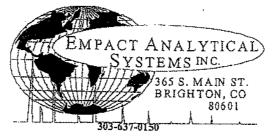
0507104 ANALYSIS NO. : KLEINFELDER INC ANALYSIS DATE: JULY 22, 2005 SAMPLE DATE : CYLINDER NO. : WATERMAN LANDFILL EVALUATION #59292

B-10 TAKEN @ 1:50

RICKEY L JONES

FIELD DATA SAMPLED BY : SAMPLE PRES. : SAMPLE TEMP. : COMMENTS :

AMBIENT TEMP .: GRAVITY : VAPOR PRES. :


TO:

02

JULY 20, 2005

000 000 000	NORM.	GPM @	GPM @
COMPONENTS	MOLE%	14.65	14.73
HELIUM	0.00	-	-
HYDROGEN	0.00		-
OXYGEN/ARGON	2.15		-
NITROGEN	31.19		
CO2	23.28		
METHANE	43.38	-	
ETHANE	.0.00	0.000	0.000
PRÓPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0:00	0.000	0.000
TOTAL	100.00	0.000	0.000
BTU @ 60 DEG F		14.65	14.73
GROSS DRY REAL =		437.6	440.0
GROSS WET REAL =		429.9	432.3
	, t.a.	469.9	432.3
RELATIVE DENSITY (AIR=1 @1	4.696 PSIA 60F) :	0.9203	
COMPRESSIBILITY FACTOR :		0.99817	

NOTE: REFERENCE GPA 2261(ASTM D1945), 2145, & 2172 CURRENT PUBLICATIONS

NATURAL GAS ANALYSIS

PROJECT NO. : COMPANY NAME : ACCOUNT NO. : PRODUCER : LEASE NO. : NAME/DESCRIP :

0507104 ANALYSIS NO. : KLEINFELDER INC ANALYSIS DATE: JULY 22, 2005 SAMPLE DATE : CYLINDER NO. : WATERMAN LANDFILL EVALUATION #59292 B-15 TAKEN @ 2:35

RICKEY L JONES

FIELD DATA SAMPLED BY : SAMPLE PRES. : SAMPLE TEMP. : COMMENTS :

AMBIENT TEMP .: GRAVITY : VAPOR PRES. :

03

TO:

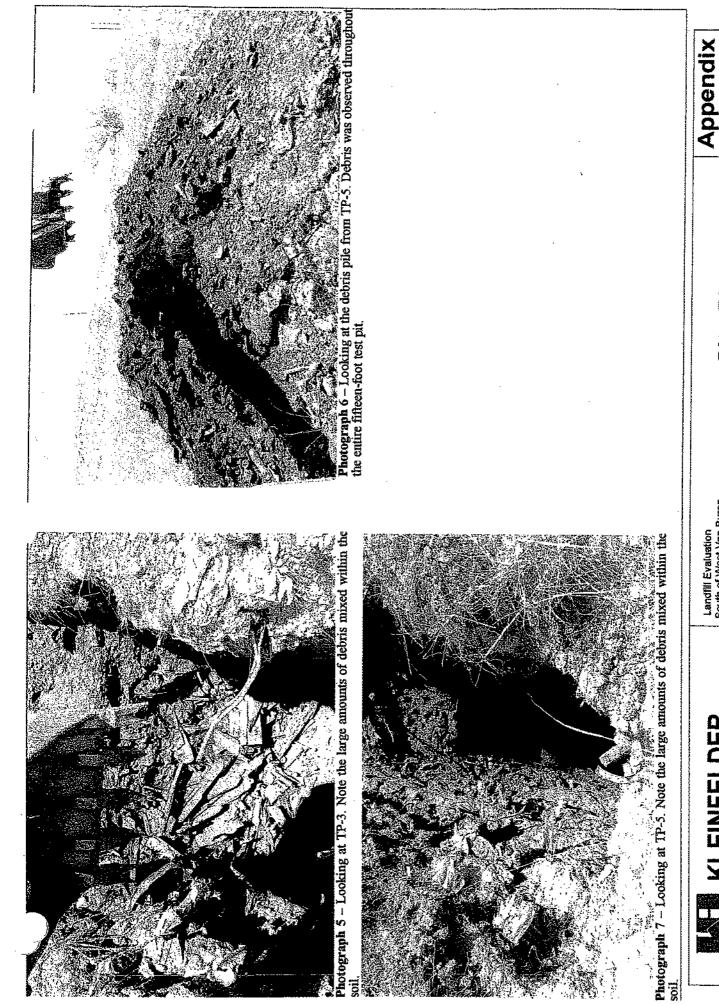
JULY 20, 2005

	NORM.	GPM @	GPM @
COMPONENTS	MOLE%	14.65	14.73
HELIUM	0.00		-
HYDROGEN	0.01	-	-
OXYGEN/ARGON	0.82	с. •	-
NITROGEN	28.05	- .	-
CO2 .	22.35	-	-
METHANE	48.77	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000
BTU @ 60 DEG F		14.65	14.73
GROSS DRY REAL =		492.0	494.7
GROSS WET REAL =		483.4	486.1
RELATIVE DENSITY (AIR	=1 @14.696 PSIA 60F) :	0.8909	

COMPRESSIBILITY FACTOR :

0.99811

NOTE: REFERENCE GPA 2261(ASTM D1945), 2145, & 2172 CURRENT PUBLICATIONS


KLEINFELDER

APPENDIX D

Site Photographs

-

Landfill Evaluation South of West Van Buren Colorado Springs, Colorado

Site Photographs

KLEINFELDER Project Number 59292-1

Appendix C Soil Boring Investigation November 2005

c

KLEINFELDER

November 30, 2005

Kleinfelder File No. 63249

Mr. Ted Waterman, President Waterman, Inc. P.O. Box 27560 Albuquerque, New Mexico 87125

Subject: Soil Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

Dear Mr. Waterman:

Kleinfelder is pleased to present the results of our soil boring investigation for the Mesa Valley Springs Property in Colorado Springs, Colorado (Subject Site). Our scope of work included the drilling and logging of three sets of soil borings, determining the depth to the top and bottom of the solid waste zone, performing groundwater measurements for each boring, recording the materials removed from the soil borings, and preparing a report presenting the results of the soil boring investigation.

SUMMARY

This investigation was conducted on a vacant parcel of land located at the Mesa Valley Springs Property in Colorado Springs, El Paso County, Colorado.

During this assessment the following tasks were completed:

- The completion of three sets of soil borings. Set 1 included three borings that were equally spaced at 150-foot intervals between Borings 14 and 15. Set 2 included three borings that were installed in a straight line, spaced at 200-feet intervals, in the vicinity of Boring 1 and Boring 4. Set 3 included three borings placed at 200-foot intervals from Boring 15 to Boring 2. These borings were placed as shown on the drawing provided to Kleinfelder.
- 2) Each boring was drilled beyond the bottom of the landfill and extended to a depth of at least three feet below the bottom of the landfill. Depths were determined for the top and bottom of the solid waste zone. All measurements were taken from the ground surface. Additionally, the depth to groundwater was measured for each boring, if encountered, during drilling operations.
- The materials removed from the soil borings were recorded. Solid waste that was encountered in each boring was classified as the following materials: (1) wood; (2) paper or paper products; (3) concrete; (4) metal; (5) lumber; (6) asphalt.

SCOPE

This soil boring investigation was conducted in general accordance with our proposal dated October 31, 2005. The purpose of this study was to conduct a soil boring investigation to record the depths of the existing landfill debris and to characterize the types of solid wastes observed. This study did not include investigating other environmental issues such as soil or groundwater contamination. This study included preparing a description of the materials observed in the borings based on visual observation only. No testing or other methods were utilized to describe the subsurface conditions.

SITE LOCATION & DESCRIPTION

The Subject Site is a vacant parcel encompassing approximately 48-acres of land, located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado. The Subject Site is generally located within the northwest ¼ of the southeast ¼ of Section 1, Township 13 South, and Range 67 West of the 6th PM. The El Paso County Assessor's parcel number is 7401200002. The Subject Site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the Site and the surrounding area slopes down to the south towards the intermittent stream that borders the Subject Site. The topography of the site is irregular, but is dominated in the northeast by a prominent ridge, in the central portion by a valley, in the northwest by a system of ridges. A drainage forms the westerly and southerly side boundaries.

FIELD INVESTIGATION

Prior to the commencement of field activities at the Subject Site, Kleinfelder prepared a Site-Specific Health and Safety Plan as required by Occupational Safety and Health Administration ("OSHA"), to inform our personnel of the potential hazards that may be encountered and the required procedures to protect worker health and safety. Also, as required by law, Kleinfelder coordinated with utility companies to locate buried utilities in the vicinity of the Subject Site.

Subsurface Investigation

On November 22 and November 23, 2005, Kleinfelder mobilized to the Subject Site with a trackmounted drilling rig equipped with 4-inch continuous flight augers to drill nine (9) subsurface borings (Set-1, Set-2, and Set-3) to delineate the depth of solid wastes and also to evaluate what type of wastes were present. A map indicating the location of the borings is presented as Figure 1.

All borings were drilled beyond the bottom of the landfill extending to a depth of at least three feet below the bottom of the landfill. Landfill depths are indicted on the individual boring logs, which are included in Appendix A. Samples of the subsurface materials were collected at 5-foot intervals and observed in the field to record the type of solid waste present (e.g.: wood, paper or paper products, concrete, metal, lumber or asphalt). The types of wastes observed are documented on the boring logs. Waste material observed in the landfill included solid wastes ranging mainly from wood, to organics, plastic, glass, rubber, metal, aluminum, galvanized wire, cloth, newspaper, and cardboard. Kleinfelder returned to the site on November 28, 2005 to measure the static water level in each boring.

Page 2 of 4

Table 1: Static Water Levels

Boring ID	Static Water Level (feet below grade)*
S1-1	24.5
<u>\$1-2</u>	26.4
S1-3	27.6
S2-1	12.9
\$2-2	14.7
<u>\$2-3</u> .	20.6
<u>\$3-1</u>	16.5
· \$3-2	DRY
S3-3	DRY

*DRY: No free groundwater was encountered during or immediately after drilling activities. Water levels shown above were measured 6 days after drilling.

FINDINGS

Nine (9) subsurface borings were drilled to delineate the depth of solid wastes and also to evaluate what type of wastes were present within the landfill. Boring 1 through 3 of Set 1 was located along the southern boundary of the property. Boring 1 through 3 of Set 2 was located in the northern portion of the Subject Site. Boring 1 through 3 of Set was located in the central portion. The findings of drilling and sampling activities are presented below in Table 2.

Boring	Top Depth of	Bottom Depth	Type of Wastes	Approximate	Northing/Easting
	Solid Waste	of Solid Waste	Observed	Elevation	(Based on Hand-
	Zone (feet	Zone (feet		(Ground	Held GPS)
	below grade)	below grade)		Surface)	
S1-1	21	29	Wood, Glass, Brick	6173'	1,376,182.713/
	*				3,187,162.646
S1-2	25	47	Glass, Wood,	6190'	1,376,242.324/
			Asphalt, Plastic,		3,187,011.935
			Styrofoam		
S1-3	20	32	Paper, Plastic, Metal,	61 87'	1,376,271.587/
			Glass, Wood		3,186,861.445
S2-1	0	17	Glass, Plastic, Metal,	6217'	1,377,152.672/
			Concrete, Brick,		3,186,989.535
			wood		
S2-2	0	20	Glass, Plastic, Wood,	6214'	1,377,000.586/
			Metal		3,186,943.180
S2-3	3	20	Plastic, Wood,	6216'	1,376,838.383/
			Galvanized Wire		3,186,896.896
S3-1			No Wastes	6202'	1,376,911.084/
					3,187,157.375
S3-2	2	9 1/2	Wood, Glass	6214'	1,376,648.805/
					3,187,262.094
S3-3	2	7 1/2	Glass, Wood, Plastic	6192'	1,376,395.670/
					3,187,232.289

Table 2: Findings

*--: No solid wastes were encountered during drilling or sampling activities

November 30, 2005

LIMITATIONS

The limited sampling performed during this investigation was performed to provide a general indication of the depth and characterization of solid wastes. Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of work on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of work was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report is beyond the scope of our work and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since such detailed services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

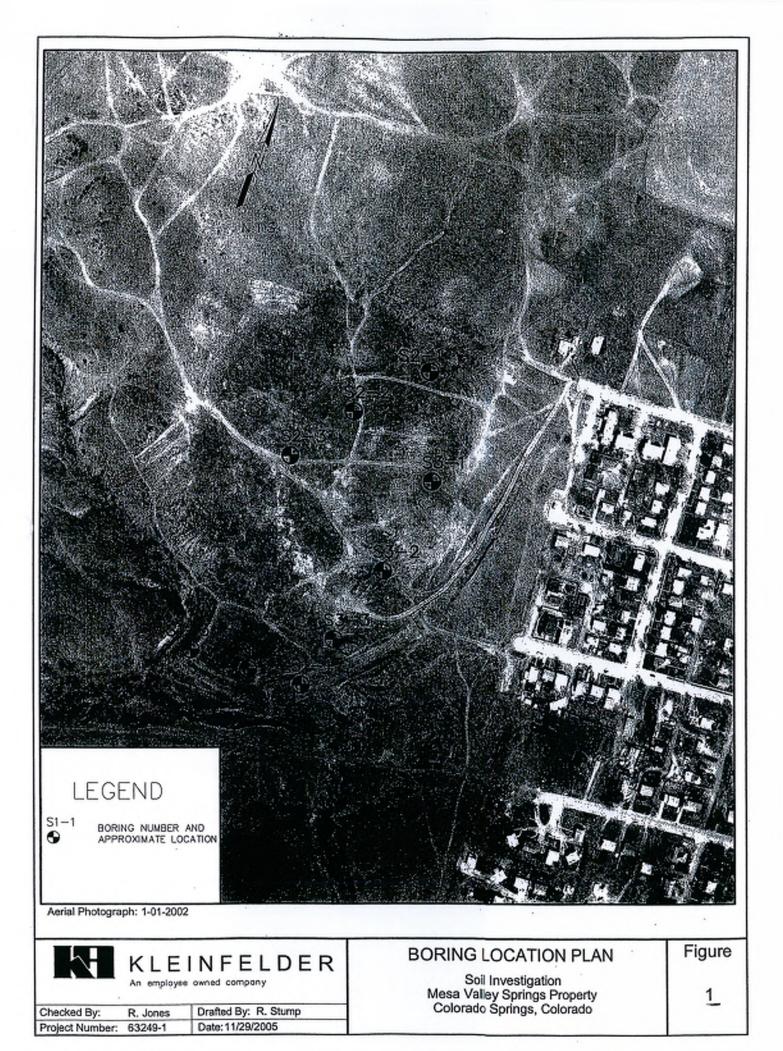
Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at (719) 632-3593.

Respectfully submitted,

KLEINFELDER, INC.


Rickey L. Jones / Environmental Scientist

William J. Barriere, P.E. Area Manager

RLJ:WJB

63249/CSP5R063 Copyright 2005 Kleinfelder, Inc. Page 4 of 4

November 30, 2005

LEGEND OF SYMBOLS USED ON BORING LOGS

LOG SYMBOLS

BULK / GRAB SAMPLE

MODIFIED CALIFORNIA SAMPLER (2.5 inch inside diameter)

SHELBY TUBE (3 inch outside diameter)

STANDARD PENETRATION SPLIT SPOON SAMPLER (2.0-inch O.D. X 1.4-inch I.D.)

BDBGM SIZE CORE BARREL (1.65-inch I.D.)

NX SIZE CORE BARREL (1.875-inch I.D.)

HQ-3 SIZE CORE BARREL (2.4-inch I.D.)

WATER LEVEL (level where first encountered)

WATER LEVEL ∇ (level after completion)

GENERAL NOTES

1. Lines separating strata on the logs represent approximate boundaries only. Actual transitions may be gradual,

- 2. No warranty is provided as to the continuity of soil or rock conditions between individual sample locations.
- 3. Logs represent general soil or rock conditions observed at the point of exploration on the date indicated.
- 4. In general, Unified Soil Classification designations presented on the logs were based on visual classification in the field and were modified where appropriate by visual classifications in the office, and/or laboratory gradation and index property testing.
- 5. NV = No Value; NA = Not Analyzed; NP = No Plasticity
- 6. Exp = percent expansion under defined surcharge pressure.
- 7. Com = Percent compression under defined surcharge pressure.
- 8. 50/X indicates number of blows required to drive the identified sampler X inches with a 140 lb hammer falling 30 inches.

Project Number:

63249-1

USCS SYMBOI	SOIL DESCRIPTIONS
GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
C GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES WITH LITTLE OR NO FINES
GM GM	SILTY GRAVELS, GRAVEL-SILT-SAND MIXTURES
GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
sw	WELL-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES
SP	POORLY-GRADED SANDS, SAND-GRAVEL MIXTURES WITH LITTLE OR NO FINES
SM	SILTY SANDS, SAND-GRAVEL-SILT MIXTURES
SC	CLAYEY SANDS, SAND-GRAVEL-CLAY MIXTURES
ML	INORGANIC SILTS & VERY FINE SANDS, SILTY OR CLAYEY FINE SANDS, CLAYEY SILTS WITH SLIGHT PLASTICITY
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	INTEBEDDED SANDSTONE/CLAYSTONE
井 -	LIMESTONE
	CLAYSTONE
	SHALE
	SANDSTONE
-	LANDFILL REFUSE
	FILL

Note: Fine grained soils that plot within the hatched area on the Plasticity Chart, and coarse grained soils with between 5% and 12% passing the No. 200 sieve require dual USCS symbols, ie., GW-GM, GP-GM, GW-GC, GP-GC, GC-GM, SW-SM, SP-SM, SW-SC, SP-SC, SC-SM.

KLEINFELDER

BORING LOG LEGEND

Soil Investigation Mesa Valley Springs Property Colorado Springs, Colorado

GEO LEGEND 63249-

Date:

Copyright Kleinfelder, Inc. 2005

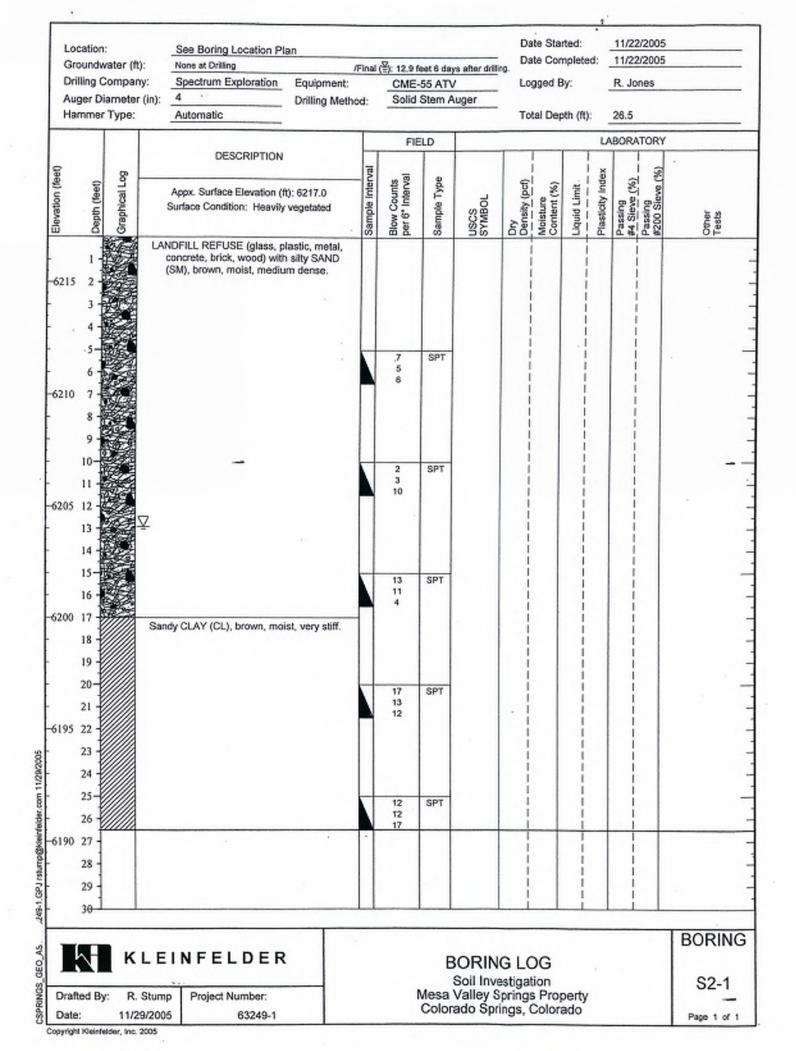
Drafted By:

11/29/2005

R. Stump

	cation	n: water (ft)	e.	See Boring None at Drilling			(Cinct	S. area		-	-	te Star te Con		id:		2/2005	
		Company		Spectrum E	and the second se	Equipment:	/Final	E): 24.51 CME.	55 ATV	s after drilling	Loc	ged B	w.		R. Jo	nes	
		iameter		4		Drilling Meth			Stem A		201	idea e			10.00	100	
	-	r Type:	1	Automatic		orning men	100.		otomire	agor	Tot	al Dep	th (ft)	c	35.5		
-							-	CIC	LD					-	BORA	TORY	,
				DES	SCRIPTION		h		T		1				T		
(100	~	8							0		e	-		dex		(%)	
Elevanon (1961)	Depth (feet)	Graphical Log		Appx. Surface Surface Conditi			Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	assing 4 Sieve (%	Passing #200 Sieve (%)	Other Tests
6170	1 -			L: Sandy CLA\ stiff.	(CL), brow	n, moist,	0		5	<u> </u>		20		<u>a</u> .	0. *	0. 10	
5165	5- 6- 7- 8- 9-							5 7 6	SPT								
\$160	10- 11- 12- 13-				-			5 7 8	SPT								-
5155	14 - 15 - 16 - 17 - 18 -							7 7 9	SPT								
	19 - 20 - 21 -							4	SPT								
6150	22		W	IDFILL REFUS with silty SAND wiff.	E (wood, gla (SM), brown	ass, brick) n, moist,		6									
	25-		-					3	SPT				1		1		
6145	26 - 27 - 28 - 29 - 30						-	5									
						-							-				BORING
		-		INFEL						ORINO Soil Inves Valley Sp ado Sprir							S1-1
	fted B	-	Stump						Colora	ado Sprin	nas (Color	ado				-
Date		11/25 felder, Inc. 3	9/2006	•	63249-1												Page 1 of 2

					FIE	LD				Ū.	BORA	TORY	
Elevation (feet)	Depth (feet)	Graphical Log	DESCRIPTION	Sample Interval	Blow Counts per 6° Interval	Sample Type	USCS	Dry Density (pcf) Moisture	Content (%)	Plasticity Index	Passing #4 Sleve (%)	Passing #200 Sieve (%)	Other Tests
-6140	31 - 32 - 33 - 34 -		CLAYSTONE BEDROCK: gray, moist to slightly moist, medium hard to very hard.(continued)		8 12 20	SPT							
-	35-				50/3	SPT		1		1			-
-	36 -									-			-
-	37 -	-								1			-
-6135	-									1			-
	39 -												-
	40 -									1			
	41 -									1			-
	42 -									1			-
6130	44									1			-
	45		-							1			
	46 -									i			-
_	47 -									i			-
-6125	-				•					i i	1		-
_	49 -									1			- 1
-	50 -									1			_
-	51 -									1			-
-	52 -									1			-
-6120	53 -												
-	54 -									1			1.1
	55 -									į.			
	56 -									i i			
Ī	57 -									i i			
-6115	58 -									i			
	60 -							1		İ			
-	61 -							I		-			
-	62 -			1						1			_
-6110										1			-
ŀ	64 -	1								1			
	5	ĸ	LEINFELDER			E	BORIN	IG LO	G				BORING
Dra	fted E	By: R.	Stump Project Number:			Mesa	Soil Inv Valley	vestigation Springs prings, Co	Prope	rty			S1-1
Dat	-	11/2 felder, Inc.	29/2005 63249-1			50101	and ob						Page 2 of 2


Location:		See Boring Location Pla		·	7			Da	te Star te Con		-		2/2005 2/2005	
Groundwate		None at Drilling		Final (s after drilling	þ.	gged 8		-	R. Jo	nec	
Drilling Con		Spectrum Exploration	Equipment:			55 ATV		τų	añen o	·y.	-	11.00		
Auger Diam			Drilling Meth	30.	DING	Stem A	uyaı	Tot	tal Dep)th (ft)	:	50.0		
Hammer Ty	γρε. 	Automatic		<u></u>							-			
					FIE	LD				F	LA	BORA	TORY	
_		DESCRIPTION		-					t ł		×		1	
	<u>وم</u>	-		-lerve	nts Tval	be		চি	- -	=	nde	(%	6	
Depth (feet)	Graphical Log	Appx. Surface Elevation (f		Sampie Interval	Blow Counts per 6* interval	Sample Type	ರ	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	be as	Passing #200 Sieve (%)	•
pth th	hda	Surface Condition: Heavily	*cyclaleu	dwe	ow (Idua	USCS SYMBOL	ער ensi	onte	quid	lasti	assi 1 Sig	assi 200	Other Tests
		11. Olky CANICI (CRA) - Can to		10	፴፝፞ፚ	ļ. iš	56	۵۵	20		<u>a</u> .	<u> 0 #</u>	0.#	<u></u>
ı	888 ^{FI}	LL: Silty SAND (SM), fine to grained, brown, moist, me	dium dense.											
, 🗱	***	-							1					
2 -	***							1						-
3 -	***													
4 -	***							l			-			-
5t85 5						SPT		i			•		I	
. 188	888 - E				7 7	1 371		ļ	1					-
°]₩	***			P	7								i	-
7 🗱	***							l						
8 🗱	FI	LL: Sandy CLAY (CL), brow	vn, moist, stiff	-				ļ			-			-
9 - 🎆		to very stiff.												
5180 10- 188	***				~~~~~	SPT							+	
11-000	***			M	3 5	581		l						
-888	***				5									-
t2 -	***													-
t3 -	***										•		i l	-
14 -	***								1					
5175 15-	***								1					-
-888	***				3 7	SPT		i	1 					
16 - 288					9				ŀ					-
t7 -									ł 		ł) {	
t8 -	***								} #		} •			
19 -						1			i I					
6170 20- 8									1		1			
					6 8	SPT					1			
21 -					9				1 		ı ŀ			
22 -	***					1			1		1	1		
23 -									•		1			
24 - 88	***								1		1			-
-88									ł		ł			
6165 25-22	L L	ANDFILL REFUSE (glass, w	vood, asphait,		4 6	SPT			1		1 }		i	
26 -	¥ ∑	plaslic, styrofoam) with sit (SM), brown, moist, loose	to medium		6				1		1			_
27 -		dense.	•			ł			1		1			
28							1		ł		1 			
29									i		İ			-
									۱ ا		۱ ۱	<u> </u>		······································
6160 3 0 - 10	K.I.	······································												
···········														BORING
	KI	EINFELDEF	२				BORIN	GI	ററ					
	a V. Nue		-	_										S1-2
Drafted By:	R. Stu	Imp Project Number:		-		Mesa	Soil Inve Valley S prado Spr	Sprind	gs Pr	орег	ty			
-	11/29/2					Cold	orado Spr	ings,	Cold	srado	Ś			Page 1 of 2
Date:	11/29/2	5	l											

					FIE	ELD					LA	BORA	TORY	
Elevation (feet)	Depth (feet)	Graphical Log	DESCRIPTION	Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other Tests
	31 - 32 - 33 - 34 -		LANDFILL REFUSE (glass, wood, asphalt, plastic, styrofoam) with silty SAND (SM), brown, moist, loose to medium dense.(continued)		1 2 3	SPT								
6155	35- 36- 37- 38-				2 2 4	SPT								
6150	39 - 40 - 41 - 42 - 43 -		-		3 4 5	SPT								
6145	46 -		FILL: Silty SAND (SM), brown, moist.		11 13 17	SPT								-
6140	48 - 49 - 50 - 51 - 52 -													
6 135	53 - 54 -													
-6130	57 - 58 - 59 - 60 -													
	61 62 63 64													
		к	LEINFELDER			E	BORIN	IG LC	DG					BORIN
Date		-	. Stump Project Number: 29/2005 63249-1			Mesa Color	Soil Inv Valley S rado Sp	estigal Springs rings, (tion s Pro Color	pert	y			S1-2 Page 2 of 2

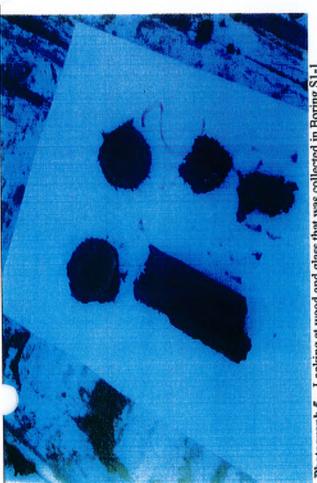
÷

	ation undv	: vater (ft):	See Boring Location I None at Drilling		/Final -	27 84	nat 6 day	s after drillin	-	te Star te Con		sd:		2/2005	
		ompany	which are an end of the second s	Equipment:			55 ATV		Log	ged B	y:		R. Jo	nes	
		ameter (Drilling Meth	od:		Stem A	and the second se							
		Type:	Automatic			1			Tot	al Dep	th (ft)):	36.5		
		Т			T	CIC	LD					1.4	BORA	TORY	
			DESCRIPTIO	N	H	FIE	1				-		I	T	
â					8	=						1 8		1 8	
(je	(19	3 [Appx. Surface Elevation	(m: 6187.0	- 18	erva)ype		bc.	(%)	븉	2	8		
ation	h (fe	hici	Surface Condition: Heavi		8	8 특	ble	BO	ŧ.	ture	P	dotty -	Bring	58	1 40
Elevation (feet)	Depth (feet)	Graphical Log			Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	2 g	Moisture Content (%)	Liquid Limit	Plasticity Index	Pass M S	Passing #200 Sieve (%)	Other Tests
	-		FILL: Silty SAND (SM), med	lium to coarse	11				00						
	1		grained, brown, moist, m	edium dense.					i						
-6185	2														
	2.1														
	1								i					i	
	4 -														
	5-				H	7	SPT		i						-
	6-				N	9					1				
6180	7				Π						I				
	8										i				
	-														
	91								- 1		į		i		
	10-		-		H	4	SPT				ł				
	11					5			1		1				
6175	12					0			1		i				
0110															
	13 -								1		i		1		
	14 -								1		ł				
	15-				H	6	SPT		1		1				_
	16					6			i		i				
6170	17					0									
0110	. 1								1		1				
	18								i		i				
	19														
	20-		LANDFILL REFUSE (paper,	plastic metal	+	3	SPT		i		į				-
	21		glass) with silty SAND (S	M), brown,	N	3			. 1		ł				
-6165	22		moist, loose.						1		1				
0105	1								i		i				
	23 -														
	24								1		1				
	25-				H	3	SPT		i		i				-
	26				N	3									
-6160	27				·	9			i		i				
0100	-	Star S	4								1				
	28 -										I				
	29 -								i		1				
	30	1000					1								
															BORING
			EINCELDE				_								BURING
		ĸ	LEINFELDE					BORIN							
							Maaa	Soil Inve Valley S	estiga	tion	nort				S1-3
	ed B	-	Stump Project Number:				Color	rado Spr	inas	Color	pert	У			-
Date		11/29 elder, Inc. 2	/2005 63249-1				20101	and obt							Page 1 of 2

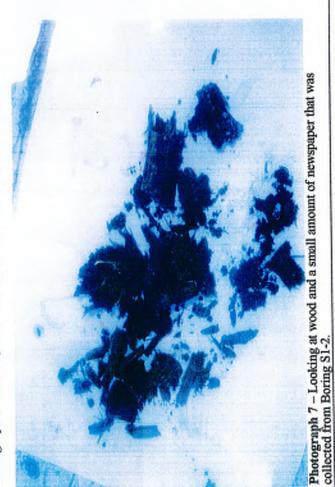
				DESCRIPTIO	NC	L	FIE	LD					LA	BORATORY	
Elevation (feet)	Depth (feet)	Graphical Log				Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sleve (%) Passing #200 Sieve (%)	Other Tests
-6155	31 -		glass	LL REFUSE (pape) with silty SAND (, loose.(continued)	(SM), brown,	N	2 3 4	SPT							
0133	33 -		Sandy C very s	LAY (CL), brown t stiff.	to gray, moist,									-	
	34 -														
	35-						7 10 16	SPT							
6150		-					10								
	38 -									1		i		İ	
	39 -		÷									1		-	
	40 -											1			
6145	41 -											1			
6145	42 -											i		1	
	44 -											I		1	
	45 -			-								1			-
	46 -											1		.	
6140	47 -											i		i	
	48 -											-		+	
	49 -											1			
	51 -											i			
-6135	52 -											i		i	
	53 -											1		1	
	54														
	55 -											i			
-6130	56 -									i		i		i	
	58 -														
-	59 -														
-6125	60 -											i			
-	61 -											i			
-6125														1	
E	63 64]													
	04	<u> </u>													
	6			NFELDE	P						~~~				BORIN
-		-						Mesa	Soil Inv Valley rado Sp	estiga Spring	tion s Pro	Dert	v		S1-3
Dra	fted i e:	-	29/2005	Project Number: 63249				Colo	rado Sp	rings,	Color	rado	,		Page 2 of

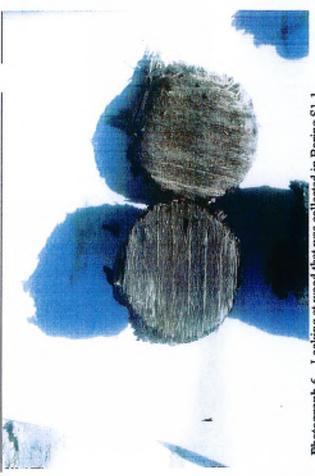
Location:	See Boring Location Plan						e Star		-		2/2005	
Groundwater (ft):	None at Drilling	/Fina	I ([¥]): 14.7 f	et 6 day	s alter drillin	g.	e Con		-		2/2005	
Drilling Company:	Spectrum Exploration Equip		CME-	55 ATV	í		ged B	iy:	-	R. Jo	nes	
Auger Diameter (in):		Method:	Sołid	Stem A	uger	- -	-1 P -			90 F		
Hammer Type:	Automatic	<u> </u>				f ota	al Dep	XFI (11)	-	26.5		
			FIE	10		1		F	LA i	BOR/		
0	DESCRIPTION		_						×		(%)	
(feet	Appx. Surface Elevation (ft): 6214.	2	eral	ype		ନୁ	(%)	Ħ	- pu	(%)	k v	
Elevation (feet) Depth (feet) Graphical Log	Appx: Surface Elevation (n): 62 (4.) Surface Condition: Heavily vegetate	ed a	Life Cou	te T	gu		ent (d Lir	ficity	ing	Sie	ه مر
Elevation (feet) Depth (feet) Graphicat Log	·····	Sample Interva	Biow Counts per 6° Interval	Sampte Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve	Passing #200 Sie	Other Taets
	NDFILL REFUSE (glass, plastic, w	ood,	<u> </u>			<u></u> +			† 		1	
	metal) with silty SAND (SM), brown moist, very loose to medium dense	n,							 ;			
2	moist, very loose to medium defise								ŀ			
						t +			‡ 			
									•		1	
-6210 4 -									} \$			
5-			2	SPT					ļ			
6			1) 			
7									‡ ∎			
							-		ţ			
8 8 9 9 9 9									; ;			
-6205 9									 			
10-	- 7	-	3	SPT					} {			
· il			4			ļ			i 1		!	
			7						1 			
12 -						1						
13									1			
-6200 14 -									ł			
- 15-15-1 <u>×</u>			1	SPT					1			
16			3						1			
			4						1			
									Ì		i	
18									1 			
6195 19									1		1	
20				SPT	-				1			
	andy CLAY (CL), brown, moist, med stiff to hard.	an na	4	071					1	l		
21	years and ready and		3						ĺ			
22 -									1			
- 23 -									ĺ	ł		
-6190 24 -		-					ļ		1			
25		F		SPT	-		1		l I			
			12 28	1 281					1		1	
26		·	35	<u> </u>		1	<u> </u>	+	<u>†</u>	-	++	
- 27 -		· · · · · · · · · · · · · · · · · · ·							1		1	
- 28 -							I I		1			
-6185 29 -		·					ŧ		ļ.			
					<u> </u>	I	L			<u> </u>	1	
-6190 24 - 25 - 26 - 27 - 28 - -6185 29 - 30 -							<u></u>					
												BOF
	EINFELDER				BORIN	IG I	OG					
												S
		1			000 000	(ESHO)						1 . 7.
Drafted By: R. Stu Date: 11/29/2	mp Project Number:	-		Mesa	Soil Inv Vailey brado Sp	Sprind	js Pr	oper	ty			

Location: Groundwater (ft):				the second second second second second second second second second second second second second second second s	g Location PI			Det	e Star e Con		-	11/22/					
				None at Drill			/Final	Ex 20.6 f	p					Jones			
		Company		Spectrum	Exploration	Equipment:							y: -	es			
	-	liameter		4		Drilling Meth	thod: Solid Stem Auger					Total Depth (ft): 26.5					
Har	mme	r Type:	-	Automatic							Tota	al Dep	th (ft)	-	26.5		
								FIE	LD					LA	BORAT	ORY	
				D	ESCRIPTION		h		T								
98()		8					2		0					3ex		8	
6	Bel)	12	4	Appx. Surfa	ce Elevation (f	0: 6216.0	물	terv t	1 Å		<u>B</u> i	. S	Ť	n l	9	38	
atio	5	울	S	urface Cond	dition: Heavily	vegetated	용	85	ble	80 BO	2	ent ture	P	E.	B al	Sugar Control	1 1
Elevation (feet)	Cepth (feet)	Graphical Log					Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Nois	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	288	Other Tests
			FILL:	Sity SAN	O (SM), brown	n, moist.		wa		50		20	-		66 WE	0. 46	
-6215	1.				1. 1.						l i		i		i		-
L	2.																
	-										1		1		l i		
t	3 -	623	LANE	DFILL REF	USE (plastic,	wood, wire)	11		ŀ I				1				
-	4 -		wi	ith silty SAM	VD (SM), brow	vn, moist,					1		i		l i		-
	5-		100	ose to med	lium dense.		H										_
1010							7	SPT		1		i		1			
-6210	0 -					8			1		1						
-	7 -										i		i		1		-
-	8 -												-				-
	0.								1		i		i		i		_
		200															
t	10-	100			-			1	SPT		i		i		i		
-6205	11 -							23									-
1	12 -										i		1		i		-
		D a											- 1				
ſ	13 -										1		i		i		
-	14 -												- 1				-
-	15-						H	7	SPT		1		1		1		-
-6200	16 -	660						4					- 1				
0200								4			1		1		1		
t i	17 -												- 1				
-	18 -	5 a -									1		1		1		-
-	19 -										i		i				-
	20-										1		1				_
			Sand	y CLAY (C	L), brown, mo	vist, stiff to		2 4	SPT		i		i		l i		
-6195	21 -		Ve	ery stiff.				4			1						
-	22 -										i		1		1		-
	23 -																-
	24 -										1		į				
t i	25-							10	SPT		1		1		1		
-6190	26 -						N	10 10					1				
F	27 -	-											1				
-6190	28 -												i		1		
F													1		1		
t	29 -	1									i		i		l i		
ŀ	30-														<u> </u>		
-																	PODINC
																	BORING
	\sim	ĸ	LE	INFE	LDEF	<				BORIN							
	_	_								Soil Inve	estigat	tion					S2-3
Draf	ted E	By: R.	Stump	Projec	t Number:				Mesa	Soil Inve Valley S rado Spr	prings	s Pro	pert	y			-
Date	e:	11/2	9/2005	5	63249-1				000	auto opr	ings, t	50101	auo				Page 1 of 1


copyright Kleinfelder, Inc. 2005

Loca			See Boring Location Pla	the second second second second second second second second second second second second second second second s	Date	e Star		11/22/2005						
		vater (ft):	None at Drilling Spectrum Exploration	Equipment:	Final	CME-	s after drilling	2	ged B					
		company:				Solid :		2030	,					
		ameter (i Type:	n): 4 Automatic	Drilling Metho	o:	5010	Juliin A	9901	Tota	l Dep	th (ft)		21.5	
nam	11180	Type.	nutration		-							-		,
						FIE	LD					LA	BORATORY	
~			DESCRIPTION		-						1	×	1 3	
Elevation (feet)		8			Sample Interval	Blow Counts per 6" Interval	8		6	3		Plasticity Index	Passing #4 Sieve (%) Passing #200 Sieve (%)	
u C	Depth (feet)	Graphical Log	Appx, Surface Elevation (f		1 L	nter	Sample Type	đ	Dry Density (pcf)	13	Liquid Limit	th	De la pais	
uati	oth	ind	Surface Condition: Heavily	vegetated	du	.e.	du	USCS	rest	diet u	Pin I	astic	SSI SSI	Other Tests
8	ő	g			Sa	per	Sa	SVIS	68	ž°	3	đ	5 4 C 4	õ₽
	-		FILL: Silty SAND (SM), brown	, moist,					i		i			
	17		medium dense.								1			
6200	2-								1		i			
	31										ł			
	1						-		i		i			
	41								1					
	5-		Sandy CLAY (CL), brown, mo	ist very stiff		5	SPT		i		i		1	-
	61		to hard.	and they been		7			1					
(10-	. 1					6			i		i			
6195	1								-					
	8 -								i		i		i	
	91				ŀ				1					
									i		i		i	
	10-		-			9	SPT		!		1		1	_
	11-				N	14			i i		i		i	
6190	12								!		1			
	-													
	13 -								1		1			
	14								i i					
	15-				H	10	SPT		1		I			-
	16 -					14	J							
	10 -		7		H	17			1		i			
6185	17 -								1					
	18 -								i		i			
	19										1			
									i		į			
1	20-					11	SPT							
	21 -					12 14			. 1					
-6180	22 -				1									
									1					
	23 -													
	24 -								1					
	25 -	1												
									i					
	26 -				1.									
-6175	27 -								1			1	1	
-	28 -													
									1			i i	1	
	29 -													
-	30				-									
														BORING
	\mathbf{X}	ĸ	LEINFELDEF	`				BORIN						
	_							Soil Inve	estiga	tion				S3-1
Draf	ted E	By: R.	Stump Project Number:				Mesa	Soil Inve Valley S rado Spr	pring	s Pro	oper	y		-
1			9/2005 63249-1								- and 1101			Page 1 of 1


		<u>.</u>				1								Da	te Sta	rted:		11/22	2/2005	5	
	Location: See Boring Groundwater (ft): None at Driff					oring Location Plan Drilling //Final (≅): None feet 6 days after drilli									Date Completed: 11/22/2005						
- ł					ectrum Exploration Equipm										gged E						
Aug	Auger Diameter (in): 4 Drill						ing Meth	ng Method: Solid Stem Auger													
Hai	Hammer Type: <u>Automatic</u>											To	tal Dep	oth (ft) ~~~):	16.0		·			
ŀ				, <u> </u>							FI	ELD					ĹA	/			
				· 1		DESCRIPTION				al					ł		×		 (3		
(feet	Ş	16		Аррх. S	` 					Iterv	nts erval	ype		6	%	펄	Plasticity Index	8	ve (%)		
ation	h (fe	hicat		Surface						ple Ir		Ple T	BOL	ity (I	ent (q	ticity	ing ieve	Sie	μw	
Elevation (feet)	Depth (feet)	Graphicat Log								Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS SYMBOL	Dens	Moisture Content (%)	Liquid Limit	Plas	Pass #4 S	Passing	Other Tests	
	1 -		v	IDFILL (vith silty rery (oos	SAN	SE (M D (SM	vood, (1), brov	jiass, r wn, mo	ubber) list,						 		 { 		† 10 - 1 - 1 - -		
- -	2 -																 		 	-	
-6210	4 -																1			-	
ł	5-										3	SPT					 			-	
1	6 -										2 1					l	 			-	
t.	7 -																1				
ł	8-																			-	
-6205	9-			· · · · · · · · · · · · · · · · · · ·					····.												
ŀ	10-			dy CLA o hard.	Y (CL)), <u>br</u> ov	vn, mo	oist, ve	ry stiff		6	SPT				1					
ł	11-		••								12 17					·				-	
ŀ	12 -																			-	
ť	13 -															1				_	
-6200	14 -																			-	
F	15-										50	SPT				1					
ŀ	16								,		11			i		 					
ł	17															1				-	
ŀ	18 -																			-	
-6195	t9 -																			-	
ŀ	20 -																				
	21 -																ŀ			-	
-	22 -																				
1	23 -																l			-	
2 8 -6190	24 -																 				
E I	25 -																1 -				
Ider.c	26 -																ł			-	
Kleinfe	27 -																ł			-	
	28 -														- 		 \$			-	
문 국 - 6185																	, { :			-	
249-1.5PJ rstump@rtisrifeidar.com 11/29/2005	30	<u>t</u> l										<u> </u>			 				1 		
× [-					. <u> </u>														BORING	
GEO_AS	KLEINFELDER								BORING LOG												
											Mesa	Soil Inv Vallev	vestiga Sprinc	ation Is Pro	pert	v			·\$3-2		
<u></u>	Date: 11/29/2005 63249-1								Soil Investigation Mesa Valley Springs Property Colorado Springs, Colorado										Page 1 of 1		
		teider, inc									<u>.</u>										


	ation		ι.			Locatio	on Pla	n		友				Do	te Star te Con				/2005 /2005	
		ater (ft)		None a				Equineral	/Final (목): None feet 6 days after drilling nent: CME-55 ATV					g.	Logged By: R. Jones					
			Equipment				_	uger	201	,900 0	. .									
-		ameter Type:	(iu):	Autom	natic	• •. .	·	Drilling Me	0100				-3-1	Tot	al Dep	oth (ft)	:	15.0		
		· , po.																-	TORY	
					ne	SCRIPI	TION.			F	IELD						<u>с</u> А			<u>. </u>
ê		~			UE:	JUNIC			le I	_							X	_	. %	
Elevation (leet)	ef)	l Loç		Δnnv 9	Surface	- Flower	tion (ft)	: 6192.0	nten	ints erva) ype		bci)	(%)	mit	lnd,	(%)	ve (
LIOU	j (fe	hica						vegetated	le le	្ល័ ដឹ		ple	80 BO) Xiiy	ent	q Li	ticity	ing ieve	Sing (<u>ت</u>
iev.	Depth (feet)	Graphical Log					-		Sample Interval	Blow Counts per 6" Interval		Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Pas: #4 S	Passing #200 Sieve (%)	Other Tests
<u>لم</u>	_ <u></u>	S/SA	LA	NDFILL	REFU	ISE (gla	ass, wo	ood, plastic)	i	الت يتيه							 	F		
	1 -			with silty medium	/ SAN	D (SM)	, brow	n, moist,						Ì						
6190	2 -			neuun	9219									1						
	3 -							•												
												•		l						
]																			
	5-									7		SPT				l	l I		[[
	6 -									9				ļ			1			
6185	7 -													ļ					t I	
	8 -		Sa	ndy CLA	Y (CL), brow	n to gr	ay, moist,						ļ			1			
	9 -			very stiff	i lo ha	BCI.														
	10-																			
	-									12 17	1	SPT								
	11 -									21				l						
6180	12 -																			
	13 -													1						
	14 -													. 4						
	15-																	_		
	16 -								ļ								ł			
	-															·	 		1	
6175	-										Į						ţ •			
	18 -																1			
	19 -														ŧ 		1			
	20 -							_							1		t F			
	21 -							-									l		1	
-6170	22 -														1 	1	1		t t	
	23 ·														t 1		1			
													1				ļ		į	
	24 -]												1	1		ł		Г 	
-	25 -	1												ļ	ł		1		 	
	26 ·	-								1					, , ,		1		1	
-6165	27 -	-													1		1 		1	
-	28 ·														1 t		1		1	
-	29 -	1													1		1		1	
		1	_							<u> </u>			<u> </u>	1	i 1	<u> </u>	۱ ا	L	! 	1
	3 0 -	••••••••••••••••••••••••••••••••••••••	-, 										<u></u>							·
								1												BORI
	2	ĸ		EIN	FΕ	LD	EF	2				ł	BORIN	IG L	OG					
																				S3-
Draf	ted f	By: F	t. Stu	mp F	rojec	t Numb	er:				N	lesa	Soli Inv Valley S prado Sp	Sprin	gs Pr	oper	ty			
Date	<u>.</u>	11	29/20	005		632	249-1				(-010	rado Sp	ungs	COIC	rado	J			Page 1

Photograph 5 - Looking at wood and glass that was collected in Boring S1-1

Photograph 6 - Looking at wood that was collected in Boring S1-1.

Soil Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

m

Site Photographs

Photograph 12 - Looking at wood and brick fragments that were collected in Bo S2-1.

Soil Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

KLEINFELDER Z

Photograph 11 - Looking at glass and metal that were collected in Boring S2-1.

Photos Taken November 22 & 23, 2005

Project Number 63249

Site Photographs

Appendix m

Photograph 13 - Looking at a large piece of cloth that was wrapped around the auger in Boring S2-2.

Photograph 15 – Looking at soil that was collected in Boring S2-2.Note the black discoloration of the soil. The black soil was found within the landfill material.

Photograph 14 – Looking at small pieces of glass, wood, and plastic that was collected in Boring S2-2.

Soll Boring Investigation Mesa Valley Springs Property Colorado Springs, Colorado

Photos Taken November 22 & 23, 2005

Project Number 63249

KLEINFELDER

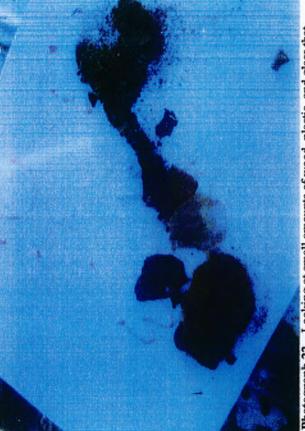
ł

Appendis

00

Site Photographs

Photograph 21 -Looking at soil cuttings from Boring S3-2. Note that there was no waste material collected in this boring. The entire sampling format was clean.


Photograph 23 -Looking at small amounts of wood, plastic, and glass that were collected in Boring S3-3.

Site Photographs

Appendi B

> Soll Boring investigation Mesa Valley Springs Property Colorado Springs, Colorado

Photograph 22 – Looking at small amounts of wood, plastic, and glass that were collected in Boring S3-3.

Appendix D Groundwater Sampling and Methane Monitoring Report April 2006

KLEINFELDER

GROUNDWATER SAMPLING & METHANE GAS MONITORING MESA VALLEY SPRINGS PROPERTY WEST VAN BUREN STREET COLORADO SPRINGS, COLORADO

3 April 2006

Copyright 2006 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited by anyone other than the client for the specific project.

KLEINFELDER

April 3, 2006

Kleinfelder File No. 66511-1

Mr. Ted Waterman, President Waterman, Inc. P.O. Box 27560 Albuquerque, New Mexico 87125

Subject: Groundwater Sampling & Methane Gas Monitoring Mesa Valley Springs Property West Van Buren Street Colorado Springs, Colorado

Dear Mr. Waterman:

Kleinfelder is pleased to present the results of our groundwater sampling and methane monitoring investigation for the above referenced property located south of West Van Buren Street in Colorado Springs, Colorado (Figure 1). This report presents the results of our investigation including analytical data.

SUMMARY

This investigation was conducted on a vacant parcel of land located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado.

During this assessment the following tasks were completed:

- Subsurface drilling;
- · Installation of two groundwater monitoring wells;
- . Laboratory Analysis of groundwater samples;
- Installation of four methane gas monitoring wells; and,
- Screening for methane gas.

<u>SCOPE</u>

This investigation was conducted in general accordance with our proposal dated February 20, 2006. The purpose of this investigation was to collect groundwater samples from two separate locations and have the samples analyzed to determine if groundwater is contaminated and to monitor methane levels from four separate locations to evaluate if the methane is migrating beyond the perimeter of the landfill at these locations. This study did not include investigating other environmental issues such as soil contamination.

SITE LOCATION & HISTORY

The Subject Site is a vacant parcel encompassing approximately 48-acres of land, located south of West Van Buren Street in Colorado Springs, El Paso County, Colorado. The site location is indicated on the Site Location Map (Figure 1).

The Subject Site is generally located within the northwest ¼ of the southeast ¼ of Section 1, Township 13 South, and Range 67 West of the 6th PM. The El Paso County Assessor's parcel number is 7401200002. The Subject Site is approximately 6,230 feet above mean sea level (MSL) at the northern property boundary, falling to approximately 6,130 feet above MSL at the southeastern property boundary. The topography of the Site and the surrounding area slopes down to the south towards the intermittent stream that borders the Subject Site. The topography of the slte is irregular, but is dominated in the northeast by a prominent ridge, in the central portion by a valley, in the northwest by a system of ridges. A drainage forms the westerly and southerly side boundaries.

FIELD INVESTIGATION

Prior to the commencement of field activities at the Subject Site, Kleinfelder prepared a Site-Specific Health and Safety Plan as required by Occupational Safety and Health Administration ("OSHA"), to inform our personnel of the potential hazards that may be encountered and the required procedures to protect worker health and safety. Also, as required by law, Kleinfelder coordinated with utility companies to locate buried utilities in the vicinity of the Subject Site.

Groundwater Assessment

On February 22, 2006, Kleinfelder mobilized to the Subject Site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to install two (2) groundwatermonitoring wells and to install four (4) methane monitoring wells. A map indicating the location of the monitoring wells is presented as Figure 2.

The groundwater monitoring wells were drilled to an approximate depth of 30 feet. Groundwater wells were constructed using factory cleaned 2-inch diameter, PVC well casing with 20 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2 to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface. Well construction specifications are indicated on the logs, which are included in Appendix A.

One groundwater sample from each of the two monitoring wells was submitted via Federal Express to ACZ Laboratories in Steamboat Springs, Colorado for chemical analysis. The samples were analyzed for cations/anions and 47 volatile organics as listed in Appendix IA and IB of the Regulations Pertaining to Solid Waste Disposal Sites

and Facilities set forth by the Colorado Department of Public Health and Environment. Laboratory analysis of the groundwater samples were performed using appropriate methods described in EPA Publication SW-846, *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods.* Table 1 summarizes the metals analysis of the groundwater wells. Wet chemistry and volatile organics results are summarized in Appendix B.

Sample ID	GW-1	GW-2	Applicable Standards
Sample Date and Time	2/23/06 1:30	2/23/06 2:30	
Sample Interval	10-13 ft (screen)	10-13 ft (screen)	
Matrix	Groundwater	Groundwater	Groundwater
Units	(mg/l)	(mg/l)	(mg/l)
Antimony	0.008	No Detect	0.006
Arsenic	0.0215	0.0071	0.01
Barium	0.963	0.056	2.0
Beryllium	No Detect	No Detect	0.004
Cadmium	No Detect	No Detect	0,005
Calcium, dissolved	145	338	N/A
Chromium	0.05	0.01	0.1
Cobalt	0.03	0.02	N/A
Соррег	0.05	No Detect	1.0
Iron	0.64	No Detect	0.3
Lead	0.14	No Detect	0.05
Magnesium, dissolved	106	593	N/A
Manganese, dissolved	0.40	1.45	N/A
Nickel	0.03	0.03	0.1
Potassium, dissolved	53.1	21	N/A
Selenium	No Detect	No Detect	0.05
Silver	No Detect	No Detect	0.05
Sodium, dissolved	408	3380	N/A
Thallium	0.0009	0.0003	0.002
Vanadium	0.083	0.013	0.1
Zinc	0.34	0.04	5.0

TABLE 1 – GROUNDWATER SAMPLE RESULTS

References:

Applicable standards are obtained from the CDPHE Regulation No. 41, Basic Standards for Groundwater, Human Health Standards, 2001.

-Maximum Contaminant Levels promulgated under the Safe Drinking Water Act, EPA 816-F-02-013, July 2002 (Arsenic standard effective 01/23/06).

-Applicable standards are obtained from the CDPHE Regulation No. 41, Basic Standards for Groundwater, Ground Water Organic Chemical Standards, 2001.

Methane Gas Assessment

On February 22, 2006, Kleinfelder mobilized to the Subject Site with a track-mounted drilling rig equipped with 4-inch continuous flight augers to install four (4) methane gas monitoring wells outside the existing landfill perimeter, at the locations indicated on Figure 2. Monitoring well installation records (including depth and materials used) for each methane well, MW-1 through MW-4, are included in Appendix A.

Methane wells were constructed using factory cleaned 1-inch diameter, PVC well casing with 10 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC was surrounded with 10/20 silica sand that prevents entry of soil into the well. A 2 to 3-foot bentonite annular seal was placed at the top of the well, near the ground surface.

On February 27 and February 28, 2006, Kleinfelder performed gas monitoring at the four (4) methane wells installed on the Subject Site. The gas in each well was analyzed using a GasTech Portable Gas Monitor. The meter is designed to measure concentrations of methane (CH₄), hydrogen sulfide (H₂S) and oxygen (O₂). Table 2 summarizes the gases detected in the methane wells.

		February	27, 2006		February 28, 2006					
Monitoring Location	CH₄ (%LEL)	CH₄ H₂S (%GAS) (ppm)		O ₂ (%)	-		H₂S (ppm)	O2 (%)		
MW-1	0.0	0.0	3.0	20.2	0.0	0.0	0.0	20.1		
MW-2	0.0	0.0	0.0	20.1	0.0	0.0	0.0	19.7		
MW-3	1.0	0.0	0.0	17.2	2.0	0.0	0.0	13.3		
MW-4	1.0	0.0	0.0	20.4	0.0	0.0	0.0	20.6		

TABLE 2 – SUMMARY OF METHANE GAS MONITORING

Notes: CH_4 (% LEL) = Methane % of the lower explosive limit (LEL) CH_4 (% Gas) = % Methane Gas by volume H_2S = Hydrogen Sulfide parts per million by volume

Oxygen % by volume

CONCLUSIONS

 O_2

Groundwater Hazards

Ξ

Laboratory analysis indicated that groundwater quality has been impacted by historic activity at the Subject Site based on the limited data collected to date. For the analyses listed above, there were four confirmed regulatory exceedances of analytes that indicate

an environmental concern. Antimony, Iron, Lead and Thallium all exceeded the regulatory standards for groundwater.

Methane Hazards

Methane gas field monitoring provided the following information. No measurable methane concentrations were found within the four monitoring wells and methane gas is not migrating beyond the perimeter of the landfill. It is not likely that the site is subject to CDPHE explosive gas requirements for solid waste disposal sites. These regulations, found in Title 6 of the Code of Colorado Regulations (CCR), Section 1007-2, Part 1, state that "The concentration of explosive gases generated by the facility for solid waste disposal shall not exceed: At the boundary, the lower explosive limit which is five percent (5%) by volume in air for methane." Considering this rule, it is unlikely that any future development of the Subject Site that is outside the perimeter of the landfill would not need to consider monitoring of any structure developed on the Site.

RECOMMENDATIONS

Kleinfelder recommends that the Colorado Department of Public Health and Environment (CDPHE) be contacted to review the conclusions of this investigation and to further evaluate the results of the groundwater and methane analysis.

LIMITATIONS

Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of work on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of work was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report is beyond the scope of our work and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since such detailed services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

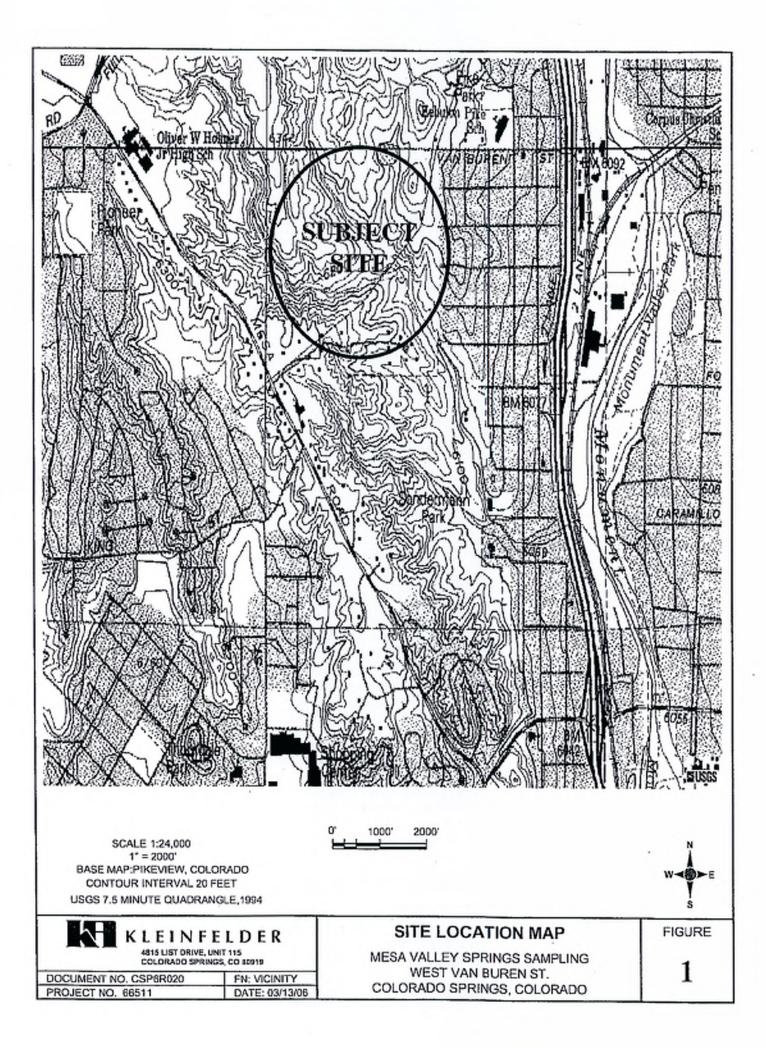
Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

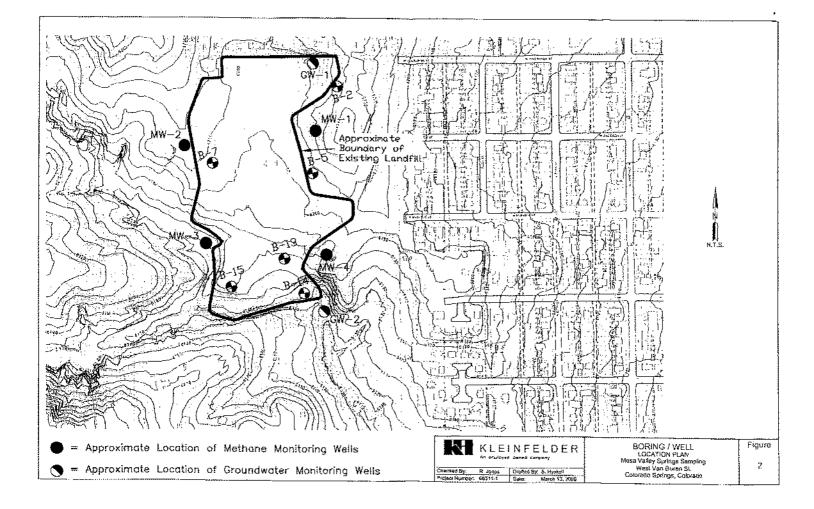
The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

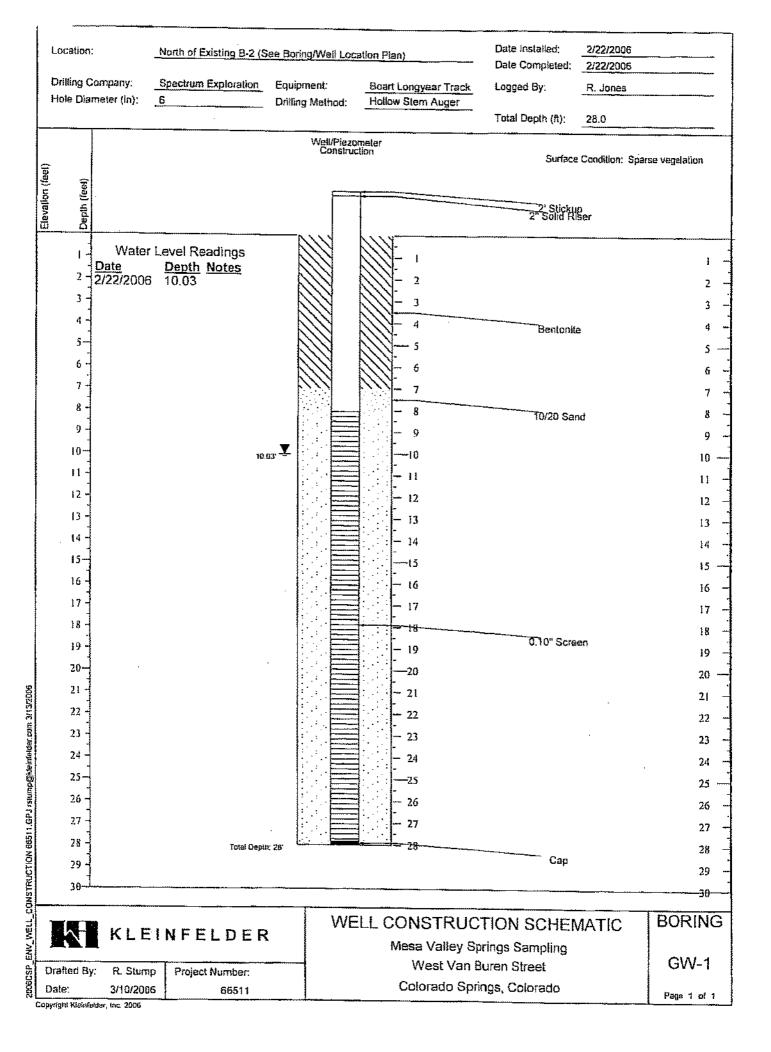
If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at (719) 632-3593.

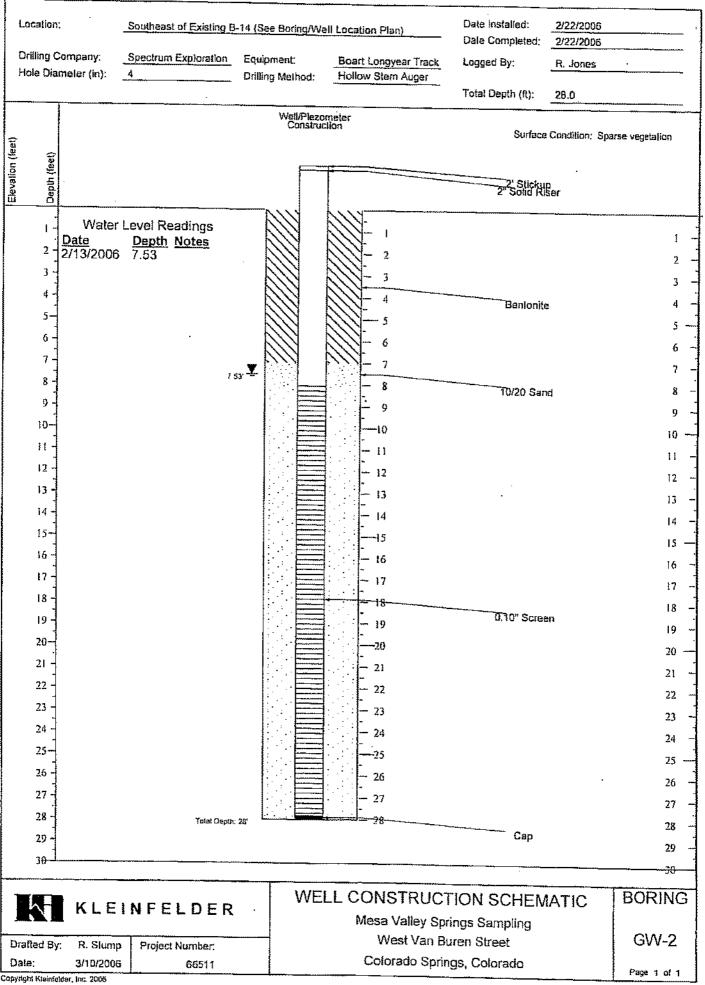
Respectfully submitted,

KLEINFELDER, INC.

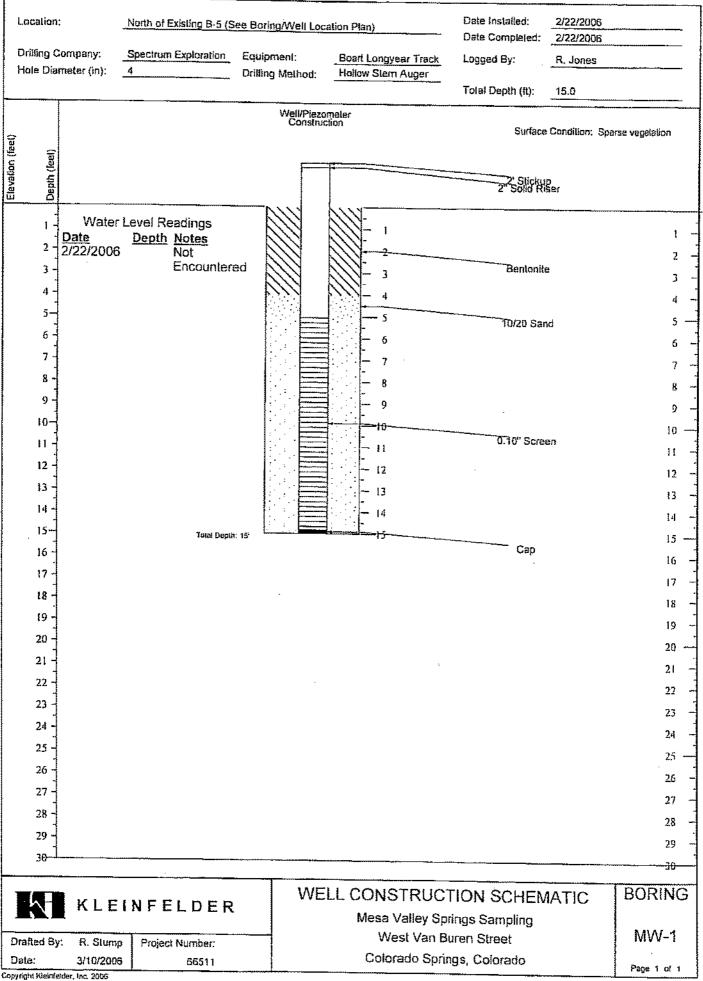

Rickey L. Jones

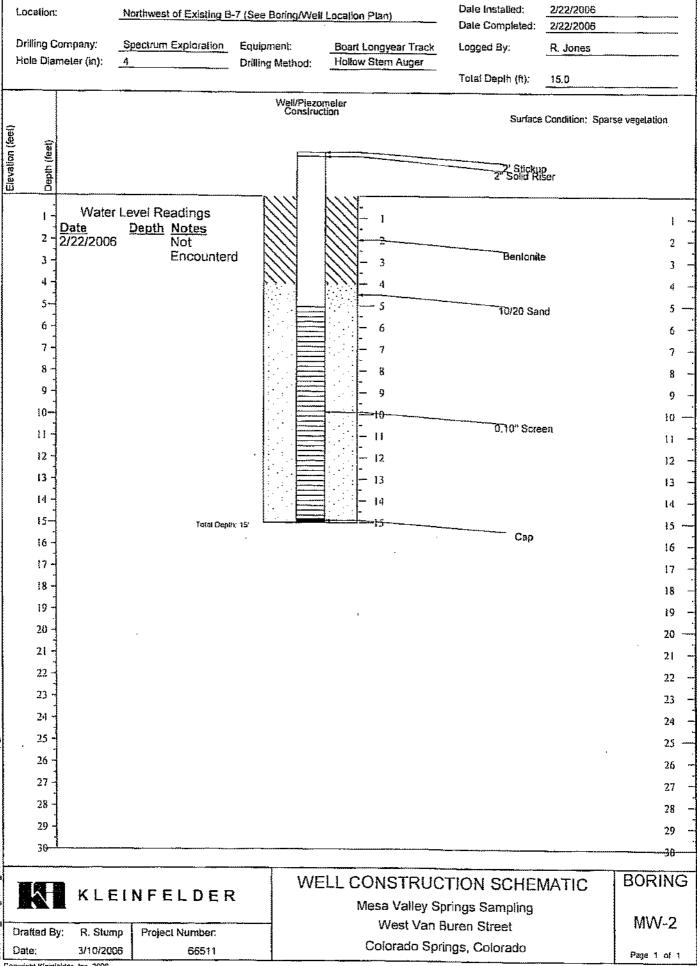

Environmental Scientist


bu

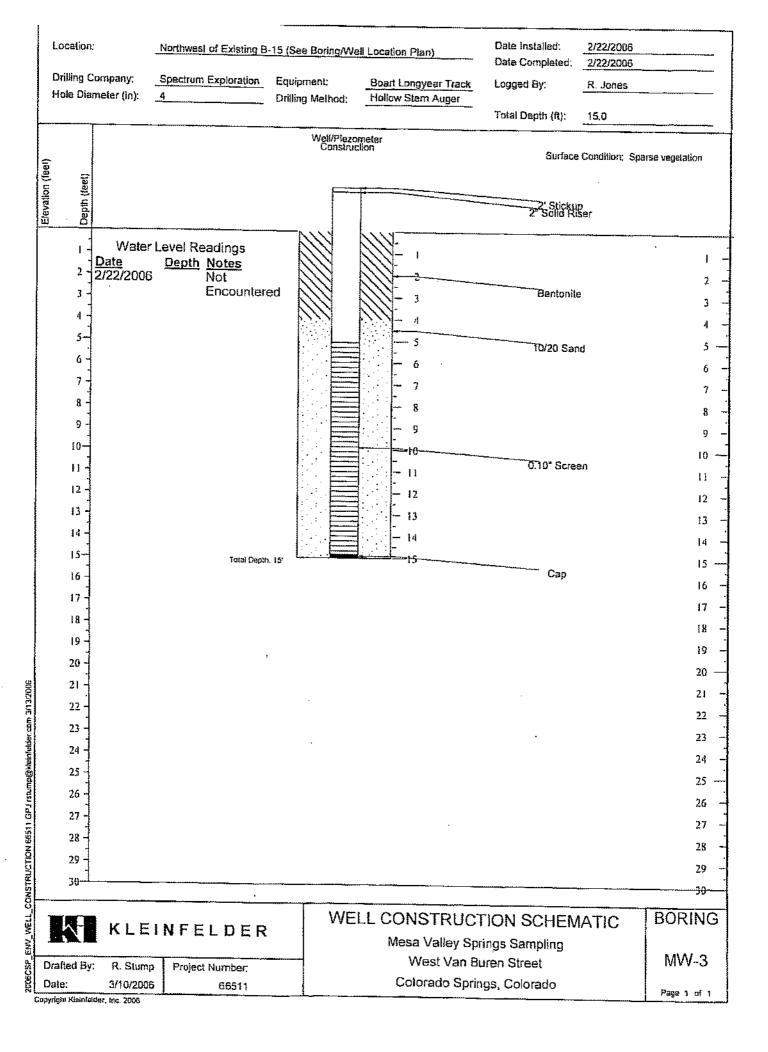

For William J. Barreire, P.E. Area Manager

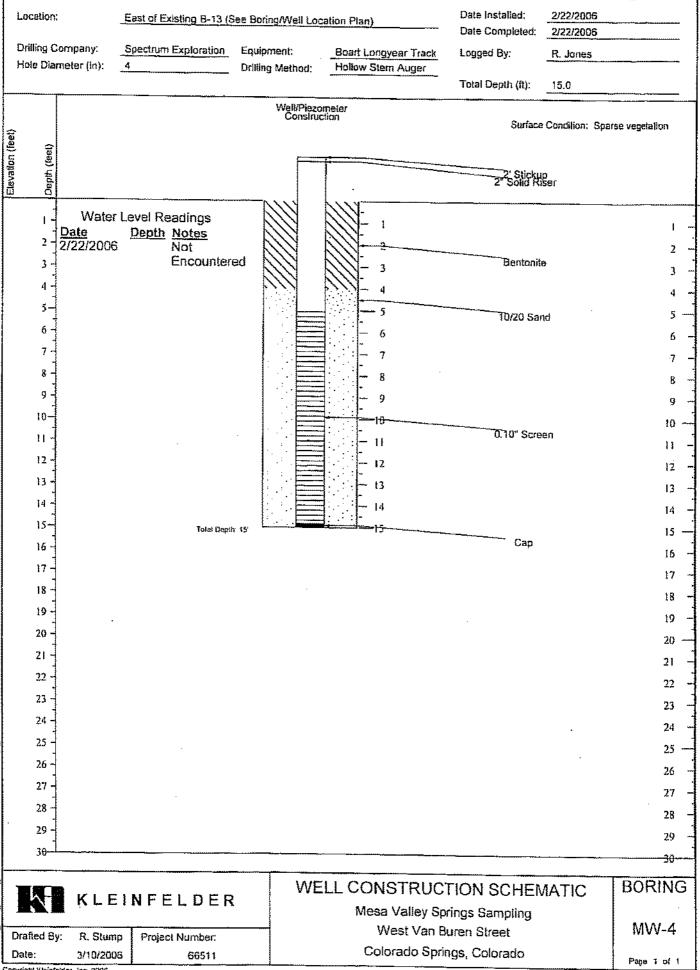
RLJ:WJB:ss





CONSTRUCTION 66511.GPJ rsjump@kleinleider.cam 3/13/2006 ENV WELL


200605P



ENV_WELL_CONSTRUCTION 66511.GPJ rstump@Meinfelder.com 3/13/2006 2006CSP

Copyright Kleinkider, Inc. 2006

ENV_WELL_CONSTRUCTION 66511.GPJ rstump@kienfelder.com 2/13/2006

2006CSP

Copyright Kleinfelder, Inc. 2006

March 28, 2006

Report to: Ricky Jones Kleinfelder, Inc. 4815 List Drive, Unit 115 Colorado Springs, CO 80919

Bill to: Brenda Anthony Kleinfelder, Inc. 4815 List Drive, Unit 115 Colorado Springs, CD 80919

Project ID: 66511 ACZ Project ID: L55388

Ricky Jones;

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on February 24, 2006. This project has been assigned to ACZ's project number, L55388. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 11.0. The enclosed results relate only to the samples received under L55388. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meel all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after April 28, 2006. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years,

If you have any questions or other needs, please contact your Project Manager.

28/Mar/06

Sue Webber, Project Manager, has reviewed and approved this report in its entirety.

REPAD.01.06.05.01

L55388: Page 1 of 32

Kleinfelder, Inc.

March 28, 2008

Project ID: 66511 ACZ Project ID: L55388

A02/8 aboratories, Inc. (ACZ) received 3 ground water samples from Kleinfelder, Inc. on February 24, 2006. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory information Management System (LIMS). The samples were assigned ACZ LIMS project number L55388. The custodian varified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

Advartalyses except those qualified with an ACZ 'H' flag were performed within EPA recommended holding times.

These samples ware analyzed for inorganic and organic parameters. The individual methods are referenced on both the ACZ invoice and the analytical reports. The extended qualifier reports may contain footnotes qualifying specific elements due to QC failures. In addition the following has been noted with this specific project:

1: Suspect analytes were reanalyzed to confirm Catlon/Anion Balance.

2. For the Volatile Organic surrogate Toluene d-8 value flagged with an *S1", the recovery was above laboratory control limits, but within method acceptance limits.

3. For the Volatile Organic surrogate Bromofluorobenzena value flagged with an "N1", the recoveries were low but all other internal standards and surrogates were within control limits.

4. For Volatile Organic compounds (other than bromofluorobenzene) flagged with an "N1", the response for these analytes was below 0.1 in the catibration. While this is still within method criteria, the data may not be reliable near the PQL as a result. Samples were rerun to confirm.

66511

GW-1

Kleinfelder, Inc.

Project ID: Sample ID:

|--|

L55388-01
02/23/06 00:00
02/24/06
Ground Water

Metals Analysis

								1605 D. 4
Antimony, total	M6020 ICP-MS	0.0008	B •	mg/L	0.0004	0.002	03/01/06 20:53	in the second second second second second second second second second second second second second second second
Arsenic, total	M6020 ICP-MS	0.0215		mg/L	0.0005		03/01/06 20:53	<u>s</u> r jir
Barium, Iotal	M6010B ICP	0.963		mg/L	0.003	0.01	02/28/06 6:15	" jjc
Beryllium, total	M6010B ICP		U j	mg/L	0.002	0.01	02/28/06 6:15	ji⊂]i⊂
Cadmlum, Iotal	M6010B ICP		U	mg/L	0.005	0.02	02/28/06 6:15	jic
Calcium, dissolved	M6010B ICP	145		mg/L	0.4	2	03/07/06 13:19	jic.
Chromium, Iolal	M6010B ICP	0.05		mg/L	0.01	0.05	02/28/05 6:15	Ĩc
Cobalt, Iotal	M6010B ICP	0.03	8	mg/L	0.01	0.05	02/28/06 6:15	jic
Copper, total	M6010B ICP	0.05		mg/L	0.01	0.05	02/28/06 6:15	jc jc
Iron, dissolved	M6010B ICP	0.64	•	mg/L	0.04	0.1	03/07/06 13:19	ic Ic
Lead, total	M6010B ICP	0,14	в	mg/L	0.04	0.2	02/28/06 6:15	jc lic
Magnesium, dissolved	M6010B1CP	106		mg/L	0,4	2	03/07/06 13:19	jjc
Manganese, dissolved	M6010B ICP	0.40		mg/L	0.01	0.05	03/07/06 13:19]C
Nickel, total	M6010B ICP	0.03	8	mg/L	0.01	0.05	02/28/05 5:15]c
Potassium, dissolved	M6010B ICP	53.1		mg/L	0,6	2	03/07/06 13:19	jc ic
Selenium, total	SM 3114 B, AA-Hydride		U	mg/L	0.001	0.005	02/28/06 15:36	j¢ djt-pre
Silver, lotat	M60108 ICP		U	mg/L	0.01	0.03	02/28/06 6:15	
Sodium, dissolved	M6010B ICP	408		mg/L	0.6	2	03/07/06 13:19	jc ic
Thailium, Iotal	M6020 ICP-MS	0.0009	•	mg/L	0.0001		03/01/06 20:53	-
Vanadium, totał	M6010B ICP	0.083		mg/L	0.005	0.03	02/28/06 6:15	jir jic
Zinc, total	M6010B ICP	0.34	•	mg/L	0.01	0.05	02/28/06 6:15	ic Ic
						0.00	GENELATOR 0.10	អ្នប

Metals Prep

;

			15.00
Total Hot Plate	M3010 ICP	02/27/06 18:38	
Digestion		0221/00 10.30	djt
Tolal Hot Plate	M3010 [CP-MS	02/28/06 13:36	
Digestion		02/20/08 13/35	∬r

Kleinfelder, Inc.

Project ID: 66511 Sample (D: **GW-1**

ACZ Sample ID:	L55388-01
Date Sampled:	02/23/06 00:00
Date Received:	02/24/06
Sample Matrix:	Ground Water

Wet Cher.	nistry
-----------	--------

			lan an Zu Sila Carl a	ès.		Sar Sate			No la com
Aikalinity as CaCO3	SM2320B - Titration						4 MAR 1999 - 1999		
Bicarbonate as CaCO3		1510	H		mg/L	2	20	03/25/06 0:00	jlf
Carbonale as CaCO	3		UH		mg/L	2	20	03/25/06 0:00	JIF
Hydroxide as CaCO	3		UH		mg/L	2	20	03/25/06 0:00	ju jur
Total Aikailnily		1510	н		mg/L	2	20	03/25/06 0:00	ju Ju
Carbon, lotal organic (TOC)	M415.1 Combustion/IR	105			mg/L	5	30	02/28/06 10:03	н; hs
Cation-Anion Balance	Calculation								
Calion-Anion Balance	e	.9.6			%			03/27/06 0:00	caic
Sum of Anions		42.8			mea/L	0.1	0.5	03/27/06 0:00	caic
Sum of Catlons		35.3			meg/L	0.1	0.5	03/27/06 0:00	calc
Chioride	M325.2 - Colorimetric	270	н		mp/L	10	50	03/24/06 17:31	
Conductivity @25C	M9050 - Meler	3600			umhos/cm	1	10	02/27/06 13:16	pjb tam
Hardness as CaCO3	SM2340B - Calculation	798			mg/L	1	7	03/27/06 0:00	caic
Lab Filtration	SM 3030 8			•	1119/2	•	'	02/24/06 14:54	
Lab Filtration &	SM 3030 B							03/01/06 17:13	開
Acidification								03/03/06 17:13	dji
	Calculation: NO3NO2 minus NO2	0.49			mg/L	0.02	0.1	03/27/06 0:00	calc
Nitrate/Nitrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.50		•	mg/i_	0.02	D. 1	02/24/06 17:53	pjb
Nilrite as N, dissolved	M353.2 - Automated Cadmium Reduction	0.01	8	•	mg/L	0.01	0.05	02/24/06 17:53	pþ
pH (lab)	M9045C/M9040B								
рH		7.6	н		unils	D.1	0.1	02/27/06 0:00	tam
pH measured at		23.0			C	0.1	0.1	02/27/06 0:00	tam
Residue, Filterable	M160.1 - Gravimetric	2170			ing/L	10	20	02/28/06 15:30	tam
(TDS) @180C							2.0	002000 10.00	10111
Sodium Absorption Ratio in Water	USGS - 11738-78	6.36				0.03	0.15	03/27/06 0:00	calc
Sulfale	SM4500 SO4-D	240		4	mg/L	10	50	03/23/06 17:17	tam
TDS (calculated)	Calculation	2130			mg/L	10	50	03/27/06 0:00	caic
TDS (ralio -	Calculation	1.02			-			03/27/06 0:00	calc
measured/calculated)									9919

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-2

ACZ Sample ID:	L55388-02

Date Sampled:	02/23/06 00:00
Date Received:	02/24/06
Sample Matrix:	Ground Water

Metals Analysis

			445 A	1900	Alter Charles	海外的工程具		an the second states and s	
Antimony, total	M6020 ICP-MS	an an statistic and a statistic statistic statistic statistics.	U	*	mail	D 0004	0.000		
Arsenic, total	M6020 ICP-MS	0.0071	Ŭ		mg/L	0.0004		03/01/06 21:05	ч <u>и</u> :
Barlum, lotal	M60108 ICP	0.056			mg/L	0.0005		03/01/06 21:05	<u>j</u> r
Beryilium, tolai	M6010B ICP	0.000	U		mg/L.	0.003	0.01	02/28/06 6:19	jc
Cadmium, Iolal	M6010B ICP		ย		mg/L.	0.002	0.01	02/28/06 8:19	jje
Calcium, dissolved	M6010B ICP	338	Û,		mg/i	0.005	0.02	02/28/06 6:19	jje
Chromium, totel	M6010B ICP		~		mg/L	2	10	03/07/06 13:29]c
Cobalt, total	M6010B ICP	0.01	8		mg/L	0.01	0.05	02/28/06 6:19	jjc
Copper, lotal	M60108 (CP	0.02	8		mg/L	0.01	0.05	02/28/06 6:19	jje
iron, dissolved	M6010B ICP		U		mg/L	0.01	0.05	02/28/06 6:19	jjc
Lead, tolal			U	•	mg/L	0.2	0.5	03/07/06 13:29	jjc
•	M6010B ICP		U		mg/L	0.04	0.2	02/28/06 6:19	ļjc
Magnesium, dissolved		593			mg/L	2	10	03/07/06 13:29	jjc
Manganese, dissolved		1.45			mg/L	0.05	0.3	03/07/06 13:29	jje
Nickel, Iotal	M60108 ICP	0.03	8		mg/L	0.01	0.05	02/28/08 6:19	_ ¶c
Potassium, dissolved	M60108 ICP	21			mg/L	3	10	03/07/06 13:29	₫c
Selenium, total	SM 3114 B, AA-Hydride		U		mg/L	0.001	0.005	02/28/06 15:38	dji-pre
Silver, total	M6010B ICP		U		mg/L	0.01	0.03	02/28/06 6:19	jc jc
Sodium, dissolved	M6010B ICP	3380			mg/L	3	10	03/07/06 13:29	lic Lic
Thaillum, total	M6020 ICP-MS	0.0003	8	٠	mg/L	0.0001		03/01/06 21:05	ъл Ц
Vanadium, Iolal	M60108 ICP	0.013	в		mg/L	0.005	0.03	02/28/06 6:19	-
Zine, lotal	M60108 (CP	0.04	8	•	mg/L	0.01	0.05	02/28/06 6:19	jic jic
					u -			000000 V.13	<u>1</u> 44

Melals Prep

Total Hot Plate	M3010 ICP		
Digestion		02/27/06 19:00	dji
Tolal Hot Plate	M3010 ICP-MS		
Digestion		02/28/06 14:24	ir

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-2

ACZ Sample ID:	L55388-02
Date Sampled:	02/23/06 00:00
Date Received:	02/24/06
Sample Matrix:	Ground Water

Wet Chemistry

						30 ar 150			rilen geb
Alkalinity as CaCO3	SM2320B - Titration				HINE SHEETS STORES		1.1.1.227		0.24 S. S. S.
Bicarbonate as CaCO3		1310			mg/L	2	20	02/27/06 0:00	lasn
Carbonate as CaCO	8		U		mg/L	2	20	02/27/06 0:00	
Hydroxide as CaCO	3		Ű		mg/L	2	20	02/27/06 0:00	lam
Total Alkelinity		1310	-		mg/L	2	20	· · · -	lam
Carbon, Iolai organic (TOC)	M415.1 Combustion/IR	47			mg/L	5	30	02/27/06 0:00 02/28/06 11:59	lam erf
Cation Anton Balance	Calculation								
Calion-Anion Balance	<u>e</u>	1.7			%			RD (07)(07 0 00	
Sum of Anions		206						03/27/06 0:00	calc
Sum of Cations		215			meq/L	0.1	0.5	03/27/06 0:00	calc
Chloride	M325.2 - ColorImetric	480			meq/L	0.1	0.5	03/27/06 0:00	calc
Conductivity @25C	M9050 · Meter	15700			mg/L	10	50		jag
Hardness as CaCO3	SM23408 - Calculation	3280			umbos/cm	1	10	02/27/06 13:30	tam
Lab Filtration	SM 3030 B	3280			mg/L_	1	7	03/27/06 0:00	calc
Lab Filtration &	SM 3030 B			*				02/24/06 14:55	jít
Acidification				*				03/01/06 17:14	ďjt
Nitrate as N, dissolved	Calculation: NO3NO2 minus NO2	0.10			mg/L	0.02			
Nitrate/Nitrite as N,	M353.2 - Automated Cadmium	0.10			mg/L		0.1	03/27/06 0:00	calc
dissolved	Reduction	Und			109/1	0.02	0.1	02/24/06 17:55	pjb
	M353.2 · Automated Cadmlum Reduction		υ	*	mg/L	0.01	0.05	02/24/06 17:55	pjb
pH (lab)	M9045C/M9040B								
рH		7.8	н		units	0.1	0.1	02/27/06 0:00	I
pH measured at		23.0			C	0.1	0.1	02/27/06 0:00	lam
Residue, Filterable	M160.1 - Gravimetric	15400		*	mg/L	10	20	02/28/06 15:33	lam
(TDS) @190C						10	20	02/20/00 10:33	ខែកា
Sodium Absorption Ratio In Water	USGS - 11738-78	26.00				0.03	0.15	03/27/06 0:00	calc
Sulfate	SM4500 SO4-D	8030		٠	mg/L	50	300	03/01/06 12:03	tier
TDS (calculated)	Calculation	13600			mg/i,	10	50	03/27/05 0:00	jir
TDS (ratio	Calculation	1.13				10	00	03/27/06 0:00	calc
measured/calculated)								VOIC1100 V.00	calc

and the second second second	
Batcir	A distinct set of samples energyzed at a specific time
Found	Value of the QC Type of Interest
	Upper limit for RPD, in %.
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)
MDL	Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of anelysis
PQL	Practical Quantitation Limit, typically 5 times the MDL.
	True Value of the Control Sample or the amount added to the Spike
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC Types
Upper	Upper Recovery Limil, In % (except for LCSS, mg/Kg)
	Value of the Sample of Interest

	Landaren ohure funde nidealiou)	LCSWD	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate	LFB	Laboralory Fortified Blank
CCB	Continuing Catibration Blank	LFM	Laboratory Fortified Matrix
COV	Continuing Calivation Verification standard	LFMD	-
DUP			Laboratory Fortified Malrix Duplicate
	watching publicate	LRB	Laboralory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spike
ICV	Initial Calibration Verification standard	MSD	Malix Spike Duplicale
ICSA	B Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank · Soil
LCS.			
LCS	-	PBW	Prep Blank - Water
	and the second s	PQV	Prectical Quantitation Verification standard
LCS	V Laboratory Control Sample - Water	SDL	Serial Dilution

Blanks		Verifies that there is no or minimal contamination in the prep method or calibration procedure.
Control	Samples	Verifies the eccuracy of the method, including the prep procedure.
Duplicate	es	Verifies the precision of the instrument and/or method,
Spikes/P	Fordified Matrix	Determines semple mairix interferences, II any.
Slandard	4	Verifies the validity of the calibration.
B	Analyte concentra	lion delected at a value between MDL and POL.
Ħ	Anelysis exceeded	t method hold lime. pH is a field tesl with an Immediate hold time.
R	Poor spike recover	ry accepted because the other spike in the set felt within the given limits.
T	High Relative Perc	eni Difference (RPD) accepted because semple concentrations are less than 10x the MDL.
Li -	Analyte was analyt	zed for but not detected et the indicated MDL
v	High blank data ac	cepted because sample concentration is 10 times higher than blank concentration
W	Poor recovery for t	Silver quality control is accepted because Silver often precipitales with Chloride.
х	Quality control san	nple is out of control.
Z		y is accepted because sample concentration is lour times greater than spike concentration.
1749 (PS)		
(†)	EPA 600/4-83-020	. Methods for Chemical Analysis of Water and Wasles, Merch 1983.
(2)	EPA 600/R-93-100). Methods for the Determination of Inorganic Substances In Environmental Samples, August 1993.
(3)	EPA 600/R-94-111	. Methods for the Determination of Metals in Environmental Samples - Supplement I, May 1994.
(5)	EPA SW-846, Tes	I Melhods for Evaluating Solid Waste, Third Edition with Update III, December 1995.
(6)	Slandard Melhods	for the Examination of Water and Wastawater, 19th edition, 1995.
(1)	Istucies alluaer CO	ed from raw data. Results may vary slightly if the rounded values are used in the calculations.
(Z)	Soli, Sludge, and P	lant matrices for inorganic analyses are reported on a dry weight basis.
(3)	Animal matrices for	r Inorgenic analyses are reported on an "as received" basis.

REPIN03.11.00.01

66511

Kleinfelder, Inc.

Project ID:

Alkalinity as Ca	3CO3		SM23206	B - Titration]								·····
					Sc? & S		- 1 -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			er Hiller		er ger	a den gale de feren
WG202932					**************************************		1.00	02610284928	and a second				and the second
WG202932LCSW2	LCSW	02/27/06 12:03	NOCODE A										
L55388-02DUP	DUP	02/27/06 13:44	WC060210-3	820.0001		868.6	mg/L	108,4	80	120			
WG202932LCSW5	LCSW		WOODDAT		1310	1308.9	mg/L				0.1	20	
WG202932LCSW8	LCSW		WC060210-3 WC060210-3	820.0001		966.7	mg/L	117.9	80	120			
WG204008	40477	1211100 11.20	**C0002 10+3	820.0001		865,1	mg/L	107.9	80	120			
WG204008LCSW2					•								
L55759-03DUP	LCSW	03/25/06 9:42	WC060210-3	820.0001		844.2	mg/L	103	80	120			
WG204008LCSW5	DUP	03/25/06 11:10			146	145.6	mg/L				0.3	20	
WG204008LCSW8	LCSW LCSW	03/25/06 12:50	WC060210-3	820.0001		858	mg/L	104.6	80	120			
	LUGVY	03/25/06 16:34	WC060210-3	820.0001		870.5	mg/(_	106.2	80	120			
Antimony, total	ł		M6020 (CP-MS									<u></u>
					nate filosofi Inclusion							- 10/12	1.60.045.0
WG283104												494 V 949	ales gage
WG203104ICV	ICV	03/01/06 18:58	MS060215-2	.02008		.01979	mail	02 E					
WG203104iCB	ICB	03/01/06 19:02					Mg/L Mg/L	98.6	90 8.0240	110			
WG203017PBW	PBW	03/01/06 20:42				U	mg/L		-0.0012	0.0012			
WG203017LCSW	LCSW	03/01/06 20:48	MS060215-2	.02008		.02105	mg/L	104.8	-0.0012	0.0012			
L55388-02MS	MS	03/01/06 21:11	MS060116-3	.00625	u	.00462	mg/L	73.9	80 75	120			
L55388-02MSD	MSD	03/01/06 21:17	MS060116-3	.00025	ť	.0045	mg/L	72	75	125 125	2.63	20	M2 M2
Arsenic, total		· · · · · · · · · · · · · · · · · · ·	M6020 (0	P-MS									1944
的相同的相关								ric de	-		Setters	0111492	
WG203184								en ne <u>n s</u> er	en de la composition de la composition de la composition de la composition de la composition de la composition La composition de la c		2010 A.M	1.162	e de la silat
WG203104ICV	icv	03/01/06 18:55	MS060215-2	.05		4544		4					
WG203104ICB	ICB	03/01/05 19:02	110000210-2	.05		.0513 U	mg/L	102.6	90	110			
WG203017PBW	PSW	03/01/06 20:42				U	៣០/L ៣០/		-0.0015	0.0015			
WG203017LCSW	LCSW	03/01/06 20:48	MS060215-2	.05		.05274	тg/ц то//	405 C	-0.0015	0.0015			
L55388-02MS	MS	03/01/06 21:11	M5060115-3	.05	.0071	.05274	mg/L	105.5	80	120			
L55388-02MSD	MSO	03/01/06 21:17	MS060115-3	.05	.0071	.06368	ጠg/ኪ ጠg/ኪ	117.7 113.2	75 75	125 125	2.40		
Barium, total			M6010B (3.49	20	
							1999 - 1999 -	2. 	an an an an an an an an an an an an an a	20-13-10-2.07 i	25212604		
WG202973							12 ministra (* 1						
WG202973:CV	ICV	02/28/05 4:26	80404 A										
WG202973(CB	ICB	02/28/06 4:26	11060119-4	2		1.9896	<u>ጣር/L</u>	99.5	90	110			
WG202924PBW	PBW	02/28/06 4:30				U	mg/L		-0.009	0.009			
WG202824LCSW	LCSW	02/28/06 4:47	10001140 1	4		U 4 0075	mg/L		-0,009	0.009			
55279-11MS	MS	02/28/06 5:06	IIO60118-1 IIIOXWATE	1	n	1.0072	mg/L	100.7	80	120			
55279-11MSD	MSD	02/28/06 5:12	INDXWATE	5 5	2.23 2.23	6.666 6.873	mg/L	93.1	75	125			
			1. FWYAT IFT ().		c.2.3	5.0/J		92.9	75	125	0.19	20	

66511

Kleinfelder, Inc.

Project ID:

Seryllium, lotal		•	M60108	ICP								
WG202973										and the second second	in the second	19-19-18-18-19-19-19-19-19-19-19-19-19-19-19-19-19-
WG202973ICV	(CV	02/28/06 4:28	1060119-4	2		1.9051	mg/L	95.3	90	110		
WG202973IC8	1C8	02/28/06 4:30				L	rng/L		-0.006	0.006		
WG202924P8W	PBW	02/28/05 4:47				U	mg/L		-0.006	0.005		
WG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1		1.0092	mg/L	100.9	30	120		
L55279-11MS	MS	02/28/06 5:08	IIIOXWATE	5	υ	4.915	mg/L	98.3	75	125		
L55279-11MSD	MSD	02/28/06 5:12	II10XWATE	5	U	4.861	mg/L	97.2		125	1.5	20
Cadmium, total			M60108	ICP				<u> </u>				
								\$/~ }				
WG202973												
WG202973ICV	ICV	02/28/06 4:26	0060119-4	2		1.86	mg/L	93	90	110		
WG202973IC8	ICB	02/28/06 4:30				U U	mg/L		-0.015	0.015		•
WG202924P8W	₽8W	02/28/06 4:47				U	mg/L		-0.015	0.015		
WG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1		.9822	mg/L	98.2	60	120		
L55279-11MS	MS	02/28/06 5:08	INDXWATE	5	U	4.849	mg/L	97	75	125		
L55279-11MSD	MSD	02/28/06 5:12	HIOXWATE	5	U	4.819	ang/1_	96,4	75	125	0.62	20
Calcium, dissolv	eđ		M6010B	ICP				<u> </u>	······		·····	<u></u>
						k (din a 1997) Guildean St	42 - A					
WG203294												
NG203294ICV	ICV.	03/07/06 12:41	1060302-5	100		97.29	mg/L	97.3	90	110		
NG203294IC8	ICB	03/07/06 12:45				U	mg/L	.,,.	-0,6	0.6		
.56360-01AS	AS	03/07/06 13:05	1060304-5	67.92102	152	213.53	mg/L	90.6	75	125		
.55360-01ASD	ASD	03/07/06 13:09	11080304-5	67.92102	152	213.6	mg/L	90,7	75	125	0.03	20
Carbon, total org	anic (T	OC)	M415.1 C	ombustion/	IR							
WG202959												
WG202959ICV	ICV	02/27/05 15:47	WID50216-5	75		73.2	mg/L	97.8	90	110		
NG202959ICB	ICB	02/27/06 16:44				U	mg/L		.3	3		
NG202959LFB	LFB	02/27/06 17:42	WI060216-3	50		47.6	mg/L	95.2	90	110		
55388-01DUP	DUP	02/28/06 11:01			105	97.3	mg/L				7.6	20
55388-02A5	AS	02/28/06 12:56	WI060216-3	250	47	274.4	/ng/L	81	90	110	–	

66511

Kleinfelder, Inc.

Project ID:

Chioride			M325,2 -	Colorimet	ric							
						2327A		1. 1. j. j. j. j. j. j. j. j. j. j. j. j. j.				Facilitados
WG203129									,			
WG203129ICV	ICV	03/02/08 11:14	WI060207-2	55		53,8	mg/L	97.8	90	110		
WG203129(C8	ICB	03/02/06 11:15				U	mg/L	ar.0	-3	3		
WG203129LFB	£₽B	03/02/06 11:15	WI051219-3	30		30	-	100	90			
L55388-01AS	AS	03/02/08 11:44	W1051219-3	300	270	575	mg/L mg/L	101.7	90 90	110		
55388-02DUP	DUP	03/02/06 11:45		400	480	480	mg/L	141.7	20	110	0	20
WG204002											5	ŁŪ
WG2040021CV	ICV	83/24/06 17:02	WI060207-2	55		55,3	mail	ton é	00			
WG204002/CB	ICB	03/24/06 17:03	1110000001-2	55		5,5L U	mg/Ł ma/l	100.5	90	110		
WG204002LFB	LFB	03/24/06 17:04	W1060321-4	30		30.7	mg/L	400.0	•3	3		
.55673-010UP	DUP	03/24/06 17:08	110000021-1	50	00		mg/L	102.3	90	110		
L55388-01AS	AS	03/24/05 17:32	WI060321-4	300	99 270	98.9 585	mg/L mg/l	106	00		0.1	20
					410		mg/L	105	90	110		
Chromtum, tota		المراجع والمراجع والمراجع	M6010B (CP								
	MALLAN AND											
WG202973												
WG202973ICV	1CV	02/28/06 4:26	11050119-4	2		1,904	mg/L	95.2	90	110		
NG2029731CB	108	02/28/06 4:30				U	mg/L		-0.03	0.03		
WG202924PBW	PBW	02/28/06 4:47				u	mg/L		-0.03	0.03		
NG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1		.994	mg/L	99,4	60	120		
.55279-11MS	MS	02/28/08 5:08	#10XWATE	5	U	4.96	mg/L	99.2	75	125		
.55279-11MSD	MSD	02/28/06 5:12	HICXWATE	5	U	4.92	mg/L	98.4	75	125	0.81	20
Cobalt, total			M6010B I	CP				-				<u>.</u>
						対象の						
WG202973												
NG202973ICV	ICV	02/28/06 4:26	11060119-4	2		1.828	mg/L	91,4	90	110		
NG2029731CB	ICB	02/28/06 4:30				U	mg/L		-0.03	0.03		
NG202924PBW	PBW	02/28/05 4:47				Ū	mg/L		-0.03	0.03		
NG202924LCSW	LCSW	02/28/06 4:51	11060118-1	1,		.982	mg/L	98.2	80	120		
.55279-11MS	MS	02/28/06 5:08	IIIOXWATE	5	U	4.79	mg/L	95.8	75	125		
.55279-11MSO	MSD	02/28/06 5:12	IIIOXWATE	5	U	4,78	mg/L	95.2	75	125	0.63	20
Conductivity @	25C		M9050 · M	Aeter	<u> </u>	,						· · · · · · · · · · · · · · · · · · ·
	5.78 C			t politice Postories fri		<u>.</u>		123 - 33% 1911 - 1923				
WG202932												
NG202932PBW1	PBW	02/27/06 11:52				1.7	umbosica		-10	10		
NG202932LCSW1	LCSW	02/27/06 11:54	PCN23833	1409		1374	umhos/cn	97.5				
.55388-02DUP	DUP	02/27/06 13:44			15700	15540	umhos/cn	31.3	BO	120	•	70
NG202932P8W2	PBW	02/27/06 14:34			,	1.5	Jimhos/cn		-10	10	\$	20
NG2029321.CSW4	LCSW	02/27/06 14:35	PCNZ3833	1409		1386	unhos/cn	98.4	80	10 120		
() CZUZJJZLI J000												

ACZ Project ID: L55388

Kleinfelder, Inc.

Project ID:

66511

Copper, totai	-		M6010B	ICP									
									2253 S				
WG202973													
WG202973ICV	ICV	02/28/08 4:25	11060119-4	2		1.895	mg/L	94.5	90	110			
WG202973IC8	IC8	02/28/06 4:30		-		U	mg/L		-0.03	0.03			
WG202924PBW	PBW	02/28/05 4:47				U	– ուցքե		-0.03	0.03			
WG282924LCSW	LCSW	02/28/06 4:51	11060118-1	1		.979	mg/L	97.9	80	120			
55279-11MS	MS	02/28/05 5:08	110XWATE	5	U	4.85	mg/L	97	75	125			
.55279-11MSD	MSD	02/28/05 5:12	HIOXWATE	5	U	4.81	mg/L	96.2	75	125	0,83	20	
ron, dissolved			M6010B	ICP				·····		. <u></u> .		···· <u>·</u> ·····	
										\$ ROOM			
WG203294													
WG283294ICV	iCV	03/07/05 12:41	1060302-5	2		1.92	mg/L	96	S 0	110			
WG203294ICB	ICB	03/07/06 12:45				Ð	mg/i.		-0.06	0.05			
L55360-01AS	AS	03/07/06 13:05	1/060304-5	i	.06	1.067	mgA.	100.7	75	125			
.55360-01ASD	ASD	03/07/06 13:09	1060304-5	1	.05	1.069	mg/L	100.9	75	125	0.19	20	
Lead, lotal			M6010B	ICP						um.u ·		•	
													20 50
WG202973													
WG202973ICV	ICV	02/28/06 4:26	1060119-4	4		3.777	mg/L	94.4	90	110			
WG202973ICB	ICB	02/28/06 4:30				u	mg/L		-0.12	0,12			
WG202924PBW	PBW	02/28/06 4:47				U	mg/i.		-0.12	0.12			
WG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1		.978	mg/L	97.8	80	120			
L55279-11MS	MS	02/28/06 5:08	HOXWATE	10	U	9.78	mg/L	97.8	75	125			
L55279-11MSD	MSD	02/28/05 5:12	110XWATE	10	u	9,63	Ing/L	96.3	75	125	1.55	20	
Magnesium, dis	solved		M60108	ICP									
													i k
WG203294													
WG203294ICV	ICV	03/07/08 12:41	1060302-5	100		97.53	mg/L	97.5	90	110			
WG2032941CB	КB	03/07/06 12:45				ប	mg/L		-0,6	0.6			
L55360-01AS	AS	03/07/06 13:05	1060304-5	54.92926	46.3	99.95	mg/L	97.7	75	125			
155360-01ASD	A50	03/07/06 13:09	11060304-5	54.92926	46.3	99.7	mg/L	97.2	75	125	0.25	20	
Manganese, dis	solved		M6010B	ICP									
WG203294													
WG203294ICV	icv	03/07/06 12:41	11050302-5	2		1,9046	mg/L	95.2	90	110			
WG203294ICB	IC8	03/07/06 12:45				U	mg/L		-0.015	0.015			
L55360-01AS	AS	03/07/06 13:05	1050304-5	.5	.017	.52	mg/1.	100.6	75	125			
	ASD	03/07/06 13:09	1060304-5	.5	.017	.5206	mg/t,	100.7	75	125	0,12	20	

66511

Kleinfelder, Inc.

Project ID:

ACZ Project ID: L55388

Nickel, total			M6010B	ICP									
												- 10	
WG202973													
NG202973ICV	ICV	02/28/06 4:26	1060119-4	2		1.863	mg/L	93.2	90	110			
WG202973ICB	ICB	02/28/05 4:30				U	mg/L		-0.03	0.03			
NG202924PBW	PBW	02/28/06 4:47				u	- mg/L		-0.03	0.03			
NG202924LCSW	LCSW	02/28/06 4:51	1060118-1	1		.996	mg/L	99.6	80	120			
.65279-11MS	MS	02/28/06 5:08	II10XWATE	5	.1	4.87	mg/L	95.4	75	125			
.55279-11MSD	MSO	02/28/06 5:12	IIIOXWATE	5	.1	4.81	mg/L	94. 2	75	125	1.24	20	
Vilrate/Nitrite as	s N, diss	olved	M353.2 -	Automated	Cadmit	m Reduc	tion						
													25 N
NG202913													
VG202913ICV	ICV	02/24/06 17:47	WI051201-1	2.4083		2.388	mg/L	99.2	90	110			
VG202913ICB	ICB	02/24/06 17:48				u	mg/L		-0.06	0.06			
NG202913LFB	LFB	02/24/06 17:52	WI050914-3	2		2,006	mg/L	100.3	90	110			
55388-01AS	AS	02/24/06 17:54	WI050914-3	2	.5	2.519	mg/L	101	90	110			
.55388-02DUP	DUP	02/24/06 17:56			.1	.117	т <u>а</u> /L				15.7	20	R
litrite as N, dls	solved		M353.2 -	Automated	Cadmiu	m Reduc	lion	···					
									530				78. j
WG202913													
WG202913ICV	1CV	02/24/05 17:47	WI051201-1	.6092		.599	mg/L	88.3	90	110			
NG202913 CB	iC8	02/24/06 17:46				ប	mg/L		-0.03	0.03			
NG202913LF8	LF8	02/24/06 17:52	WID50914-3	1		1.003	mgR.	100.3	90	110			
55388-01AS	AS	02/24/06 17:54	WI050914-3	1	.61	1.021	mg/L	101.1	90	110			
55388-02DUP	DUP	02/24/06 17:56			U	U	mg/L				O	20	R
۶ħ			M9045C	M9040B									
											- 11 A F (2) 1 A F (2)		
WG202932													
NG202932LCSW3	LCSW	02/27/06 12:06	PCN23504	8		6.08	units	101.3	3 0	t 10			
.55388-02DUP	OUP	02/27/05 13:44			7.8	7.82	unils				0.3	20	
WG202932LCSW6	LCSW	02/27/06 14:50	PCN23504	6		6.09	unils	101.5	90	110			
WG202932LCSW8	LCSW	02/27/06 17:29	PCN23504	6		6.1	unils	101.7	90	110			
Potassium, dis	solved		M50108	ICP									
					8877		操 的 全						
WG203294													
	ICV	03/07/06 12:41	11060302-5	20		19.76	mg/L	98,8	90	110			
NG203294ICV	10.4												
	ICB	03/07/06 12:45				U	mg/L		·0.9	0.9			
WG203294ICV WG203294IC8 L55360-01AS		03/07/06 12:45 03/07/06 13:05	11060304-5	100.1604	1.6	U 109.4	mg/L mg/L	107.6	·0.9 75	0.9 125			

.

Kleinfelder, Inc.

Project ID:

66511

Residue, Filtera	ble (TDS	5) @180C	M160.1 -	Gravimetric	2								•
					374-51g							이 같은 것을 같은 것이다. 이 같은 것을 들었다. 이 같은 것을 들었다.	
WG203036													
VG203036PBW	PBW	02/28/06 15:20				U	mg/L		-20	20			
VG203036LCSW	LCSW	02/28/06 15:22	PCN23926	260		268	mg/L	103.1	192	325			
55426-02DUP	OUP	02/28/06 15:51			1090	1086	mg/L				0.4	20	
Selenium, total			SM 3114	B, AA-Hydr	ide								
18月1日日本市市1943年 19月1日年 - 日本市市19月1日 19月1日年 - 日本市市19月1日		要素的社会課								alan an taon an taon Na stàite an tao			
WG202938													
WG202936LRB	LRB	02/28/06 15:11				ឋ	mg/L		0.003	0.003			
NG202938LF8	LFB	02/2B/06 15:13	1060217-3	.02		.0195	mg/L	97.5	85	115			
.55326-10LFM	LFM	02/28/06 15:18	1060217-3	.02	U	.0198	mg/L	99	85	115			
.55326-10LFMD	LFMD	02/28/06 15:20	1060217-3	.02	U	.0197	mg/L	98.5	85	115	0.51	20	
Silver, total			M6010B (CP			, *********						
1. Sec. 1				序原始的			an an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an tha an Tha an tha unione al constante Transministrationes Transministrationes						
WG202973													
NG202973ICV	ICV	02/28/06 4:26	1060119-4	1		.838	mg/L	93.8	90	110			
NG202973ICB	ICB	02/28/06 4:30				U	mg/L		-0.03	0.03			
NG202924P8W	PBW	02/28/06 4:47				U	mg/L		-0.03	0.03			
WG202924LCSW	LCSW	02/28/06 4:51	11050118-1	.25		.248	mg/L	99,2	80	120			
55279-11MS	MS	02/28/05 5:08	III0XWATE	5	Ľ	4.84	mg/L	96.8	75	125			
.55279-11MSD	MSD	02/28/06 5:12	U10XWATE	5	U	4.85	mg/L	97	75	125	0.21	20	
Sodium, dissolv	ved		M6010B (CP									
1997 (SA)													
WG203294								•					
WG203294ICV	ICV	03/07/06 12:41	11060302-5	100		100.5	mg/L	100.5	90	110			
WG203294ICB	ICB	03/07/06 12:45				U	mgiL		0.9	0.9			
L55360-01AS	AS	03/07/06 13:05	1060304-5	99.34137	19.7	119.84	mg/L	100.6	75	125			
55360-01ASD	ASO	03/07/08 13:09	11050304-5	99.34137	19.7	118.86	mg/L	99.ä	75	125	0.65	20	
Sulfate			SM4500	SO4-D									
											ens dies		
WG203074													
WG203074PBW	P8W	03/01/06 12:00				U	ուց/Լ		+30	30			
WG203074LCSW	LCSW	03/01/06 12:01	WC860112-3	100		104	mg/L	104	60	120		•	
L55404-01DUP	DUP	03/01/06 12:15			u	U	mg/L				0	20	
WG203953													
WG203953PBW	PBW	03/23/06 17:14				U	mg/L		-30	30			
WG203953LCSW	LCSW	03/23/06 17:15	WC060112-3	100		95	mg/L	95	80	120			
L55667-01DUP	DUP	03/23/06 17:34			U	12	mg/L				200	20	

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-6493

Kleinfelder, Inc.

Project ID: 66511

ACZ Project ID: L55388

Thallium, totai			M6020 IC	P-MS									
													5
WG203104	1.1												
WG203104ICV	ICV	03/01/06 18:56	MS060215-2	.0546		.05592	mg/L	102.4	90	110			
WG203104IC8	ICB	03/01/06 19:02				U	mg/L		-0.0003	0.0003			
WG203017PBW	PBW	03/01/08 20:42				u	mg/L		-0.0003	0.0003			
WG203017LCSW	LCSW	03/01/06 20:48	MS060215-2	.0546		.05603	mg/L	102.6	80	120			
L55368-02MS	MS	03/01/06 21:11	MS080116-3	.05	.0003	.05978	mg/L	119	75	125			
.55388-02MSD	MSD	03/01/08 21:17	MS060116-3	.05	.0003	.05948	mgil.	118.4	75	125	0.5	20	
Vanadium, total	[M6010B I	CP									
											1472		
WG202973													
NG202973ICV	ICV	02/28/06 4:25	11080119-4	2		1.9081	mg/L	95.4	90	110			
NG202973ICB	ICB	02/28/06 4:30				u	mg/L		-0.015	0.015			
NG202924PBW	PBW	02/28/06 4:47				u	mg/L		-0.015	0.015			
NG202924LCSW	LCSW	02/28/06 4:51	11060118-1	1		.9934	mg/L	99.3	80	120			
55279-11MS	MS	02/28/06 5:08	II10XWATE	5	.18	5.089	mg/L	98.2	75	125			
55279-11MSD	MSD	02/28/06 5:12	HIDXWATE	5	.18	5.049	mg/L	97.4	75	125	0.79	20	
Zinc, total			M60108 k	CP		<u> </u>				-			
WG202973													
NG202973 CV	ICV	02/28/06 4:26	1060119-4	2		1.901	mg/L	95. 1	90	110			
NG202973ICB	.iCB	02/28/06 4:30				u	mg/L		-0.03	0.03			
NG202924PBW	PBW	02/28/06 4:47				Ų	mg/L		-0.93	0.03			
WG202924LCSW	LCSW	02/28/06 4:51	H060118-1	1		1.003	mg/L	100.3	80	120			
.55279-11MS	MS	02/28/06 5:08	HIOXWATE	5	.3	5.22	mg/∟	98.4	75	125			

.

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

ACZ Project ID: L55388

新新安全 和					
1.55388-01	WG203104	Antimony, total	M6020 ICP-MS	M2	Matrix spike recovery was low, the method control sample recovery was acceptable.
	WG203294	Iron, dissolved	M6010B ICP	ZG	The ICP Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG203104	Thailium, Iolai	M6020 ICP-MS	ZB	The ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 100 times the MDL.
	WG202973	Zinc, total	M60108 ICP	ZG	The ICP Sorial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG204002	Chiorde	M325.2 · Colorimetric	C4	Confirmatory analysis was past holding time.
	WG202913	Nivale/Ninite as N, dissolved	M353.2 - Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nilfile as N, dissolved	M353.2 · Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data volidation because the sample concentration is too low for accurate evaluation (< 10x MDL).
	WG203953	Suilale	SM4500 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is lot low for accurate evaluation (< 10x MDL).
	WG204008	Tolal Alkalinity	SM2320B · Tilration	C4	Confirmatory analysis was past holding time.
L55388-02	WG203104	Anlimony, Iolal	M6020 ICP-MS	M2	Malrix spike recovery was low, the method control sample recovery was acceptable.
	WG203294	iran, dissolved	M60103 ICP	ZG	The ICP Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MOL.
	WG203104	Thalifum, total	M6020 ICP-MS	ΖÐ	The ICP-MS Serial Dilution was not used for data validation because the sample concentration was less than 100 times the MDL
	WG202973	Zinc, lotal	M90108 ICP	ZG	The ICP Serial Dilution was not used for data validation because the sample concentration was less than 50 times the MDL.
	WG202913	Närsle/Nihile as N, dissolved	M353.2 · Automated Cadmium Reduction	RA	Relative Percent Difference (RPD) was not used for data validation because the sample concentration is too low for accurate evaluation (< 10x MDL).
		Nitrite as N. dissolvad	M353,2 - Automated Cadmium Reduction	RA	
	WG203038	Residua, Fillerable (TDS) @160C	M160.1 · Gravimetric	ZO	TDS concentration is based on a final residue greater thon 200 mg.
	WG203074	Sullete	SM4590 SO4-D	RA	Relative Percent Difference (RPD) was not used for data validation because the semple concentration is too low for accurate evaluation (< 10x MDL).

REPAD.15.06.05.01

ACZ La							
	6511 GW-1		ACZ Sample ID: Date Sampled: Date Received:	02	5388-0 23/06 24/06	0:00	
Locator:			Sample Matrix:		ound V		
Analysis Metho Extract Metho Compound		S	Analyst: Extract Date: Analysis Date: Dilution Factor:	03		23:06 23:06	
1,1,1,2-Tetrachloroethar	IÐ.	000630-20-6	Ų	•	ug/L	0.5	1
1,1,1-Trichloroethane		000071-55-6	u	٠	ug/L	0.5	. 2
1,1,2,2-Tetrachloroethar	18	000079-34-5	U	٠	ug/Ł	0.5	1
1,1,2-Trichloroelhane		000079-00-5	U	٠	սց/Լ	0.5	1
1,1-Dichloroethane		000075-34-3	, U	٠	ug/L	0.5	1
1,1-Dichloroethene		000075-35-4	U	٠	ug/L	0.5	1

000096-18-4

000096-12-8

000106-93-4

000095-50-1

000107-06-2

000078-87-5

000541.73-1

000108-46-7

000078-93-3

000591-78-6

000108-10-1

000067-64-1

000107-13-1

000071-43-2

000074-97-5

000075-27-4

000075-25-2

000074-83-9

000075-15-0

000056-23-5

000108-90-7

000075-00-3

000067-66-3

000074-87-3

000156-59-2

010061-01-5

000124-48-1

000074-95-3

000075-71-8

REPOR.02.06.05.01

Dibromomethane

1,2,3-Trichloropropane

1,2-Dibromoethane

1,2-Dichloroelhane

1,2-Dichloropropane

1,3 Dichlorobenzene

1,4-Dichlorobenzene

4-Melhyl-2-Pentanone

Bromochloromethane

Bromodichloromethane

2-Bulanone

2-Hexanone

Acelone

Benzene

Acrylonitrile

Bromoform

Bromomelhane

Carbon Disulfide

Chlorobenzene

Chloromethane

cis-1,2 Dichloroethene

cis-1,3-Dichloropropene

Dibromochioromethane

Dichlorodifluoromelhane

Chloroelhane

Chloroform

Carbon Tetrachloride

1,2-Dichlorobanzene

1,2-Dibromo-3-chloropropane

Please refer to Extended Qualifier Report for details.

۱

t

1

1

ŧ

1

1

1

2

2

2

2

2

1

1

1

1

2

1

1

1

2

1

1

1

1

1

1

1

U

U

U

U

U

υ

U

U

U

U

U

υ

U

U

U

υ

U

U

U

υ

U

Ų

U

U

U

U

U

4.3

17.5

ug/L

սց/Լ

ug/L

ug/L

ua/L

ug/L

ug/L,

ug/L

ug/iL

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

.ug/L

ug/L

ug/L

ug/i.

սց/Լ

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ชg/L

ug/L

٠

.

*

÷

÷

.

*

*

.

.

•

.

÷

*

٠

*

.

.

.

٠

.

0.5

0,5

0.5

0.5

0.5

0,5

0.5

0.5

0.5

0.5

0,5

0.5

0.5

0.5

0.5

0.5

0.5

0.5.

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc. Project ID: Sample ID: Locator:	66511 GW-1		Date S Date R	mple ID: Sampled: eceived: e Matrix:	02 02	55388-0 2/23/06 2/24/06 round V	0:00	
Ethylbenzene		000100-41-4	12.3		*	սց/Լ	0.5	1
lodomethane		000074-88-4		U	٠	ug/L	0.5	1
m,p-Xylene		001330 20 7		u	•	ug/L	0.5	1
Methylene Chloride		000075-09-2		U	٠	ug/L	0.5	1
o-Xylene		000096-47-6		U	*	ug/L	0,5	1
Styrene		000100-42-5		U	٠	ug/L	0.5	1
Tetrachioroethene		000127-18-4		U	٠	սց/է	0.5	1
Toluene		000108-88-3		ប	٠	ug/L	0.5	1
trans-1,2-Dtchloroe	thene	000156-80-5		U	*	ug/L	0.5	1
trans-1,3 Dichlorop	rapene	010061-02-6		บ	*	ug/L	0.5	1
trans-1,4 Dichloro-2	2-butene	000110-57-6		u	٠	ug/L	0.5	1
Trichloroathene		000079-01-5	8.1		٠	ug/L	0.5	1
Trichlorofluorometh	ane	000075-69-4		U	*	ug/L	0.5	1
Vinyl Acetate		000108-05-4		U	٠	սց/է	0.5	2
Vinyl Chloride		000075-01-4	4.3		*	ug/L	0.5	2
Surrogale Recoveri	85							
Bromofluorobenzen	e	000460-00-4	111.3		٠	%	86	115
Dibromofillarametha	ane	001868-53-7	86.4		٠	%	86	118
Toluene-d8		002037-26-5	104.6		٠	%	88	110

ACZ	Laboratories,	lnc.
2773 Downhill Drive	Steamboat Springs, CO 60-	487 (800) 334 5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: GW-2 Locator:

Analysis Method: M8260B GC/MS Extract Method: Method ACZ Sample ID: L55388-02 Date Sampled: 02/23/06 0:00 Date Received: 02/24/06 Sample Matrix: Ground Water

Analyst: jj Extract Date: 03/08/06 22:22 Analysis Date: 03/08/06 22:22 Dilution Factor: 1

Compound

1,1,1,2-Tetrachloroelhane	000630-20-6		U	٠	ug/L	0.5	1
1,1,1-Trichloroethane	000071-55-6		U	*	ug/L	0.5	2
1,1,2,2-Tetrachloroelhane	000079-34-5		υ	•	ug/L	0.5	1
1,1,2-Trichloroethane	000079-00-5		U	٠	ug/L	0,5	1
1,1-Dichloroethane	000075-34-3		ប	٠	ug/L	0.5	1
1,1-Dichloroelhene	000075-35-4		U	•	ug/L	0.5	1
1,2,3-Trichloropropane	000095-18-4		ប	٠	ug/L	0.5	1
1,2-Olbromo 3 chloropropane	000096-12-8		U	+	ug/L	0.5	1
1,2-Dibromoethane	000108-93-4		U	*	ug/L	0,5	1
1,2-Dichlorobenzene	000095-50-1		ប	*	ug/L	0.5	1
1,2-Dichloroethane	000107-05-2		U	٠	ug/L	0.5	1
1,2-Dichloropropane	000078-87-5		U	٠	ug/L	0,5	1
1,3-Dichlorobenzene	000541-73-1		υ	٠	ug/L	0.5	1
1,4 Dichlorobenzene	000106-46-7		U	•	eg/L	0.5	1
2-Bulanone	000078-93-3		· U	•	ug/L	0. 5	2
2-Hexanone	000591-78-6		U	٠	ug/L	0.5	2
4-Melhyl-2-Penlanone	000108-10-1		U	٠	80/L	0.5	2
Acetone	000067-64-1		U	٠	ug/L	0,5	2
Acrytonitrile	000107-13-1		U i	*	ug/L	0,5	2
Benzene	000071-43-2		Ų	٠	ug/L	0.5	1
Bromochloromethane	000074-97-5		U	٠	ug/L	0.5	1
Bromodichloromethane	000075-27-4		U	٠	ug/L	0.5	1
Bromoform	000075-25-2		Ų	•	ug/L	0.5	1
Bromomethane	000074-83-9		U	٠	ug/L	0.5	2
Carbon Disulfide	000075-15-0		ប	٠	ug/L	0.5	1
Carbon Tetrachioride	000056-23-5		U	•	ug/L	0.5	1
Chlorobenzene	000108-90-7		U	٠	ug/L	0.5	1
Chioroethane	000075-00-3		U	٠	սց/Լ	0.5	2
Chloroform	000067-66-3		U	٠	ug/L	0.5	1
Chloromelhane	000074-87-3		U	•	ug/L	0.5	1
cis-1,2-Dichloroethene	000156-59-2	29.B		٠	ug/L	0,5	1
cls-1,3-Dichloropropene	010061-01-5		ป	٠	ug/L	0.5	1
Dibromochloromethane	000124-48-1		U	٠	ug/L	0.5	1
Dibromomethane	000074-95-3		U	٠	ug/L	0.5	1
Dichlorodifluoromethane	000075-71-8		U	٠	ug/L	0.5	1

REPOR.02.06.05.01

* Please refer to Extended Qualifier Report for details.

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc. Project ID: 66511 Sample ID: GW-2 Locator:		ACZ Samp Date Sam Date Rece Sample M	pled: eived:	02/: 02/:	5 388-0 23/06 24/06 5und V	0:00	
Ethylbenzene	000100-41-4		U	*	ug/L	0.5	1
lodomethane	000074-88-4		u	٠	ug/L	0.5	1
m,p-Xylene	001330 20 7		U		- Ug/L	0.5	1
Methylene Chloride	000075-09-2		U	•	ug/L	0.5	1
o-Xylene	000095-47-6	·	U		ug/L	0.5	1
Slyrene	000100-42-5		U	٠	ug/L	0.5	1
Telrachloroethene	000127-18-4		U	٠	ug/L	0.5	1
Toluane	000108-88-3		U	•	- υς/ί	0.5	1
Irans 1,2-Dichloroelhene	000156-60-5		U		ug/L	0.5	1
Irans-1,3 Dichioropropene	010061-02-6		U	•	ug/L	0.5	1
trans-1,4-Dichloro-2-butene	000110-57-6		U		ug/L	0.5	1
Trichloroethene	000079-01-6	12			սց/Լ	0.5	1
Trichlorofluoromethane	000075-69-4		U	•	ug/L	0.5	1
Vinyi Acetale	000100-05-4		U	•	- 4g/L	0.5	2
Vinyl Chloride	000075-01-4		U		ug/L	0.5	2
Surrogate Recoveries							
Bromofluorobenzene	000460-00-4	64.4		*	%	86	115
Dibromofluoromethene	001868-53-7	104.2		٠	%	86	118
Toluene-d8	002037-26-5	103.7		٠	%	88	110

.

ACZ	Laboratorio	es,	Inc		
222 David David	Alexandread Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual A			 -	

2773 Downhill Drive Steamboet Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511 Sample ID: TB022106-02 Locator:

Analysis Method: M8260B GC/MS Extract Method: Method

ACZ Sample ID: L55388-03 Date Sampled: 02/23/06 0:00 Date Received: 02/24/06 Sample Matrix: Ground Water

 Analyst:
 jj

 Extract Date:
 03/08/06 21:38

 Analysis Date:
 03/08/06 21:38

 Dilution Factor:
 1

Compound

1.1.1.2 Tetrachioroeihane 000830.20.5 U • ug/L 0.5 1 1.1.1 Trichioroeihane 000071.55.6 U • ug/L 0.5 1 1.2.2 Trichioroeihane 000075.34-3 U • ug/L 0.5 1 1.1.2 Trichioroeihane 000075.35-4 U • ug/L 0.5 1 1.1.Dichioroeihane 000075.35-4 U • ug/L 0.5 1 1.2.3 Trichioropropane 000085.12.8 U • ug/L 0.5 1 1.2.Dibioroeihane 000078-47.5 U • ug/L 0.5 1 1.2.Dibioroeihane 000085.50 U • ug/L 0.5 1 1.2.Dibioroebrazene 000078-47.5 U • ug/L 0.5 1 1.3.Dichioroberzene 000168-66.7 U • ug/L 0.5 1 1.4.Dichioroberzene 000168-46.7 U • ug/L 0.5 1 1.4.Dichioroberzene 000168-10 U • ug/L 0.5				いた たいで、これ たいで、少い		
1,1,2,2-Tetrachioroethane 000079-34-5 U UgL 0.5 1 1,1,2-Tichloforcethane 000075-35-4 U UgL 0.5 1 1,1-Dichloroethane 000075-35-4 U UgL 0.5 1 1,2-Dichloroethane 000075-35-4 U UgL 0.5 1 1,2-Dichloroethane 000086-18-4 U UgL 0.5 1 1,2-Dichloroethane 000085-51 U U UgL 0.5 1 1,2-Dichloroethane 00018-63-4 U UgL 0.5 1 1,2-Dichloroethane 00018-63-4 U UgL 0.5 1 1,2-Dichloroberzen 000085-65 U UgL 0.5 1 1,2-Dichloroberzene 00018-617 U UgL 0.5 1 1,4-Dichloroberzene 000051-76-62 U UgL 0.5 2 2-Hearone 000078-93-3 U UgL 0.5 2 2-Hearone 000061-61-1 U UgL 0.5 2 Arestone 000071-83-	1,1,1,2 Tetrachloroelhane	000630-20-6	U	• ug/L	0.5	1
1,1,2-Trichloroethane 000079-00-5 U • ugit 0.5 1 1,1-Dichloroethane 000075-33-4 U • ugit 0.5 1 1,2-Trichloropropane 000096-18-4 U • ugit 0.5 1 1,2-Dibromo-3-chloropropane 000096-12-8 U • ugit 0.5 1 1,2-Dibromo-3-chloropropane 000095-50:1 U • ugit 0.5 1 1,2-Dibromo-3-chloropropane 000096-12-8 U • ugit 0.5 1 1,2-Dibromo-3-chloropropane 000096-50:1 U • ugit 0.5 1 1,2-Dichloroethane 000078-67:5 U • ugit 0.5 1 1,2-Dichloroethane 000078-93:3 U • ugit 0.5 1 1,3-Dichloroethane 00016-10:1 U • ugit 0.5 2 2-Hexanone 000078-93:3 U • ugit 0.5 2 4-Methyl-2-Pentanone 000071-13:1 U • ugit 0.5 2 4-Methyl-2-Pentanone 000074-97-5 U • ugit 0.5	1,1,1-Trichioroethane	000071-55-6	U	• ug/L	0.5	2
1.1-Dichloroeihane 000075-35-4 U * ug/t 0.5 1 1.1-Dichloroeihane 000075-35-4 U * ug/t 0.5 1 1.2.3-Trichloropropane 000095-12.8 U * ug/t 0.5 1 1.2-Dibromo-3-chioropropane 000095-12.8 U * ug/t 0.5 1 1.2-Dibromo-3-chioropropane 000095-50.1 U * ug/t 0.5 1 1.2-Dibromo-s-achioropropane 000095-60.1 U * ug/t 0.5 1 1.2-Dibromo-s-achioropropane 000078-75 U * ug/t 0.5 1 1.2-Dichlorobenzene 000078-87.5 U * ug/t 0.5 1 1.4-Dichlorobenzene 000166-67 U * ug/t 0.5 2 2-Butanone 000076-93-3 U * ug/t 0.5 2 2-Hexanone 000076-91-76-6 U * ug/t 0.5 2 4-Methyl-2-Pentanone 000067-6-1 U * ug/t 0.5 2 Acryonfirlie 000075-74 U * ug/t 0.5 1	1,1,2,2-Tetrachioroelhane	000079-34-5	U	• ug/L	0.5	1
1.1.Dichkorosihene 000075.35.4 U ug/L 0.5 1 1.2.3-Trichkoropropane 000096-13.4 U • ug/L 0.5 1 1.2.Dibromo-3-chkoropropane 000096-12.8 U • ug/L 0.5 1 1.2.Dibromo-a-s-chkoropropane 000096-32.4 U • ug/L 0.5 1 1.2.Dichkoropropane 000078-87.5 U • ug/L 0.5 1 1.2.Dichkorobenzene 000078-87.5 U • ug/L 0.5 1 1.4.Dichkorobenzene 000078-93.3 U • ug/L 0.5 2 2-Hexanone 00008-14.67 U • ug/L 0.5 2 2-Hexanone 00008-14.67 U • ug/L 0.5 2 2-Hexanone 00008-14.67 U • ug/L 0.5 2 2-Hexanone 00008-14.1 U • ug/L 0.5 2 Acetone 000067-64.1 U • ug/L 0.5 2 Acetone </td <td>1,1,2-Trichloroethane</td> <td>000079-00-5</td> <td>U</td> <td>ug/L</td> <td>0.5</td> <td>1</td>	1,1,2-Trichloroethane	000079-00-5	U	ug/L	0.5	1
1.2.3-Trichloropropane 00008-18.4 U ug/L 0.5 1 1.2-Dibromo-3-chloropropane 000095-12.8 U ug/L 0.5 1 1.2-Dibromoelhane 000095-50.1 U ug/L 0.5 1 1.2-Dichlorobenzene 000095-50.1 U ug/L 0.5 1 1.2-Dichlorobenzene 00007-62.2 U ug/L 0.5 1 1.2-Dichlorobenzene 00007-87-5 U ug/L 0.5 1 1.2-Dichlorobenzene 000078-93-3 U ug/L 0.5 1 1.4-Dichlorobenzene 000078-93-3 U ug/L 0.5 2 2-Butanone 000078-93-3 U ug/L 0.5 2 4-Mathyl-2-Pestanone 000067-64-1 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 1 Bromochloromethane 000075-22	1,1-Dichloroethane	000075-34-3	u -	ug/L	0.5	1
1.2-Dibromo-3-chioropropane 000095-12.8 U ug/L 0.5 1 1.2-Dibromoalhane 000095.50.1 U ug/L 0.5 1 1.2-Dichlorobenzene 000097.46-2 U ug/L 0.5 1 1.2-Dichloropinpane 000074-6-2 U ug/L 0.5 1 1.2-Dichloropinpane 000074-87-5 U ug/L 0.5 1 1.3-Dichlorobenzene 000106-46-7 U ug/L 0.5 1 1.4-Dichlorobenzene 000078-33.3 U ug/L 0.5 2 2-Hexanone 000071-78-6 U ug/L 0.5 2 4-Melhyl-2-Pentanone 000067-64-1 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 2 Acetone 000074-97-5 U ug/L 0.5 1 Bromochloromethane 000075-27-4 U ug/L 0.5 1 Bromochloromethane 000075-27-2 U ug/L 0.5 1 Bromochloromethane 0000075-	1,1-Dichloroelhene	000075-35-4	ا ل	ug/L	0.5	1
1.2. Dibromeethane 000106-33-4 U ug/L 0.5 1 1.2. Dichlorobenzene 000095-50.1 U ug/L 0.5 1 1.2. Dichlorobenzene 000078-87.5 U ug/L 0.5 1 1.3. Dichlorobenzene 000078-87.5 U ug/L 0.5 1 1.3. Dichlorobenzene 000078-93-3 U ug/L 0.5 2 2-Butanone 000067-64-1 U ug/L 0.5 2 4-Melhyl-2-Pentanone 000067-64-1 U ug/L 0.5 2 Acetone 000074-37.5 U ug/L 0.5 2 Acetone 000067-64-1 U ug/L 0.5 2 Acetone 000074-37-5 U ug/L 0.5 1 Bromochloromethane 000075-7-4 U ug/L 0.5 1 Bromodichloromethane 000075-15-0 U ug/L 0.5 1 Bromodichloromethane 000075-15-0 U ug/L 0.5 1 Carbon Tetrachloride 000075-15-0	1,2,3-Trichloropropane	000096-18-4	U ·	ug/L	0.5	1
1.2 Dichlorobenzene 000095:50.1 U • ug/L 0.5 1 1.2 Dichloroethane 000107-06-2 U • ug/L 0.5 1 1.2 Dichloroppane 000078-87-5 U • ug/L 0.5 1 1.3 Dichlorobenzene 000106-46-7 U • ug/L 0.5 1 2-Butanone 000078-93-3 U • ug/L 0.5 2 4-Melhyl-2-Pentanone 000067-64-1 U • ug/L 0.5 2 Acelone 000074-97-5 U • ug/L 0.5 2 Acetone 0000074-97-5 U • ug/L 0.5 1 Bromochloromethane 000074-97-5 U • ug/L 0.5 1 Bromochloromethane 000075-27-4 U • ug/L 0.5 1 Bromochloromethane 000075-25-5 U • ug/L 0.5 1 Bromochloromethane 000075-27-4 U • ug/L 0.5 1 Bromochloromethane 000075-27-5 U • ug/L 0.5 1 Bromochloromethane	1,2-Dibromo-3-chioropropane	000095-12-8	U ·	• ug/L	0,5	1
12. Dichloroethane 000107-05-2 U ug/L 0.5 1 1.2. Dichloroppane 000078-87-5 U ug/L 0.5 1 1.3. Dichlorobenzena 000074-67 U ug/L 0.5 1 1.4. Dichlorobenzena 000078-93-3 U ug/L 0.5 2 2-Butanone 000078-93-3 U ug/L 0.5 2 2-Haxanone 000078-93-3 U ug/L 0.5 2 4-Melhyl-2-Pentanone 000067-64-1 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 2 Benzone 000074-87-5 U ug/L 0.5 1 Bromochloromethane 000075-25-2 U ug/L 0.5 1 Bromodichloromethane 000076-83-3 U ug/L 0.5 1 Bromochloromethane 000074-87-5 U ug/L 0.5 1 Bromochloromethane 000075-15-0 U ug/L 0.5 1 Carbon Tetrachloride 000058-23-5	1,2 Dibromoelhane	000106-93-4	U	ug/L	0.5	1
1.2-Dichloropropane 000078-87.5 U ug/L 0.5 1 1.3-Dichlorobenzene 000078-87.5 U ug/L 0.5 1 1.4-Dichlorobenzene 000078-93-3 U ug/L 0.5 2 2-Butanone 000078-93-3 U ug/L 0.5 2 2-Hexanone 000078-78-6 U ug/L 0.5 2 4-Melhyl-2-Pentanone 000076-64-1 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 2 Acrytonlirike 000074-87-5 U ug/L 0.5 1 Bromodichoromethane 000074-87-5 U ug/L 0.5 1 Bromodichoromethane 000075-25-2 U ug/L 0.5 1 Bromodichoromethane 000075-15-0 U ug/L 0.5 1 Carbon Disulfide 000075-0-3 U ug/L 0.5 1 Chioromethane 000075-00-3 U ug/L 0.5 1 Chononethane 000075-00-3 U </td <td>1,2 Dichlorobenzene</td> <td>000095-50-1</td> <td>Ű</td> <td>ug/L</td> <td>0.5</td> <td>1</td>	1,2 Dichlorobenzene	000095-50-1	Ű	ug/L	0.5	1
1.3-Dichlorobenzens 000541-73-1 U ug/L 0.5 1 1.4-Dichlorobenzene 000106-46-7 U ug/L 0.5 1 2-Butanone 000078-93-3 U ug/L 0.5 2 2-Hexanone 0000591-76-6 U ug/L 0.5 2 4-Melhyl-2-Pentanone 000067-64-1 U ug/L 0.5 2 Acetone 000071-43-2 U ug/L 0.5 2 Benzane 000074-97-5 U ug/L 0.5 1 Bromodichloromethane 000075-27-4 U ug/L 0.5 1 Bromodichloromethane 000075-15-0 U ug/L 0.5 1 Bromodichloromethane 000075-25-2 U ug/L 0.5 1 Bromoderthane 000075-15-0 U ug/L 0.5 1 Carbon Tetrachloride 000075-37-5 U ug/L 0.5 1 Chlorobenzene 000075-15-0 U ug/L 0.5 1 Choron Tetrachloride 000075-03	1,2·Dichloroethane	000107-36-2	U	ug/L	0,5	1
1.4-Dichlorobenzene 000106-67 U ug/L 0.5 1 2-Butanone 000078-93-3 U ug/L 0.5 2 2-Haxanone 000078-93-3 U ug/L 0.5 2 2-Haxanone 000078-93-3 U ug/L 0.5 2 4-Melhyl-2-Pentanone 000067-64-1 U ug/L 0.5 2 Acatone 000071-43-2 U ug/L 0.5 2 Benzane 000074-97-5 U ug/L 0.5 1 Bromodichloromethane 000075-27-4 U ug/L 0.5 1 Bromodichloromethane 000076-83-9 U ug/L 0.5 1 Carbon Disulfide 000076-83-9 U ug/L 0.5 1 Chlorobonzene 000108-0.7 U	1,2-Dichloropropane	000078-87-5	ឋ	⁺ ug/L	0.5	1
2-Butanone 000078-93-3 U U Ug/L 0.5 2 2-Hexanone 000591-78-6 U U Ug/L 0.5 2 4-Methyl-2-Pentanone 000076-64-1 U U Ug/L 0.5 2 Acetone 000071-43.2 U U Ug/L 0.5 2 Acetyonilritle 000074-97-5 U U Ug/L 0.5 1 Bromochloromethane 000075-27-4 U U Ug/L 0.5 1 Bromomethane 000075-25-2 U U Ug/L 0.5 1 Bromomethane 000074-83-9 U U Ug/L 0.5 1 Bromomethane 000075-25-2 U U Ug/L 0.5 1 Bromomethane 000076-15-0 U U Ug/L 0.5 1 Carbon Tetrachloride 000056-23-5 U U Ug/L 0.5 1 Chlorobanzene 000108-90-7 U U Ug/L 0.5 1 Chloroform 00006	1,3-Dichlorobenzens	090541-73-1	U	• ug/L	0,5	1
2-Hexanone 000591-78-6 U • ug/L 0.5 2 4-Melhyl-2-Pentanone 000108-10-1 U • ug/L 0.5 2 Acetone 000067-64-1 U • ug/L 0.5 2 Acrytonlirile 000107-13-1 U • ug/L 0.5 2 Benzane 000074-97-5 U • ug/L 0.5 1 Bromochloromethane 000075-27-4 U • ug/L 0.5 1 Bromodichloromethane 000075-25-2 U • ug/L 0.5 1 Bromoderm 000075-25-2 U • ug/L 0.5 1 Bromothane 000076-15-0 U • ug/L 0.5 1 Carbon Tetrachloride 000076-05-3 U • ug/L 0.5 1 Chlorobanzene 000108-90-7 U • ug/L 0.5 1 Chlorobinzene 000074-87-3 U • ug/L 0.5 1 Chlorobinzene 00	1,4-Dichlorobenzene	000106-46-7	ម	* ug/L	0.5	1
4-Melhyl-2-Pentanone 000108-10-11 U ug/L 0.5 2 Acetone 000067-64-1 U ug/L 0.5 2 Acryfonllrile 000071-43-2 U ug/L 0.5 2 Benzane 000074-97-5 U ug/L 0.5 1 Bromochloromethane 000075-27-4 U ug/L 0.5 1 Bromodichloromethane 000075-25-2 U ug/L 0.5 1 Bromodichloromethane 000075-25-2 U ug/L 0.5 1 Bromodichloromethane 000075-25-2 U ug/L 0.5 1 Bromomethane 000075-15-0 U ug/L 0.5 1 Carbon Tetrachoride 000076-15-0 U ug/L 0.5 1 Chlorobanzene 000075-07-3 U ug/L 0.5 1 Chlorobanzene 000075-00-3 U ug/L 0.5 1 Chlorobanzene 000076-66-3 U ug/L 0.5 1 Chloroform 0000074-87-3 U	2-Butanone	000078-93-3	U	ug/L	0.5	2
Acetone 000067-64-1 U U Ug/L 0.5 2 Acrytonllrite 00017-13-1 U U Ug/L 0.5 2 Benzene 000071-43-2 U U Ug/L 0.5 1 Bromochloromethane 000074-97-5 U U Ug/L 0.5 1 Bromochloromethane 000075-27-4 U U Ug/L 0.5 1 Bromodichloromethane 000075-25-2 U Ug/L 0.5 1 Bromomethane 000076-81-0 U Ug/L 0.5 1 Bromomethane 000076-81-0 U Ug/L 0.5 1 Carbon Disuifide 000076-81-0 U Ug/L 0.5 1 Carbon Tetrachloride 000058-23-5 U Ug/L 0.5 1 Chlorobenzene 000075-00-3 U Ug/L 0.5 1 Chlorobenzene 000074-87-3 U Ug/L 0.5 1 Chlorobenzene 000076-65-3 U Ug/L 0.5 1	2-Hexanone	000591-78-6	U	• ug/L	0.5	2
Acrylonllrile 000107-13-1 U U Ug/L 0.5 2 Benzene 000071-43-2 U U ug/L 0.5 1 Bromochloromethane 000074-97-5 U U ug/L 0.5 1 Bromodichloromethane 000075-27-4 U U ug/L 0.5 1 Bromodichloromethane 000075-25-2 U U ug/L 0.5 1 Bromodichloromethane 000074-83-5 U ug/L 0.5 1 Bromodichloromethane 000074-83-5 U ug/L 0.5 1 Bromodichloromethane 000076-55-2 U ug/L 0.5 1 Bromodichloromethane 000076-65-3 U ug/L 0.5 1 Carbon Tetrachloride 000058-23-5 U ug/L 0.5 1 Chlorobenzene 000108-90-7 U ug/L 0.5 1 Chloroform 000027-65-3 U ug/L 0.5 1 Chloroform 000027-65-3 U ug/L 0.5	4-Melhyl-2-Pentanone	000108-10-1	U .	ំ មg/L	0.5	2
Benzane 000071-43-2 U • ug/L 0.5 1 Bromochloromethane 000074-97-5 U • ug/L 0.5 1 Bromodichloromethane 000075-27-4 U • ug/L 0.5 1 Bromodichloromethane 000075-25-2 U • ug/L 0.5 1 Bromomethane 000074-83-9 U • ug/L 0.5 1 Bromomethane 000075-25-2 U • ug/L 0.5 1 Bromomethane 000076-15-0 U • ug/L 0.5 1 Carbon Disulfide 000058-23-5 U • ug/L 0.5 1 Chlorobenzene 000108-90-7 U • ug/L 0.5 1 Chloroform 000067-65-3 U • ug/L 0.5 1 Chloroform 000067-65-3 U • ug/L 0.5 1 Chloroform 0000166-59-2 U • ug/L 0.5 1 cis-1,2-Olchloropropene	Acelone	000067-64-1	U	ug/L	0.5	2
Bromochloromethane 000074-97-5 U ug/L 0.5 1 Bromodichloromethane 000075-27-4 U ug/L 0.5 1 Bromodichloromethane 000075-25-2 U ug/L 0.5 1 Bromomethane 000075-25-2 U ug/L 0.5 1 Bromomethane 000075-25-2 U ug/L 0.5 1 Bromomethane 000076-15-0 U ug/L 0.5 1 Carbon Disulfide 000058-23-5 U ug/L 0.5 1 Carbon Tetrachloride 000058-23-5 U ug/L 0.5 1 Chlorobenzene 000108-90-7 U ug/L 0.5 1 Chlorobenzene 000076-65-3 U ug/L 0.5 1 Chloroform 000067-65-3 U ug/L 0.5 1 Chloroform 000074-87-3 U ug/L 0.5 1 Chloroform 000074-87-3 U ug/L 0.5 1 cls-1,2-Olchloropropene 010061-01-5 U	AcrylonIIrite	000107-13-1	U T -	t ug/L	0.5	2
Bromodichloromethane 000075-27-4 U ug/L 0,5 1 Bromoform 000075-25-2 U ug/L 0,5 1 Bromomethane 000074-83-9 U ug/L 0,5 1 Bromomethane 000076-15-0 U ug/L 0,5 1 Carbon Disulfide 000076-15-0 U ug/L 0,5 1 Carbon Tetrachloride 000078-23-5 U ug/L 0,5 1 Chlorobenzene 000108-90-7 U ug/L 0,5 1 Chlorobinzene 000067-65-3 U ug/L 0,5 1 Chlorobinzene 000067-65-3 U ug/L 0,5 1 Chlorobinzene 000067-65-3 U ug/L 0,5 1 Chloromethane 000067-65-3 U ug/L 0,5 1 cis-1,2-Dichloroethene 000156-59-2 U ug/L 0,5 1 cis-1,3-Dichloropropene 010061-01-5 U ug/L 0,5 1 Dibromochloromethane 000124-46-1 <t< td=""><td>8enzene</td><td>000071-43-2</td><td>U j</td><td>ug/L</td><td>0.5</td><td>1</td></t<>	8enzene	000071-43-2	U j	ug/L	0.5	1
Bromoform 000075-25-2 U * ug/L 0.5 1 Bromomethane 000074-83-9 U * ug/L 0.5 2 Carbon Disulfide 000075-15-0 U * ug/L 0.5 1 Carbon Tetrachloride 000058-23-5 U * ug/L 0.5 1 Chlorobenzene 000075-00-3 U * ug/L 0.5 1 Chlorobenzene 000075-00-3 U * ug/L 0.5 1 Chlorobenzene 000067-65-3 U * ug/L 0.5 1 Chlorobenzene 000074-87-3 U * ug/L 0.5 1 Chlorobenzene 000067-65-3 U * ug/L 0.5 1 Chlorobenzene 000074-87-3 U * ug/L 0.5 1 Chlorobenzene 000126-59-2 U * ug/L 0.5 1 cis-1,2-Dichloropropene 010061-01-5 U * ug/L 0.5 1 Dibromochloromethane	Bromochloromethane	000074-97-5	U	tug/L	0.5	1
Bromomethane 000074-83-9 U • ug/L 0.5 2 Carbon Disuifide 000075-15-0 U • ug/L 0.5 1 Carbon Tetrachloride 000058-23-5 U • ug/L 0.5 1 Chlorobenzene 000108-90-7 U • ug/L 0.5 1 Chlorobelhane 000074-87-3 U • ug/L 0.5 1 Chlorobehane 000074-87-3 U • ug/L 0.5 1 cis-1,2-0ichloroethene 000156-59-2 U • ug/L 0.5 1 cis-1,3-0ichloropropene 010061-01-5 U • ug/L 0.5 1 Dibromochloromelhane 000074-95-3 U • ug/L 0.5 1 Oibromochloromelhane <td< td=""><td>Bromodichloromethane</td><td>000075-27-4</td><td>ម</td><td>* ug/L</td><td>0,5</td><td>1</td></td<>	Bromodichloromethane	000075-27-4	ម	* ug/L	0,5	1
Carbon Disulfide 000075/15/0 U • ug/L 0.5 1 Carbon Tetrachloride 000056/23/5 U • ug/L 0.5 1 Chlorobenzene 000108/90/7 U • ug/L 0.5 1 Chlorobelhane 000067/65/3 U • ug/L 0.5 1 Chlorobelhane 000067/65/3 U • ug/L 0.5 1 Chlorobelhane 000074/87/3 U • ug/L 0.5 1 Chlorobelhane 000018/90/7 U • ug/L 0.5 1 Chlorobelhane 000067/65/3 U • ug/L 0.5 1 Chloromethane 000074/87/3 U • ug/L 0.5 1 cis-1,2·Dichloroethene 000156/59-2 U • ug/L 0.5 1 cis-1,3·Olchloropropene 010061/01-5 U • ug/L 0.5 1 Dibromorchloromelhane 000124/48/1 U • ug/L 0.5 1 Oibromorehane 000074/95/3 U • ug/L 0.5 1	Bromotorm	000075-25-2	U	* սց/և	0,5	1
Carbon Tetrachloride 000058-23-5 U • ug/L 0.5 1 Chlorobenzene 000108-90-7 U • ug/L 0.5 1 Chlorobelhane 000075-00-3 U • ug/L 0.5 2 Chlorobenzene 000067-65-3 U • ug/L 0.5 2 Chlorobenzene 000067-65-3 U • ug/L 0.5 1 Chlorobenzene 000067-65-3 U • ug/L 0.5 1 Chlorobenzene 000074-87-3 U • ug/L 0.5 1 cis-1,2-Olchloroethene 000156-59-2 U • ug/L 0.5 1 cis-1,3-Olchloropropene 010061-01-5 U • ug/L 0.5 1 Dibromochloromelhane 000124-48-1 U • ug/L 0.5 1 Oibromomelhane 000074-95-3 U • ug/L 0.5 1	Bromomethane	000074-83-9	U ·	• ug/L	0.5	2
Chlorobenzene 000108-90-7 U * ug/L 0.5 1 Chloroelhane 000075-00-3 U * ug/L 0.5 2 Chloroform 000067-65-3 U * ug/L 0.5 1 Chloromethane 000074-87-3 U * ug/L 0.5 1 Chloropropene 000156-59-2 U * ug/L 0.5 1 cls-1,2-Dichloroptopene 010061-01-5 U * ug/L 0.5 1 Dibromochloromelhane 000074-95-3 U * ug/L 0.5 1	Carbon Disulfide	000075-15-0	U ·	ug/L	0.5	1
Chloroelhane 000075-00-3 U • ug/L 0.5 2 Chloroform 000067-65-3 U • ug/L 0.5 1 Chloromethane 000074-87-3 U • ug/L 0.5 1 cis-1,2-Dichloroethene 000156-59-2 U • ug/L 0.5 1 cis-1,3-Olchloropropene 010061-01-5 U • ug/L 0.5 1 Dibromochloromelhane 000074-95-3 U • ug/L 0.5 1	Carbon Tetrachloride	000058-23-5	U	'ug/L	0.5	1
Chloroform 000067-65-3 U • ug/L 0.5 1 Chloromethane 000074-87-3 U • ug/L 0.5 1 cis-1,2-Oichloroethene 000156-59-2 U • ug/L 0.5 1 cis-1,3-Oichloropropene 010061-01-5 U • ug/L 0.5 1 Dibromochloromethane 000124-48-1 U • ug/L 0.5 1 Dibromochlane 000074-95-3 U • ug/L 0.5 1	Chlorobenzene	000108-90-7	U	• ug/L	0.5	1
Chloromethane 000074-87-3 U · ug/L 0.5 1 cis-1,2-Dichloroethene 000156-59-2 U · ug/L 0.5 1 cls-1,3-Dichloropropene 010051-01-5 U · ug/L 0.5 1 Dibromochloromethane 000124-46-1 U · ug/L 0.5 1 Dibromomethane 000074-95-3 U · ug/L 0.5 1	Chloroelhane	000075-00-3	U	' ug/L	0.5	2
cis-1,2-Dichloroethene 000156-59-2 U • ug/L 0.5 1 cis-1,3-Dichloropropene 010061-01-5 U • ug/L 0.5 1 Dibromochloromelhane 000124-48-1 U • ug/L 0.5 1 Dibromomelhane 000074-95-3 U • ug/L 0.5 1			υ	່ ug/L	0.5	1
cls-1,3-Dichloropropene 010061-01-5 Li * ug/L 0.5 1 Dibromochloromelhane 000124-46-1 Li * ug/L 0.5 1 Dibromochloromelhane 000074-95-3 Li * ug/L 0.5 1		000074-87-3	ម	t ug/L ≀	0.5	1
Dibromochloromelhane 000124-46-1 L * ug/L 0.5 1 Dibromomelhane 000074-95-3 L * ug/L 0.5 1	cis-1,2-Dichloroethene	000156-59-2	U	tug/L	0.5	1
Dibromomelhane 000074-95-3 U • ug/L 0.5 1			Li -	՝ սց/Լ	0.5	1
			U ·	ug/L	0.5	1
Dichlorod/Buoromethane 000075-71-8 U * ug/L 0.5 1		-	U	ug/L	0.5	t
	Dichlorodifluoromethane	000075-71-8	U	՝ սց/Լ	0.5	1

REPOR,02.06.05.01

* Please refer to Extended Qualifier Report for details.

4CZ Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID:

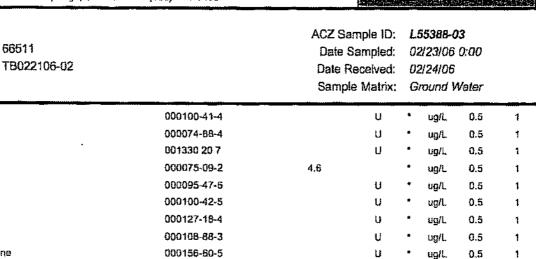
Sample ID:

Ethylbenzene

lodomelhane

Methylene Chloride

Tetrachioroethene


m,p-Xylene

o-Xylena

Styrene

Toluene

Locator:

Irans-1,2-Dichloroalhene	000156-60-5	U	٠	ug/L	0.5	1	
Irans-1,3-Dichloropropene	010061-02-6	U	٠	ug/L	0.5	1	
trans-1,4-Dichloro-2-butene	000110-57-6	u	٠	ug/L	0.5	1	
Trichloroethene	000079-01-6	U	٠	ug/L	0.5	1	
Trichlorofluoromethane	000075-69-4	U	*	սը/Լ	0.5	1	
Vinyl Acetate	000108-05-4	u	٠	ug/L	0,5	2	
Vinyt Chloride	000075-01-4	U	•	ug/L	0,5	2	
Surrogate Recoveries							
Bromofluorobenzene	000460-00-4	62.5	٠	%	86	115	
Dibromofiuoromethane	001868-53-7	97.1	٠	%	86	118	
Toluene-d8	002037-26-5	107.1	٠	%	88	110	

.

	Laboratories, Inc. Drive Steamboat Springs, CO 80487 (800) 334	5493	
Batch	A distinct sel of samples analyzed at a specific	time	
Found	Value of the QC Type of in/erest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS,	mg/Kg)	
LCL	Lower Control Limit		
MDL	Method Detection Limit. Same as Minimum Re	porting Limit. Allows for	Instrument and annual fluctuations.
PCNISCN	A number assigned to reagents/standards to th	ace to the manufacturer's	certificate of analysis
PQL	Practical Quantilation Limit		
QC	True Value of the Control Sample or the amount	nt added to the Spike	
Rec	Amount of the true value or splke added recover	ered, in % (except for LC)	SS, mg/Kg)
RPD	Relative Percent Ofference, calculation used for	or Duplicate QC Types	
Upper	Upper Recovery Limit, In % (except for LCSS,	mg/Kg)	
UCL	Upper Control Limit		
Sample	Value of the Sample of Interest		
	使了。在这些问题是在中国人的思想。		
SURR	Surrogate	LFM	Laboratory Fortified Matrix
INTS	Internal Standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Leboratory Reagent Blank
LCSS	Leboratory Control Sample - Soll	MSIMSD	Matrix Spike/Matrix Splke Duplicate
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Solf
LFB	Laboratory Fontified Blank	PBW	Prep Blank - Water
532 m m 1			. tanthan a suit a suit a s
Blanks	Veniles inst there is n	o or minimal contamination	on in the prep method procedure.
Blanks Control Sar	mples Verifies the accuracy	of the method, including I	the prep procedure.
	mples Verifies the accuracy Verifies the precision	of the method, including i of the instrument and/or (the prep procedure, melhod.
Control Sar Duplicates Spikes/For	mples Verifies the accuracy Verifies the precision	of the method, including I	the prep procedure, melhod.
Control Sar Duplicates Spikes/For	nples Verifies the accuracy Verifies the precision Iffied Matrix Determines sample m	of the method, including i of the instrument and/or (the prep procedure, melhod.
Control Sar Duplicates Spikes/For B	mples Verifies the accuracy Verifies the precision lified Matrix Determines sample m Analyle detected in daily blank	of the method, including i of the instrument and/or (the prep procedure, melhod.
Control Sar Duplicates Spikes/For B B	mples Verifies the accuracy Verifies the precision lifled Matrix Determines sample m Analyte detected in daily blank Analysis exceeded method hold time.	of the method, Including I of the instrument and/or I atrix Interferences, if any	the prep procedure, melhod.
Control San Duplicates Spikes/For B H J	mples Verifies the accuracy Verifies the precision United Matrix Determines sample m Analyse detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw	of the method, Including i of the instrument and/or i atrix Interferences, if any seen MDL and PQL	the prep procedure, melhod, ,
Control Sau Duplicates Spikes/For B H J R	mples Verifies the accuracy Venilies the precision United Matrix Determines sample m Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth	of the method, Including I of the instrument and/or i atrix Interferences, if any even MDL and PQL er spike In the set felj wit	the prep procedure, melhod, , , hin the given limits.
Control Sau Duplicates Spikes/For B H J R T	mples Verifies the accuracy Verifies the precision Determines sample or Analyte detected in daily blank Analytis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep	of the method, including i of the instrument and/or a atrix Interferences, if any even MDL and PQL er spike in the set fell with ted because sample cont	the prep procedure, melhod, , , hin the given limits.
Control Sar Duplicates Spikes/For B H J R T U	mples Verifies the accuracy Verifies the precision United Matrix Determines sample or Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at the	of the method, including i of the instrument and/or a atrix Interferences, if any even MDL and PQL er spike in the set fell with ted because sample cont te indicated MDL	the prep procedure, melhod, , hin the given limits. contrations are less than 10x lihe MDL,
Control Sat Duplicates Spikes/For B H J R T U V	mples Verifies the accuracy Verifies the precision Utiled Matrix Determines sample or Analyte detected in daily blank Analyte detected in daily blank Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor	of the method, Including I of the instrument and/or a atrix Interferences, if any even MDL and POL er spike In the sel fell with ted because sample cont te indicated MDL acontration Is 10 times high	the prep procedure, melhod, , hin the given limits, pentrations are less than 10x the MDL, gher than blank concentration
Control Sat Duplicates Spikas/For B H J R T U U V W	mples Verifies the accuracy Verifies the precision Utenties the precision Utenties the precision Determines sample method Analyte detected in daily blank Analyte detected in daily blank Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) acception Analyte was analyzed for but not detected at the fligh blank data accepted because sample componence Poor recovery for Silver quality control is accepted because the other	of the method, Including I of the instrument and/or a atrix Interferences, if any even MDL and POL er spike In the sel fell with ted because sample cont te indicated MDL acontration Is 10 times high	the prep procedure, melhod, , hin the given limits, pentrations are less than 10x the MDL, gher than blank concentration
Control Sat Duplicates Spikes/For B H J R T U U V W X	mples Verifies the accuracy Verifies the precision Utiled Matrix Determines sample m Analyte detected in daily blank Analytis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor Poor recovery for Silver quality control is accepted because the oth	of the method, Including I of the instrument and/or a atrix Interferences, if any even MDL and POL er spike In the set fell with ted because sample cont te indicated MDL acentration is 10 times hig oted because Silver often	the prep procedure, melhod, , bin the given limits, contrations are less than 10x the MDL, pher than blank concentration precipitales with Chloride,
Control Sau Duplicates Spikes/For B H J R T U V V W X Z	mples Verifies the accuracy Verifies the precision Verifies the precision Determines sample method Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor Poor recovery for Silver quality control is accepted because sample cort Quality contreol sample is out of control. Poor spike recovery is accepted because sample cort	of the method, including i of the instrument and/or a patrix Interferences, if any even MDL and POL er spike in the set felt with ted because sample cont te indicated MDL ecentration is 10 times hig oled because Silver often ple concentration is four i	the prep procedure, melhod, , bin the given limits, contrations are less than 10x the MDL, pher than blank concentration precipitales with Chloride,
Control Sau Duplicates Spikes/For B H J R T U V V W X Z P	mples Verifies the accuracy Verifies the precision Verifies the precision Determines sample method Analyte detected in daily blank Analyte concentration detected at a value between the sample method hold time. Analyte concentration detected at a value between the sample method hold time. Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted herause sample complex the sample complex the sample complex the sample complex the sample control is accepted because sample complex the sample control is accepted because sample complex the sample control is accepted because sample control is accepted because sample control sample is out of control. Poor spike recovery is accepted because sample control sample is out of control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control.	of the method, including i of the instrument and/or a eatrix Interferences, if any even MDL and PQL er spike in the set fell with ted because sample cont te indicated MDL ecentration is 10 times his oled because Sliver often ple concentration is four i ector by more than 40%.	the prep procedure, melhod, , bin the given limits. centrations are less than 10x line MDL, gher than blank concentration precipitales with Chloride, limes greater than spike concentration.
Control Sar Dupilcates Spikes/For B H J R T U V V V V V V V Z P E	mples Verifies the accuracy Verifies the precision Verifies the precision Determines sample in Analyle detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor Poor recovery for Silver quality control is accepted because sample cord Poor spike recovery is accepted because sample cord Poor spike recovery is accepted because sample cord Poor spike recovery is accepted because sample cord Poor spike recovery is accepted because sample cord Poor spike recovery is accepted because sample cord Analyte concentration differs from second detected at analyte concentration is estimated due to result	of the method, Including I of the instrument and/or a eatrix Interferences, if any even MDL and PQL er spike In the set fell with ted because sample cont te indicated MDL econtration Is 10 times his oled because Sliver often ple concentration Is four I ector by more than 40%. It exceeding calibration ra	the prep procedure, melhod, , bin the given limits. centrations are less than 10x line MDL, gher than blank concentration precipitales with Chloride, limes greater than spike concentration.
Control Sar Duplicates Spikes/For B H J R T U V V V V V V V V V V E M	mples Verifies the accuracy Verifies the precision Verifies the precision Determines sample method Analyte detected in daily blank Analyte concentration detected at a value between the sample method hold time. Analyte concentration detected at a value between the sample method hold time. Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted herause sample complex the sample complex the sample complex the sample control is accepted because sample complex the sample is out of control. Poor spike recovery for Silver quality control is accepted because sample control sample is out of control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control. Poor spike recovery is accepted because sample control.	of the method, Including I of the instrument and/or a eatrix Interferences, if any even MDL and PQL er spike In the set fell with ted because sample cont te indicated MDL econtration Is 10 times his oled because Sliver often ple concentration Is four I ector by more than 40%. It exceeding calibration ra	the prep procedure, melhod, , bin the given limits. centrations are less than 10x line MDL, gher than blank concentration precipitales with Chloride, limes greater than spike concentration.
Control Sat Duplicates Spikes/For B H J R T U V V V V V V V V V E E M	mples Verifies the accuracy Verifies the precision Utilies the precision Determines sample or Analyte detected in daily blank Determines sample or Analyte detected in daily blank Analyte concentration detected at a value between the original of the precision of the precis	of the method, Including I of the instrument and/or a atrix Interferences, if any even MDL and POL er spike in the set fell with ted because sample condu- te indicated MDL acontration is 10 times higo bled because Silver often ple concentration is four i actor by more than 40%. It exceeding calibration ra- tix Interferences.	the prep procedure, melhod, , , , , , , , , , , , , , , , , , ,
Control Sat Duplicates Spikes/For H J R T U V V V V V V V V V V E M	mples Verifies the accuracy Venilies the precision Utenties the precision Utenties the precision Determines sample method Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at the High blank data accepted because sample com Poor recovery for Silver quality control is accepted because sample com Quality contreol sample is out of control. Poor spike recovery is accepted because sample com Analyte concentration differs from second dete Analyte concentration is estimated due to resu Analyte concentration is estimated due to resu Analyte concentration is estimated due to mate EPA 600/4-83-020.	of the method, Including I of the instrument and/or a atrix Interferences, if any even MDL and POL er spike In the sel fell with ted because sample cont te indicated MDL acentration Is 10 times hig old because Silver often ple concentration Is four I actor by more than 40%. It exceeding calibration ra tx Interferences.	the prep procedure, melhod. , bin the given limits. contrations are less than 10x the MDL. gher than blank concentration precipitates with Chloride. Imes greater than spike concentration. ange.
Control Sau Duplicates Spikes/For H J R T U V V V V V X Z P E M (1) (2)	mples Verifies the accuracy Venilies the precision Utenties the precision Utenties the precision Determines sample m Analyte detected in daily blank Analysis exceeded method hold time. Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor Poor recovery for Silver quality control is accepted because sample cord Quality contreol sample is out of control. Poor spike recovery is accepted because sample cord Analyte concentration differs from second deter Analyte concentration is estimated due to resu Analyte concentr	of the method, Including I of the instrument and/or a satrix Interferences, if any even MDL and POL er spike In the sel fell with ted because sample cont te indicated MDL contration Is 10 times hig oled because Silver often ple concentration Is four I octor by more than 40%. It exceeding catibration ra tx Interferences.	the prep procedure, melhod, , bin the given limits. contrations are less than 10x the MDL. gher than blank concentration precipitales with Chloride. Imes greater than spike concentration. ange. es, March 1983. nds in Drinking Water (I), July 1990.
Control Sau Duplicates Spikes/For H J R T U V W X Z P E M (1) (2) (3)	mples Verifies the accuracy Venifies the precision Utenties the precision Utenties the precision Determines sample method Analyte detected in daily blank Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) acception Analyte was analyzed for but not detected at the thigh blank data accepted because sample correcovery for Silver quality control is accepted because sample correcovery for Silver quality control is accepted because sample correcovery for Silver quality control is accepted because sample correcovery for Silver quality control is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery is accepted because sample concentration differs from second detected analyte concentration is estimated due to result analyte concentration is estimated due to result analyte concentration is estimated due to make the 600/4-80/020. Methods for Chemical Analyte Conduction and the formation is estimated due to accepted because for the Determined EPA 600/R-92/129. Methods for the Determined for the Determined for the Determined for the Determined for the Determined for the Determined for the Determined for the Determined for the Dete	of the method, Including I of the instrument and/or a satrix Interferences, if any even MOL and POL er spike In the set fell with ted because sample cont te indicated MOL acentration Is 10 times his oled because Silver often ple concentration Is four I actor by more than 40%. It exceeding calibration ra ix Interferences.	the prep procedure, melhod, , bin the given limits. centrations are less than 10x the MDL. other than blank concentration precipitates with Chloride, imes greater than spike concentration. ange, es, March 1983. nds In Drinking Water (I), July 1990. inds In Drinking Water (I), July 1990.
Control Sar Dupilcates Spikes/For B H J R T U V V W X Z P E M (1) (2) (3) (5)	mples Verifies the accuracy Verifies the precision Utilies the precision Determines sample or Analyte detected in daily blank Analyte concentration detected at a value betw Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor Poor recovery for Silver quality control is accepted because sample cor Poor spike recovery is accepted because sample cor Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike concentration is estimated due to resu Analyte concentration is estimated due to resu Analyte concentration is estimated due to make EPA 600/4-83-020. Methods for Chemical Analyte concentration is estimated due to make EPA 600/4-90/020. Methods for the Determine EPA 600/R-92/129. Methods for the Determine EPA 600/R-92/129.	of the method, Including I of the instrument and/or a eatrix Interferences, if any even MDL and PQL er spike In the set fell with ted because sample cont te indicated MDL acentration Is 10 times his oled because Silver often ple concentration Is four I ector by more than 40%. It exceeding calibration ra ix Interferences.	the prep procedure, melhod, , bin the given limits. contrations are less than 10x the MDL. gher than blank concentration precipitates with Chloride, limes greater than spike concentration. ange, les, March 1983. nds in Drinking Water (I), July 1990. with Update III, December, 1996.
Control Sau Duplicates Spikes/For H J R T U V W X Z P E M (1) (2) (3)	mples Verifies the accuracy Venifies the precision Utenties the precision Utenties the precision Determines sample method Analyte detected in daily blank Analyte concentration detected at a value betwee Poor spike recovery accepted because the other High Relative Percent Difference (RPD) acception Analyte was analyzed for but not detected at the thigh blank data accepted because sample correcovery for Silver quality control is accepted because sample correcovery for Silver quality control is accepted because sample correcovery for Silver quality control is accepted because sample correcovery for Silver quality control is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery for somple is out of control. Poor spike recovery is accepted because sample correcovery is accepted because sample concentration differs from second detected analyte concentration is estimated due to result analyte concentration is estimated due to result analyte concentration is estimated due to make the 600/4-80/020. Methods for Chemical Analyte Conduction and the formation is estimated due to accepted because for the Determined EPA 600/R-92/129. Methods for the Determined for the Determined for the Determined for the Determined for the Determined for the Determined for the Determined for the Determined for the Dete	of the method, Including I of the instrument and/or a eatrix Interferences, if any even MDL and PQL er spike In the set fell with ted because sample cont te indicated MDL acentration Is 10 times his oled because Silver often ple concentration Is four I ector by more than 40%. It exceeding calibration ra ix Interferences.	the prep procedure, melhod, , bin the given limits. contrations are less than 10x the MDL. gher than blank concentration precipitates with Chloride, limes greater than spike concentration. ange, les, March 1983. nds in Drinking Water (I), July 1990. with Update III, December, 1996.
Control Sar Dupilcates Spikes/For B H J R T U V V W X Z P E M (1) (2) (3) (5)	mples Verifies the accuracy Verifies the precision Utilies the precision Determines sample or Analyte detected in daily blank Analyte concentration detected at a value betw Analyte concentration detected at a value betw Poor spike recovery accepted because the oth High Relative Percent Difference (RPD) accep Analyte was analyzed for but not detected at th High blank data accepted because sample cor Poor recovery for Silver quality control is accepted because sample cor Poor spike recovery is accepted because sample cor Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike recovery is accepted because sample cort Poor spike concentration is estimated due to resu Analyte concentration is estimated due to resu Analyte concentration is estimated due to make EPA 600/4-83-020. Methods for Chemical Analyte concentration is estimated due to make EPA 600/4-90/020. Methods for the Determine EPA 600/R-92/129. Methods for the Determine EPA 600/R-92/129.	of the method, Including I of the instrument and/or a atrix Interferences, if any even MDL and POL er spike in the set fell with ted because sample cont te indicated MDL acontration is 10 times his boted because Silver often ple concentration is four I actor by more than 40%. It exceeding calibration ra- tix Interferences.	the prep procedure, melhod, , , , , , , , , , , , , , , , , , ,

REPIN03.11.00.01

ACZ Laboratories, Inc. 2773 Downhill Drive Steemboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511

ACZ Project ID: L55388

Volatile Organics by GC/MS WG203412

LCSW	Sample (D; WG203412LCSW	PCN/SI	CN: SCN	0002165		Analyzed:	03/09/06 20:1
科教育和科学科科 科学科							
1,1,1-TRICHLOROETHANE	Ð	8.78	ug/L	109.8	70	130	
1,1,2,2 TETRACHLORDETHAN	Æ 8	8.71	ug/L	108.9	70	130	
1,1,2 TRICHLOROETHANE	B	8,62	ug/L	107,8	70	130	
1,1-DICHLOROETHANE	8	7.66	ug/L	95.8	70	130	
1,2-DICHLOROBENZENE	8	8.08	ug/L	101.D	70	130	
1,2-DICHLOROETHANE	8	7.57	ug/Լ	94,6	70	130	
1,2 DICHLOROPROPANE	8	7,97	ug/L	99.6	70	130	
1,3-DICHLOROBENZENE	8	7.83	ug/L	95.4	70	130	
1,4-DICHLOROBENZENE	6	7.63	ug/L	95.4	70	130	
BROMODICHLOROMETHANE	8	8.53	ug/L	106. 6	70	130	
BROMOFORM	8	7.05	ug/L	88.1	70	130	
CARBON TETRACHLORIDE	8	8.1	ug/L	101.3	70	130	
CHLOROBENZENE	8	8.86	ug/L	108.3	91	121	
CHLOROFORM	8	7.15	ug/L	89.4	70	130	
CIS-1,3-DICHLOROPROPENE	8	7.66	ц <u>д/</u> {,	95.0	70	130	
DIBROMOCHLOROMETHANE	8	6.5	ug/L	105.3	70	130	
METHYLENE CHLORIDE	8	7.22	ug/L	90.3	70	130	
TETRACHLOROETHENE	8	8.25	ug/L	103.1	70	130	
TRANS-1,2-DICHLOROETHENE	8	7.48	ug/L	93.5	70	130	
TRANS-1,3-DICHLOROPROPE	NE B	7.16	ug/L	89.5	70	130	
TRICHLOROETHENE	8	7.92	ug/L	99.0	87	135	
BROMOFLUOROBENZENE (su	#t}		%	58.3	87	113	N
DIBROMOFLUOROMETHANE	(รบก)		%	92. 6	89	108	
TOLUENE-D8 (sun)			%	110.1	92	107	5

LCSWD Sam	ple ID: WG203412LCSWD		N: SCN	0002165		Anal	yzed:	03/08/06 20:54
是是在中国国家的部分的建筑。	的任何在他的法律师是指指法					S George		的建筑学校
1,1,1 TRICHLOROETHANE	8	8.33	սց/Լ	104.1	70	130	5.3	30
1,1.2,2 TETRACHLOROETHANE	8	7.B	ug/L	97.5	70	138	11	30
1,1,2-TRICHLOROETHANE	8	8.32	սք/և	104.0	70	130	3,5	30
1,1-DICHLOROETHANE	8	7.32	ug/L	91.5	70	130	4.5	30
1,2-DICHLOROBENZENE	8	7.83	ug/l,	97.9	70	130	3.1	30
1,2-DICHLOROETHANE	8	7,76	ug/L	97.0	70	130	2.5	30
1,2-DICHLOROPROPANE	0	8.26	սց/Լ	103.3	70	130	3.6	30
1,3-DICHLOROBENZENE	8	7.35	ug/L	91.8	70	130	3.7	30
1,4-DICHLOROBENZENE	ß	7.35	ug/L	91.9	70	130	3.7	30
BROMODICHLOROMETHANE	8	9.41	ug/Ł	117.6	70	130	9.8	30
BROMOFORM	Ð	7.86	ug/L	98,3	70	130	10.9	30
CARBON TETRACHLORIDE	8	8.17	ug/L	102.1	70	130	0.9	30
CHLOROBENZENE	B	8.53	ug/L	106.6	91	121	1,5	3
CHLOROFORM	6	7.03	ug/L	87.9	70	130	1,7	30
CIS-1,3-DICHLOROPROPENE	ß	8.12	ug/L	101.5	70	130	5.6	90E
DIBROMOCHLOROMETHANE	8	8.77	ug/L	109,6	70	130	3.1	30
METHYLENE CHLORIDE	6	7.37	ug/L	92.1	70	130	2.1	30

REPOR.01.06.05.01

M8260B GC/MS

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kieinfelder, Inc.

Project ID:

66511

ACZ Project ID: L55388

TETRACHLOROETHENE	ð	8.61	ug/L	107.6	70	t30	4.3	30	
TRANS-1,2-DICHLORGETHENE	6	7.3	ug/L	91.3	70	130	2.4	30	
TRANS-1,3-DICHLOROPROPENE	8	6.6	ug/L	85.0	70	130	5.2	30	
TRICHLOROETHENE	8	8.65	ug/L	108.1	87	135	8.8	3	
BROMOFLUOROBENZENE (sur)			~8 %	60,4	87	113	0.0	5	
DIBROMOFLUOROMETHANE (sun)			%	92.0	89	108			
TOLUENE D8 (sun)			%	115.5	92	107			
PBW Sample ID: WG	203412PBW					Anal	yzed:	03/08/0	6 19
	<u>以代表的新闻的</u>								
1,1,1,2. TETRACHLOROETHANE		U	նց/Լ		-1	1			
1,1,1-TRICHLOROETHANE		U	ug/L		•2	2			
1, 1, 2, 2-TETRACHLOROETHANE		υ	սց/Լ		•1	1			
1,1,2-TRICHLOROETHANE		U	ug/L		-1	1			
1,1-DICHLOROETHANE		U	սց/է		- 5	1			
1,1-DICHLOROETHENE		u	ug/L		-1	1			
1,2,3-TRICHLOROPROPANE		υ	ug/L		-1	1			
1,2-DIBROMO-3-CHLOROPROPANE		U	սց/է		-1	1			
1,2-DIBROMOETHANE		ប	ug/L		-1	1			
1,2-DICHLOROBENZENE		U	ug/L		•1	1			
1,2-DICHLOROETHANE		U	ug/t,		·1	t			
1,2-DICHLOROPROPANE		U	ug/L		-1	1			
1,3-DICHLOROBENZENE		U	ug/L		-1	1			
1.4-DICHLOROBENZENE		U	սը/Լ		•1	1			
2-BUTANONE		u .	ug/L		·2	2			
2HEXANONE		U	ug/L		·2	2			
4METHYL-2-PENTANONE		U	ug/L		-2	2			
ACETONE		B	սց/Լ		·2	2			
ACRYLONITRILE		u	ug/L		-2	2			
BENZENE		U	ug/L		·1	1			
BROMOCHLOROMETHANE		ប	ug/L		-1	1			·
BROMODICHLOROMETHANE		U	ug/L		-1	1			
BROMOFORM		U	ug/L		•1	1			
BROMOMETHANE		' U	ug/L		-2	2			
CARBON DISULFIDE		Ų	սց/Լ		÷1	1			
CARBON TETRACHLORIDE		·υ	ug/L		-1	t			
CHLOROBENZENE		U	ug/L		.1	1			
CHLOROETHANE		U	ug/L		-2	2			
CHLOROFORM		u.	ug/L		-1	1			
CHLOROMETHANE		u	ug/L		·1	1			
CIS-1,2 DICHLOROETHENE		U	ug/L		·1	1			
CIS-1,3-DICHLOROPROPENE		L	ug/L		·1	1			
DIBROMOCHLOROMETHANE		υ	ug/L		-1	1			
DIBROMOMETHANE		u	սց/Լ		-1	1			
DICHLORODIFLUOROMETHANE	<i>r</i>	U	ug/L		·1	1			
ETHYL BENZENE		U	ug/L		.1	1			
KODOMETHANE		υ	ug/L		.1	1			
M,P-XYLENE		U	ug/L		.1	1			
METHYLENE CHLORIDE		U	ug/L		.1	1			

REPOR.01.06.05.01

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

Project ID: 66511

ACZ Project ID: L55388

D-XYLENE	υ	սց/ե		-1	t	
STYRENE	U	ug/L		-1	1	
ETRACHLOROETHENE	υ	ug/L		-1	1	
OLUENE	U	បព្វ/ដុ		-1	1	
RANS-1,2-DICHLOROETHENE	Ű	-8-4 Ug/L		-1	ť	
RANS-1,3-DICHLOROPROPENE	U	ug/L		•1	1	
RANS-1,4-DICHLORO-2-BUTENE	U	uq/L		-1	*	
RICHLOROETHENE	Ū	ug/i.		-1	1	
RICHLOROFLUOROMETHANE	U	ug/L		-1	1	
INYL ACETATE	Ŭ	ug/L		-2	2	
INYL CHLORIDE	- U	ug/L		-2	2	
ROMOFLUOROBENZENE (sur)	_	***	65.5	88	115	NI
BROMOFLUOROMETHANE (sur)		%	101.8	86	118	IN F
OLUENE-OB (sum)		74 76	105,4	68	110	

.

L55388: Page 25 of 32

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboal Springs, CO 80487 (800) 334-5493

ACZ Project ID: L55388

L55388-01	WG203412	1,1,2,2-Teirachioroelhane	M8260B GC/MS	Wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration mel the 15% criteria as specified in EPA method 80008.
		1, 1-Dichloroethane	ME250B GCMS	Wt	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration mel the 15% critisma as specified in EPA method 60009.
		1,2,3-Trichloropropane	M8260B GC/MS	Nt	See Case Narralive.
		1,2-Dibromo-3-chloropropane	M8260B GCMS	N1	See Case Narralive,
		2-Bulanone	M8260B GC/MS	N1	See Case Narralive.
		2-Hexanone	M82608 GC/MS	N1	See Case Namalive.
			M8260B GC/MS	wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration mel the 15% criteria as specified in EPA method 8000B.
		4-Methyl-2-Penlanone	M6260B GC/MS	Nt	See Case Namelive,
		Acetone	M8260B GCAMS	N	See Case Narrative.
			MB260B GCANS	WI	The % RSD for this compound was above 15%. The everage % RSD for all compounds in the calibration met the 15% criteria as specified in EPA mathod 60008.
		Acrylonitrile	M8260B GC/MS	N1	See Case Narrative.
		Carbon Disullide	M82608 GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 8000B.
		m,p-Xylene	M82608 GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criteria as specified in EPA method 80003.
		Malhylane Chloride	M82608 GC/MS	WI	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% criterie as specified in EPA method 60003.
		o-Xylena	M8260B GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration met the 15% chierta as specified in EPA method 80008.
		Irans-1,4-Dichloro-2-bulene	M8260B GC/MS	Nt	See Case Narrative,
		Trichloroathene	M8260B GC/MS	RJ	LCS/LCSD RPD exceeded the method or laboratory control limit. Recovery met method acceptance crite/is.

AGZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Kleinfelder, Inc.

ACZ Project ID: L55388

			· · · · · · · · · · · · · · · · · · ·		
i388-02	WG203412	1,1,2,2 Tetractiloroelhane	M82608 GC/MS	Wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80008.
		1.1-Dichloraelhane	M8260B GCM5	Wt	
		1.2.3 Trichloropropana	M82608 GC/MS	N1	See Case Narrative.
		1,2-Dibramo-3-chloropropane	M82608 GC/MS	NI	See Case Narralive.
		2-Butanone	M8260B GC/MS	NI	See Case Namative,
		2-Haxanone	M82608 GC/MS	N1	See Casa Narralive.
			M82608 GC/MS	WI	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80008.
		4-Methyl-2-Penlagone	M8260B GC/MS	NI	See Case Namilive.
		Acelone	ME260B GCANS	N1	See Case Nanalive.
			M8260B GCAMS	Wł	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 8000B.
		Acrylonitelle	M82688 GC/MS	NI	See Case Narraive.
		Bromofluorobanzene	M8260B GCANS	NI	See Case Neralive,
		Carbon Disulide	M62608 GC/MS	Wi	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 8000B.
		m,p-Xylene	M8260B GC/MS	WI	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me like 15% criteria as specified in EPA method 8000B.
		Malhylene Chloride	M82608 GC/MS	Wt	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me the 15% criteria as specified in EPA method 80008.
		o-Xylene	M8260B GC/MS	W1	The % RSD for this compound was above 15%. The average % RSD for all compounds in the calibration me line 15% criteria as specified in SPA method 80008.
		Irans-1,4-Dichloro-2-bulene	M6260B GCMS	N1	See Case Narrailve,
		Trichlaroethene	M8260B GCANS	RI	LCS/LCSD RPD exceeded the method or laboratory con limit. Recovery mel method acceptance criteria.

Appendix E Subsurface Investigation for Mesa Valley Springs January 2007

January 17, 2007 Kleinfelder Project Number: 77810

Engineering Solutions & Design, Inc. 4848 Tramway Ridge, NE, Suite 222 Albuquerque, New Mexico 87111

Attention: Mr. Jack Chappelle

Subject: Subsurface Investigation for Mesa Valley Springs Property Existing Landfill Consolidation Project Colorado Springs, Colorado

Mr. Chappelle:

This letter transmits 3 copies of our subsurface investigation for the above referenced property. Our services consisted of a subsurface exploration, laboratory testing, and preparation of the attached report.

We appreciate this opportunity to be of service to you, and look forward to future endeavors. If you have any questions regarding this report or need additional information or services, please contact our office.

Respectfully submitted,

KLEINFELDER, INC.

John E. Hunyadi, E.I.T. Staff Geotechnical Engineer

William J. Barreire, P.E. Senior Geotechnical Engineer

JEH/JMS/hg

Enclosures

KLEINFELDER EXPECT MORE*

SUBSURFACE INVESTIGATION FOR MESA VALLEY SPRINGS PROPERTY EXISTING LANDFILL CONSOLIDATION PROJECT COLORADO SPRINGS, COLORADO

Sohn B, Hunyadi, E.I.T. Staff Geotechnical Engineer

William J. Barreire, P.E. Senior Geolechnical Engineer

January 17, 2007

Copyright 2006 Kleinfelder, Inc. All Rights Reserved

Unauthorized use or copying of this document is strictly prohibited. Contact Kleinfelder, Inc., if use or copying is desired by anyone other than the Client and for the project identified above.

TABLE OF CONTENTS

PAGE

1	INTRODUCTION
2	FIELD INVESTIGATION AND LABORATORY TESTING 4 2.1 FIELD INVESTIGATION 4 2.2 LABORATORY TESTING 4
3	SITE CONDITIONS. 6 3.1 SURFACE 6 3.2 GEOLOGY 6 3.3 SUBSURFACE 6 3.3.1 GROUNDWATER 7
4	RESULTS OF INVESTIGATION.84.1LANDFILL CONSOLIDATION PROJECT84.1.1SUPPORT CAPABILITY OF ON-SITE MATERIALS84.1.2RESULTS OF PERMEABILITY TESTING84.2PRELIMINARY GEOLOGIC/GEOTECHNICAL CONSIDERATIONS94.2.1STRUCTURE FOUNDATIONS94.2.2FLOOR SYSTEMS104.2.3ANTICIPATED PAVEMENT SUBGRADE MATERIAL104.2.4DRAINAGE114.2.5EARTHWORK OPERATIONS114.2.6CORROSION TESTING RESULTS12
5	LIMITATIONS

APPENDICES

- A Vicinity Map and Boring Location Plan
- B Boring Logs
- C Laboratory Test Results

1 INTRODUCTION

1.1 GENERAL

This report presents the results of Kleinfelder's subsurface investigation performed at the Mesa Valley Springs Property in Colorado Springs, Colorado. An attached Vicinity Map (Figure A-1) shows the general location of the subject site.

In addition to presenting the results of our subsurface investigation, this report includes our preliminary opinions relating to the geotechnical aspects of project design and construction. The preliminary opinions stated in this report are based on the subsurface conditions found at the locations of our exploratory borings at the time our exploration was performed for this and the previous investigation. They also are subject to the provisions stated in the report sections titled Additional Services and Limitations. Our findings, and preliminary opinions should not be extrapolated to other areas or used for other projects without our prior review. Furthermore, they should not be used if the site has been altered, or if a prolonged period has elapsed since the date of the report, without Kleinfelder's prior review to determine if they remain valid.

1.2 PROJECT DESCRIPTION

Based on conversations with Engineering Solutions & Design, Inc. (ESD) representatives, we understand that the existing landfill must be consolidated to allow more area for future development. The exact type and layout of future development is not explicitly known at this time, but we understand that it will involve residential housing, roadway, and general infrastructure construction.

1.3 PURPOSE AND SCOPE

The purpose of our services was two-fold: "

 To evaluate on-site materials for suitability for support and containment of the landfill consolidation project. Specifically, we performed subsurface explorations to evaluate on-site soil/bedrock type and condition, and performed onsite/downhole permeability tests on in-situ materials as well as laboratory permeability testing of remolded on-site materials. Our opinion as to the suitability of the on-site materials to physically support the loads of the landfill are provided herein. The results of our permeability testing are provided as well. This information is provided solely for the purpose of aiding others in the design of the landfill consolidation project.

- 2) To provide preliminary opinions related to development of the site including:
 - a. Geotechnical/Geologic Issues
 - i. Expansive clay soils.
 - ii. Slope stability issues (to be addressed under a separate geologic hazard evaluation).
 - b. Preliminary opinions related to design and construction of various features of the development as follows:
 - i. Design/construction of structure foundations.
 - ii. Design/construction of roadway pavements.
 - iii. Considerations related to earthwork operations.
 - iv. Providing results of limited corrosion testing performed on the onsite subgrade materials.

Kleinfelder's scope of services included:

- A review of selected published geologic and geotechnical data pertinent to the project site;
- A visual reconnaissance to observe surface and geologic conditions at the project sites and to locate the exploratory borings;
- Identification of utilities in the public right-of-way through the one-call Utility Notification Center of Colorado (UNCC);
- Drilling of ten (10) exploratory borings at the proposed site;
- Laboratory testing of selected samples obtained during the field exploration to evaluate relevant physical and engineering properties of the soil;
- Evaluation and engineering analysis of the field and laboratory data collected to develop our preliminary opinions related to site soils;
- · Preparation of this report, which includes:

- A vicinity map and site plan showing the approximate location of the site and borings.
- Logs of the test borings.

.

- Results of the laboratory tests.
- Preliminary opinions pertaining to feasibility of the proposed development, including impacts of geotechnical and geologic features on the proposed project.

2 FIELD INVESTIGATION AND LABORATORY TESTING

2.1 FIELD INVESTIGATION

We performed our field investigation in two phases. The first phase was performed on November 30, 2006 and included drilling a total of six (6) exploratory borings at various locations throughout the proposed site. The second phase was performed on January 3 and 4, 2007 and included drilling a total of four (4) borings. The second phase involved down-hole pressure meter testing to obtain permeability values of in-place soil/bedrock units. The locations of all exploratory borings are indicated in the Boring Location Plan (Figure A-2).

Phase I borings were advanced to depths ranging from approximately 20 to 35 feet below the existing ground surface using a truck-mounted CME-55 drill rig equipped with a 3-inch outside-diameter, continuous-flight, solid-stem auger. Phase II borings were advanced to similar depths using a track-mounted CME-55 drill rig equipped with both a mud-rotary bit and a continuous-flight, solid-stem auger. Drive samples were taken with a standard split-spoon sampler and a modified California sampler. The number of blows of a 140 pound hammer falling 30 inches were recorded for each drive sample. Boring elevations were estimated from the topographic map provided by ESD.

Appendix B to this report includes the individual boring logs describing the subsurface conditions encountered within our borings at the site. A legend to the boring logs summarizing the notes and the Unified Soil Classification System (USCS) used to describe the soils is located at the beginning of Appendix B. The lines defining boundaries between soil and rock types on the logs are based upon drill behavior and interpolation between samples, and are therefore approximate. Therefore, the transition between soil and rock types may be abrupt or may be gradual.

2.2 LABORATORY TESTING

Laboratory tests were performed on selected soil samples to estimate their relative engineering properties. The following tests were performed in general accordance with the standards set forth by the American Society for Testing and Materials (ASTM):

Description and Identification of Soils (Visual-Manual Procedure);

- Classification of Soils for Engineering Purposes;
- Particle-Size Analysis of Soils;
- Liquid Limit, Plastic Limit, and Plasticity Index of Soils;
- In-place moisture content and unit weight determination;
- One-Dimensional Swell or Settlement Potential of Cohesive Solls;
- R-Value of Compacted Soils;
- Maximum Laboratory Density (Proctor);
- Permeability of remolded soils;
- Corrosion Testing.

Results of the laboratory tests are included in Appendix C of this report. Selected test results are also shown on the boring logs included in Appendix B.

3 SITE CONDITIONS

3.1 SURFACE

The Mesa Valley Springs Property has highly varied topography with hills and valleys separated by as much as approximately 130 feet in elevation. The general surface drainage pattern is to the south. Additionally there is a large streambed near the southern and western edges of the property boundary. The streambed was running several inches deep at the time of our investigation. The surface is covered in prairie grass and some trees, with foliage becoming denser near the streambed.

3.2 GEOLOGY

Prior to drilling, the geology of the site was evaluated by reviewing geologic maps, including the Geologic Map of the Colorado Springs Quadrangle, El Paso County, Colorado (Carroll & Crawford, 2000). The mapping indicates the soils underlying the proposed site consist of colluvial materials deposited during the middle Pleistocene to late Pleistocene. The colluvial materials are comprised of gravelly to silty sand. Pierre shale deposited during the Upper Cretaceous was encountered. Additionally, landfill material and mapped landslides are shown in the mapping.

3.3 SUBSURFACE

The subsurface profile encountered in our borings generally consisted of a thin layer of topsoil overlying weathered claystone overlying Pierre Shale Bedrock, as described in more detail below:

Weathered Claystone

The top of the weathered claystone was encountered below the thin layer of topsoil, between approximately 1 and 2 feet below existing ground surface. The weathered claystone bedrock was generally sandy, light brown to brown, slightly moist, and medium hard to hard in consistency. Ferric staining and fracturing were also encountered in this zone.

Pierre Shale Bedrock

The top of the bedrock (Pierre Shale Formation) was encountered below the weathered claystone or topsoil at depths between approximately 1 and 20 feet below the ground

surface and extended to the maximum boring depths. The Pierre Shale Formation in this location consists of a sandy claystone. The bedrock encountered was very hard, dry to slightly moist, fissile, and dark gray in color.

The boring logs, contained in Appendix B, should be reviewed for more detailed descriptions of the subsurface conditions encountered at each of the boring locations explored.

3.3.1 GROUNDWATER

No free groundwater was encountered during our subsurface investigation. Based on our experience in this general area and similar geologic conditions, it is not uncommon to find groundwater seepage through fractures and joints in the bedrock at random locations and elevations within the strata.

Soil moisture levels and groundwater levels commonly vary over time and space depending on seasonal precipitation, irrigation practices, land use, and runoff conditions. These conditions and the variations that they create often are not apparent at the time of the field investigation. Accordingly, the soil moisture and groundwater data in this report pertain only to the locations and times at which exploration was performed. They can be extrapolated to other locations and times only with caution.

4 RESULTS OF INVESTIGATION

4.1 LANDFILL CONSOLIDATION PROJECT

4.1.1 SUPPORT CAPABILITY OF ON-SITE MATERIALS

The undisturbed weathered claystone and Pierre Shale bedrock units are medium hard to very hard in consistency and will be able to support the weight of the consolidated landfill provided no additional construction is planned on the landfill itself. Similarly, properly moisture conditioned and compacted fill consisting of on-site materials that can be broken down into a soil-like mass will provide suitable support for the landfill materials.

4.1.2 RESULTS OF PERMEABILITY TESTING

Processed soil samples were remolded to 95% density of a standard Proctor density and +3% of optimum moisture content and run in a triaxial compression permeability machine. Downhole tests were performed using a packer type pressure meter system in the representative native soil/bedrock units to quantify flow through potential fractures and joints in the formations. The results of the permeability tests are as follows:

Soil Type & Test Conditions	Location & Depth [feet]	Dry Density [pcf] & Moisture Content [%] of Processed Samples	Percent Passing No. 200 and Plasticity Index (Pl)	Permeability [cm/s]
Sandy Claystone – Downhole/In-Situ	B-2 @ 15 – 21'	.		Head Pressure 30 psi = 1.18 x 10 ⁻⁶ Head Pressure 25 psi = 3.83 x 10 ⁻⁷
Sandy Claystone - Processed	B-1 & B-5 Combined @ 10'	96.2 pcf @ 26.2%	-200 = 64.7% Pl = 32	4.3 x 10 ^{.6}
Pierre Shale – Downhole/In-Situ	B-2 @ 21 - 30'			Formation did not take any water to accuracy of test method
Pierre Shale - Processed	B-1, B-8, & B-9 Combined @ 20'	101.9 pcf @ 21.3%	-200 = 81% P1 = 35	2.2 x 10 ^{.7}

4.2 PRELIMINARY GEOLOGIC/GEOTECHNICAL CONSIDERATIONS

Potential geologic impacts to the proposed development will vary depending upon which portion of the site is selected for development and the type of development proposed. We believe the following geologic constraints may impact the proposed development:

- The existence of relatively shallow expansive bedrock;
- Poor long-term pavement subgrade support.
- Slope stability issues related to steep topography. The City of Colorado Springs Zoning Map indicates that the subject site is part of the hillside overlay zone. Additionally, several mapped landslides exist in the vicinity of the subject site. Placement of earth fills during overlot grading, construction of parking lots, and other improvements located near the steeper slopes on the site will likely require measures to preserve the stability of the improvements. Slope stability issues should be addressed once a preliminary layout of the facility is available. A Geologic Hazard Study will be required by the City of Colorado Springs to address these issues and will be performed as a separate study and presented under separate cover.
- Possible groundwater seepage within fractures and seams of the bedrock, although no free groundwater was encountered in our borings.
- Seasonal perched groundwater at the bedrock/soil interface.

While some of the above geologic constraints will ultimately depend on final site development plans and proposed site grading, expansive soil/bedrock or potentially expansive bedrock will be present regardless of development/grading plans. Mitigation of expansive soil/bedrock and groundwater may be accomplished through standard construction techniques to some degree.

Further discussion concerning geotechnical related issues are provided in the following sections of this report.

4.2.1 STRUCTURE FOUNDATIONS

Due to the presence of moderately to highly expansive clay soil and claystone bedrock at relatively shallow depths at this site, mitigation to limit damaging differential movement to the structures will be required. A common foundation system that is used locally to mitigate such issues includes a drilled pier and grade beam foundation system. The drilled piers would extend through the weathered claystone material, and would anchor in the underlying Pierre Shale bedrock. The piers may also need to be designed to impose minimum deadload pressures in order to resist potential uplift forces of expansive bedrock zones. As an alternative, removal of the problematic soils and replacement with more suitable material that would result in supporting foundations on a significant mat of non-expansive structural fill is a possibility. Depending on the nature of the actual materials encountered, removal and replacement of 3 to 10 feet of material below foundations is common, depending on the magnitude of potential swell and swell pressures.

4.2.2 FLOOR SYSTEMS

Similar to foundations on this site, expansive soils will likely be encountered at or near slab elevations. With these types of conditions, it is common practice to over-excavate the problematic soils to depths on the order of 3 to 5 feet and replace this material with an appropriate structural fill. If highly expansive soils are identified, over-excavation and replacement of up to 10 feet is possible to properly mitigate potential movement. As an alternative, and generally considered to be the more reliable alternative, to the deeper over-excavation/replacement option, construction of a structural floor system (crawlspace type system) may be considered. This is particularly common when a drilled pier/grade beam foundation system is utilized as overexcavation of the problematic soils beneath slabs and replacement with non or low expansive soils is eliminated.

4.2.3 ANTICIPATED PAVEMENT SUBGRADE MATERIAL

A total of three (3) borings (designated B-4, B-5, and B-6) were performed in the proposed southern extension of Centennial Boulevard to evaluate potential pavement subgrade conditions. The pavement subgrade soil at this site is anticipated to consist mainly of sandy claystone. An Hveem stabilometer test (R-Value) was performed on a bulk soil sample comprising the average upper 10 feet of soil obtained in borings B-4, B-5, and B-6. The resulting R-value was less than 5. Therefore, a resilient modulus (M_R) of less than 3,025 psi was calculated from the appropriate AASHTO R-Value conversion formula. These subgrade support values would be used in pavement thickness calculations. The low R-value of the on-site soils indicates that mitigation will be required to provide proper subgrade support for the planned roadway. This typically involves scarifying, moisture conditioning, and recompacting the subgrade. Thicker units of both base course and asphalt concrete pavement will be required for pavement subgrades that consist of these types of soil and bedrock.

Pavement design should be performed based on the City of Colorado Springs Standards Specifications for the above material and the anticipated traffic load.

4.2.4 DRAINAGE

The collection and diversion of surface drainage away from all pavement areas is extremely important to the satisfactory performance of pavement. Drainage design should provide for the removal of water and snow from paved areas and prevent the wetting of the subgrade soils. Possible water sources include but are not limited to storm runoff, irrigation of landscaping adjacent to the pavement, snow melt, and localized groundwater seepage. Landscaping adjacent to the pavements requiring supplemental watering should be avoided.

4.2.5 EARTHWORK OPERATIONS

It is likely that heavy-duty earth-moving equipment may be desired during grading, excavation, or trenching operations in areas where shallow, very hard bedrock is encountered. While we do not expect significant problems related to groundwater during construction, it is possible that some groundwater seepage may be encountered in isolated areas depending on the final grading planned. If groundwater seepage is encountered during earthwork operations, our office should be notified to evaluate the situation and provide any necessary recommendations.

Use of on-site soils and weathered claystone as overlot grading fills will require special consideration. Generally speaking, these types of materials will require the addition of a significant amount of water to facilitate compaction and reduce long-term swell potential. Typical recommendations for target moisture contents of compacted fills will range from -1 to +4% of optimum depending on the application.

Due to the nature of these materials, significant mixing will be required to obtain uniform moisture conditioning. Use of equipment to properly scarify, moisture condition, and mix water into these materials will be important. Use of an agricultural disc is common to aid in the mixing process. Moisture conditioning will also result in slick conditions that can be problematic for conventional earth moving equipment. Therefore, consideration should be given to use of low ground pressure and tracked equipment where feasible.

4.2.6 CORROSION TESTING RESULTS

The results of these analytical laboratory testing are presented in Appendix C of this report and are summarized below:

Sample Location and Depth (Feet)	pH Value	Resistivity (uOhms)
B-4 @ 4' (Sandy Claystone)	8.4	410
B-8 @ 0-25' (Pierre Shale)	7.4	790

pH value and Resistivity Tests Results

Water Soluble Sulfate Test Results

Sample Location and Depth (Feet)	Water Soluble Sulfates (percent)
B-4 @ 4' (Sandy Claystone)	0.129
B-8 @ 0-25' (Pierre Shale)	0.162

The concentrations of water-soluble sulfates measured on subsurface soils submitted for testing ranges from 0.129 to 0.162 percent. In accordance with ACI Building Code 318, the requirements for concrete exposed to sulfate – containing solutions are presented in following table.

Requirements For Concrete Exposed to Sulfate-Containing Solutions

Sulfate Exposure	Water soluble sulfate (SO ₄) in soil, percent by weight	Cement Type
Negligible	0.00 to 0.10	
Moderate	0.10 to 0.20	11, IP(MS), IS(MS), P(MS),I(PM)(MS), I(SM)(MS)
Severe	0.20 to 2.00	V
Very Severe	Over 2.00	V plus pozzolan

The concentration of water-soluble sulfates measured on subsurface soils submitted for testing represents a moderate degree of sulfate attack on concrete exposed to the native soils. As our experience in this type of geologic unit would indicate highly variable sulfate contents, we recommend a final geotechnical study include additional testing prior to recommending concrete type.

5 LIMITATIONS

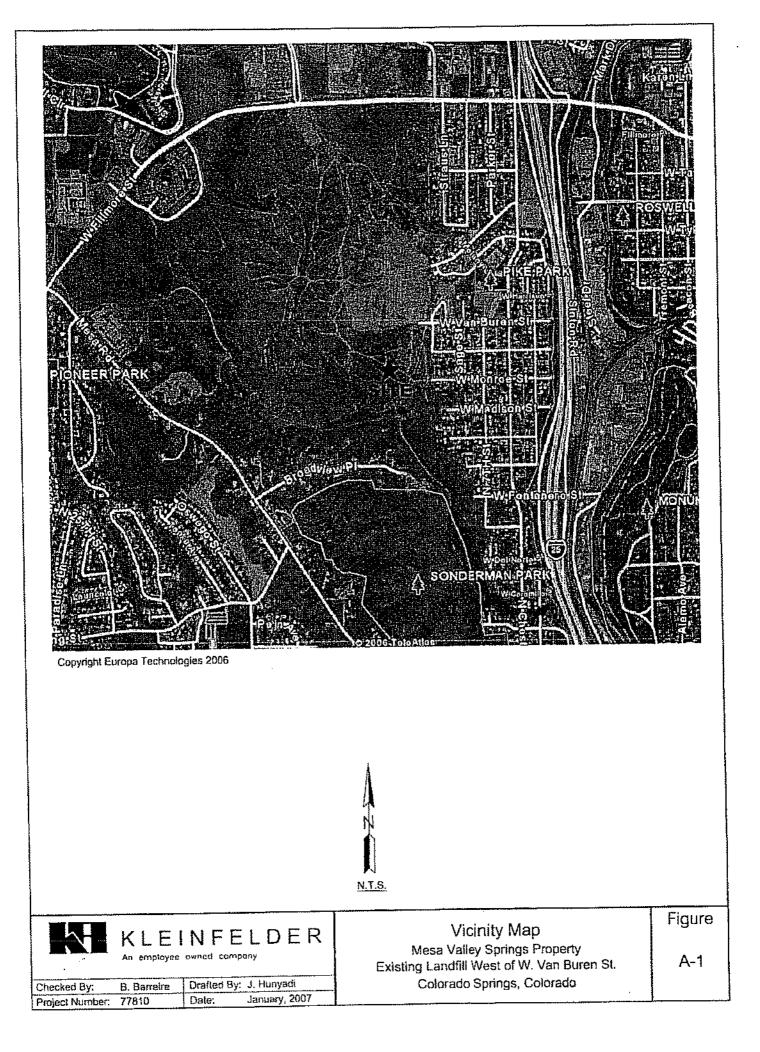
Recommendations contained in this report are based on our field observations and subsurface explorations, limited laboratory tests, and our present knowledge of the proposed construction. It is possible that soil conditions could vary between or beyond the points explored. If soil conditions are encountered during construction that differ from those described herein, we should be notified immediately in order that a review may be made and any supplemental recommendations provided. If the scope of the proposed construction, including the proposed loads or structural locations, changes from that described in this report, our recommendations should also be reviewed.

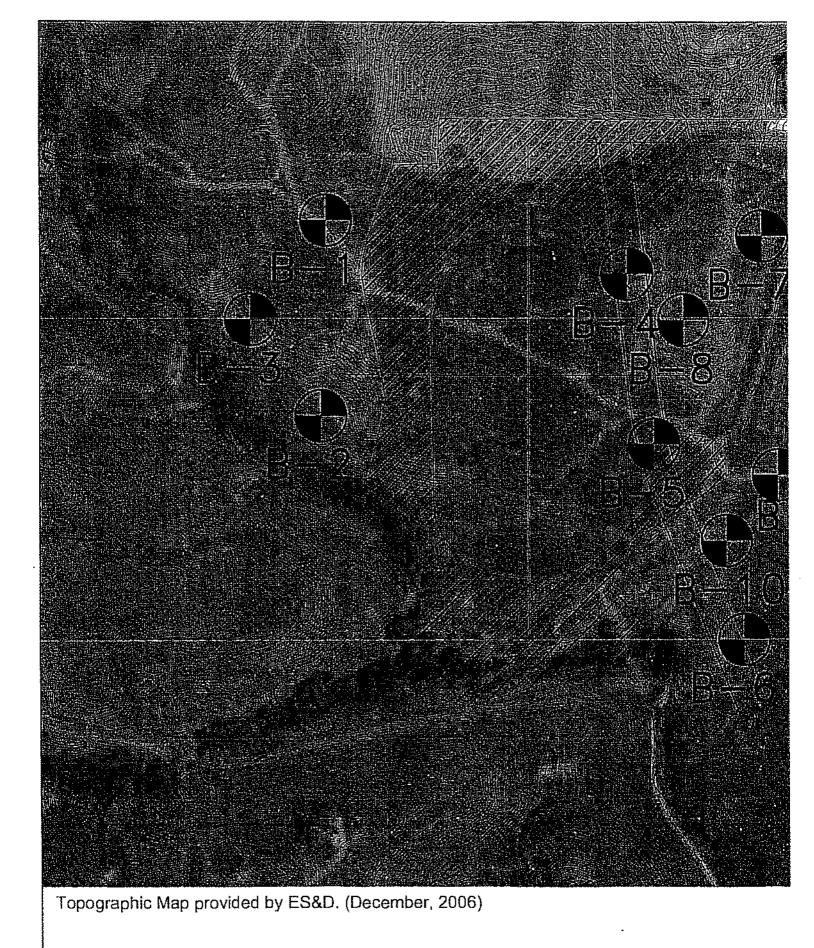
We recommend that a final geotechnical investigation be performed for this project once the final site selection has been performed, and the development/construction plans have been prepared to better refine the following conclusions and opinions and to provide "design-level" geotechnical recommendations. A "design-level" report would require additional borings and laboratory testing once the final site layout, final grading plans (cut and fill depths), type of building construction, and estimated building loads, etc., are known.

We have prepared this report in substantial accordance with the generally accepted geotechnical engineering practice as it exists in the site area at the time of our study. No warranty, either express or implied, is made. The recommendations provided in this report are based on the assumption that an adequate program of tests and observations will be conducted by Kleinfelder during the construction phase in order to evaluate compliance with our recommendations. Other standards or documents referenced in any given standard cited in this report, or otherwise relied upon by the author of this report, are only mentioned in the given standard; they are not incorporated into it or "included by reference", as that latter term is used relative to contracts or other matters of law.

This report may be used only by the Client and only for the purposes stated within a reasonable time from its issuance, but in no event later than one (1) year from the date of the report.

Land or facility use, on and off-site conditions, regulations, or other factors may change over time, and additional work may be required with the passage of time. Based on the intended use of the report, Kleinfelder may recommend that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by Client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any unauthorized party and Client agrees to defend, indemnify, and hold harmless Kleinfelder from any claim or liability associated with such unauthorized use or non-compliance.


Kleinfelder has conducted subsurface exploration and provided recommendations for this project. We recommend that Kleinfelder be given the opportunity to provide final design for this project, if required. In the event Kleinfelder is not, at a minimum, retained to review the final project plans and specifications to evaluate if our recommendations have been properly interpreted, we will assume no responsibility for misinterpretation of our recommendations.


We recommend that all earthwork during construction be monitored by a representative from Kleinfelder, including site preparation, installation of piles, and placement of structural fill and trench backfill. The purpose of these services would be to provide Kleinfelder the opportunity to observe the actual soil conditions encountered during construction, evaluate the applicability of the recommendations presented in this report to the soil conditions encountered, and recommend appropriate changes in design or construction procedures if conditions differ from those described herein.

APPENDIX A

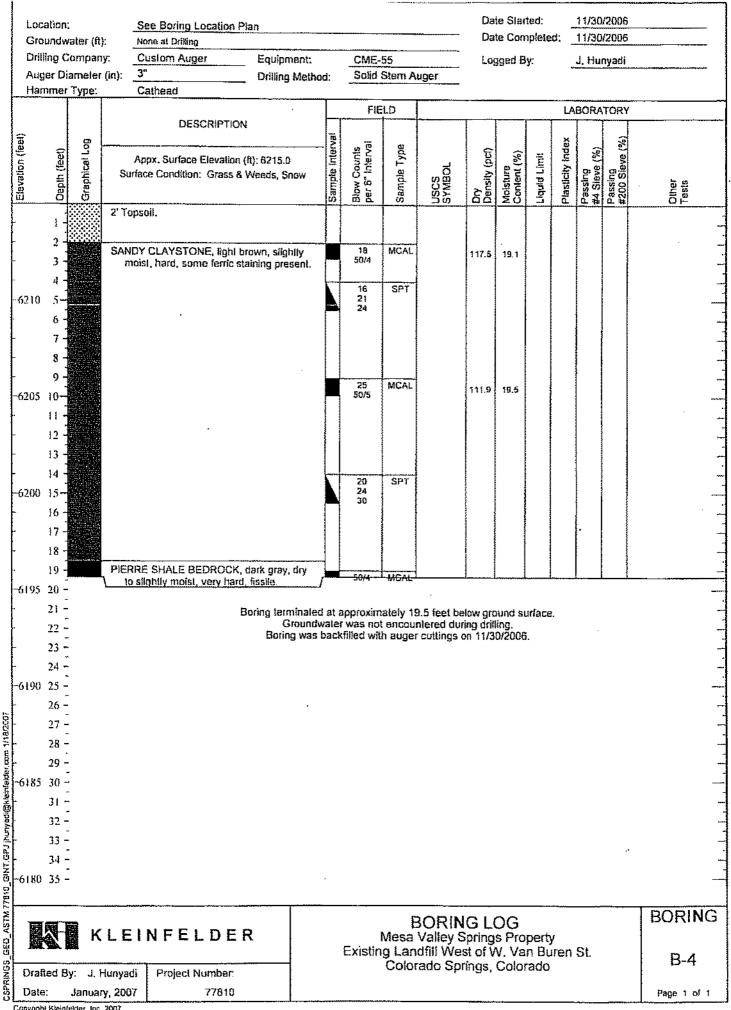
Vicinity Map and Boring Location Plan

.

KLEINFELDER Expect More*

APPENDIX B

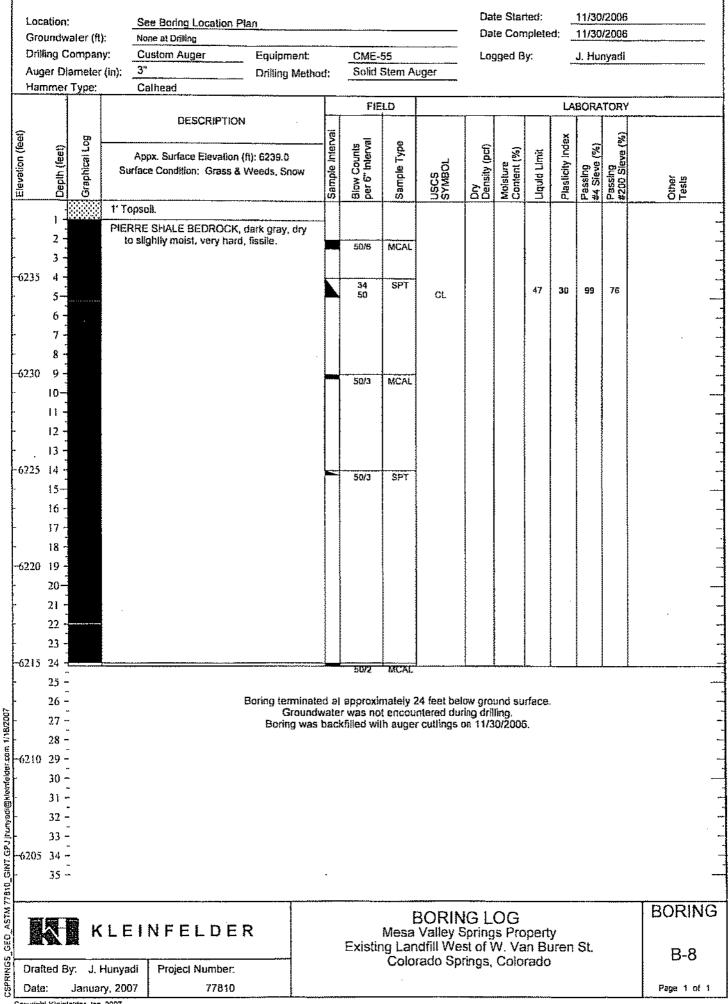
.


•

Boring Logs

										Da	te Stai	ted•		11/30	/2006	
Loca		aler (ft	١.	See Boring Location	1 Plan			.			te Con		-		/2006	
		ompan	-	Custom Auger	Equipment:		CME			Ł.o	gged E	v:		J. Hu	nyadi	
		ameter		3"	Drilling Meth	nd:		Stem A	uder		99-0 -	· J ·	-			
-		Type:	(a)).	Cathead	Unand metra	UU.										
						1	FIE	ELD					LA	BORA	TORY	
				DESCRIPTI	ON									1	[]	
et		c,				1	-				ľ		ă		(%)	
) (fe		1		Appx. Surface Elevatik	on (fl): 6223.0	Ē	unts In ru	Żb		្រុ	(%)	Ē		8	Ne N	
atio	븯	ц Ц	St	rface Condition; Grass		-e	8⊑ ž	兽	3 G Q	Ă	ent		E	E	불망	5 10
Elevation (feet)	Depth (feet)	Graphicai Log				Sample Interval	Biow Counts per 6* Interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Liquid Limli	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sjeve (Other Tests
ш.	ᅳᆜ		2º T	opsoil.		- 07	ща	0			<u> ~ U</u>		<u> </u>	11. 44	u. 48	<u></u>
-	1-															-
-	2 -		SAN				· · · ·	SHELBY								
-6220	3 -		о л о 1	IDY CLAYSTONE, light noisl, hard, some ferrio	s slaining present.							1				· -
	4 -					Ľ							ļ			-
-	5-						17 27	SPT	CL			45	27	100	71	
	6 -						32		ŰL.							
	7															
COL	<u> </u>															-
-6215	8 -				-											-
•	9-						32	MCAL		121.6	14.9					-
	10-						50/3									
•	11-															-
	12 ~										ļ		1			-
-6210	13 -										}					-
-	14 -							SPT			ļ					-
	15-						22 50	261								
	16 -															-
	17 -										1					-
2705	-											1				_
~6205	-										1					·
r	19 -						50/5	MCAL		125.3	14.8					-
İ	20-		PIE	RRE SHALE BEDROO	CK, dark gray, dry											
1	21 -		t	a slightly moist, very h	ard, fisslle.								1			-
-	22 -												1	1		-
-6200	23 -															
	24 -										1		[ł		-
	25-												ł	1		
-	26 -	1											ł	1		
	27 -															
-6195																-
-	29 -	-								1.9- 4						
ļ	30 -	-			·····		50/3	MCAL	<u> </u>				·		<u> </u>	
- 		-			Design tot	net - t	0 mm r = ··*	malakin	0 5 fami 1		. است. ر	und	-			-
Ĩ	31 -	-			Boring terminate Grount	dwate	r was n	ot encou	Intered di	uring dri	illing.		c.			
1	32 ·	-			Boring was	s bac	kfilled w	ith auge	r cuttings	on 11/	30/Ž00	6.				
-6190		•														
	34 -	-														-
ł	35 ·	-														-
										· · · · · · · · · · · · · · · · · · ·						
	<u></u>							1	BORI	NG L	.OG					BORING
	2		(L E	EINFELD	ER		. 	Mesa	Valley	Sprine	as Pr	oper	ty	.		
							Existi	ng Lar	ndfill We	est of	W. V.	an B	uren	i St.		B-1
Drat Date	led E	Зу: "Ј.	Hunya	adi Project Numbe	r:			COlO	rado Sp	prings	, Colo	rado)			
Date			ary, 20	1	1											Page 1 of 1
		aleider, in														••••••••••••••••••••••••••••••••••••••

Loca Grou		aler (ftj	ŀ	See Boring Location Pla	30						te Star te Con			1/4/20 1/4/20		···· ·
		ompan		Spectrum Exploration	Equipment:		CME	55		Lo	gged E	ly:		J. Hu	nyadi	
		meter		3"	Drilling Metho	d:	Mud F					-			<u> </u>	
Ham	mer	Type:		Automatic		· .						. <u> </u>				·····
							FIE	LD			,	······	LA	BORA	TORY	····
~				DESCRIPTION												
Elevation (feet)		Ê a 1				Sample Interval	Biow Counts per 6" Interval	g		6			Plasticity Index	(%)	%) :	
50	(fee	Ē	C .	Appx. Surface Elevation (f		2	no Pier	L L	5	, þ	8 6	E I	In te		6	
eva(Depth (feel)	Graphical Log	31	Inface Condition: Grass & V	veeus, Snow	de	χų.	Sample Type	USCS SYMBOL	Dry Density (pcf)	Moisture Content (%)	Uquid Llmit	astic	Sie	Passing #200 Siev	Other Tests
<u></u>	ő	õ				ß	ы а	8	<u> </u>	60	žö	3	τī.d.	<u>u</u> 4	₽ .‡	<u>5</u> #
-6175 -			t r	IDY CLAYSTONE, light br rown, slightly moist,weath nedium hard. Vertical frac erric statning in fractures.	ered to						-		- - - -			-
_	~ j															
-6170	/ - 8 -									ļ						
0110										Į						
	9-					\square	6	SPT								
	10-					N	6 7 8	<u> </u>								_
	11 -						5									
	12 -										ł					
6165	13 -															
	14 -															
	15-										ļ					-
-	16 -															
•	17 -						17	SPT								
-6160	18 -						16 14									
•	19 -		DHE	RRE SHALE BEDROCK, I	lark nrav. dor	- 1										
-	20-		1	o slightly moist, very hard,							}					-
	21 -			18" slightly weathered.				ļ								
•	22 -															
-6155	23 -										1					
r i	24 -						50/4.5	L SPT								
	25 -						- -									
ŀ	26 -			\$	oring terminater	d at	approxin	nately 2	4.5 feet h	eiow ∩r	ound s	urface	э.			
ŀ	27 -				Ground	wate	r was no	ot encou	ntered du	rìng đri	lling.					
6150	28 ~				Boring wa	s da	CKINGQ A	vin siĝi	er cuttings	s on 1/4	w2007	•				
	29 -															
Ļ	30 -	•														-
4	31 -	•														
	32 -	•														
61.44	33 -	-														
-6145	- در - 34 -	•														
[•	•														
Ĩ	35 -	-				-										
<u> </u>					<u>_</u>											BORING
	F		• • •		_			M	BORIN	G L	<u>O</u> G					
-6150				EINFELDEI	`		Existi	ng Lar	Valley S Idfill We rado Sp	est of '	W. Va	an Bi	uren	St.		· B-2
Oraft Date	led B	y: J.	Hunya	adi Project Number:	1.			000			, 00,0		•			
Date		Janua	iry, 20	07 77810												Page 1 of 1


	ation: Indwa	ater (ft)	-		Boring I		on Pla	ก							te Sta te Cor		-	1/4/2 1/4/2		
1		ompan			rum E;		tion	Equipo	nent:		CME	-55		Lo	gged E	By:		J. Hu	nyadi	
		meler	(in);	3"				Dritting	Metho	d:	Mud I	Rotary				•	-			
Нал	imer T	Type:		Autor	natic					,										
					or		tion				Fle	ELD		~		·	<u>ل</u> م	BORA	TORY	
÷					DES	SCRIP	HON			-										
(fee	e l	Loc		A a a a a a a a a a a						E2	als rvaį	er,		េច	3	-	- apu	3	e (%	
tion	i (fei							l): 6190.0 Veeds, Si		비	Dou	e T	ರ		nt (5	E	Â	55	Slev	
Elevation (feet)	Depth (feet)	Graphical Log						10043, 0		Sample Interval	Blow Counts per 6" interval	Sample Type	USCS SYMBOL	Dry Density (pcf)	Molsture Content (%)	Llquid Limit	Plasticity Index	Ste	Passing #200 Sleve (%	Other Tests
<u>ឃ</u>		U C	SAN		AVETO	N#= #_					<u> </u>	ល័	36		Ξŏ	<u> </u>	ñ	5.4	<u>4</u>	<u>– ö</u> <u></u>
	1 - 2 - 3 - 4 -		br	rown, s	lightly r ining p	noist, i	mediu	own lo gr im hard,	some											-
-6185	5-1																			-
)- - 6 -										11 12	SPT					ł			
l	7										14									-
	/~] 8~-																			-
L	-													-						-
	9- -																1			-
-6180	t0-																			
r- -	11-																			
	12 -																			
	13 -																			
-	}4 -																			-
-6175	15-			RE SH		EUBO	CK d	lark gray,	din/		18	SPT								_
ŀ	16 -		to	sight	y moist	, very l	hard,	fissile.	, ui y	N	23 38									
ŀ	17 -																			-
ŀ	18 -																			
ł	19 -																			
-6170	20-																			
}	21 -																	ļ		
	22 -																ł			
 	23 -																			
	24 -																			
-6165	25 -		·····							لحصب				h	•		ł	*	4	
Ļ	26 ~						р ,	nrina ter	minater	{ _ }	anntovio	nately 2	4.5 (eet bi	elow or		urfoc				
ŀ	27 ~							0	Sroundv	vate	r was no	at encou	ntered du	ting dri	ling,					
Ļ	28 -							Bor	nng was	s bai	ckfilled v	with aug	er cutlings	s on 1/4	/2007.					
-	20 29 -																			
-6160	-																			
0,00	31 -																			
	32 -			•																
Ĭ	-																			
	33 -																			
[34 ~										-									
-6155	30 -	•								•										-
									1											
-6155		·			e =	1.0	e r	2				. F	BORIN	dG L	OĢ					BORING
				. I N	FΕ	LU	ርኮ	۲	1		Evictio	Mesa	Valley &	Spring	is Pro	ped	y Jron	¢,		
						•• •			4		LAISU	Colo	rado Sp	iai Oi N Minas	rv. va Colo	an Di rade	미면[])	οι.		B-3
Draf		y: J.i		1	Project				-				· F	- <u>9</u> +1						
j Date		Janua	ry, 200 2007	11		778	10						····-						-	Page 1 of 1

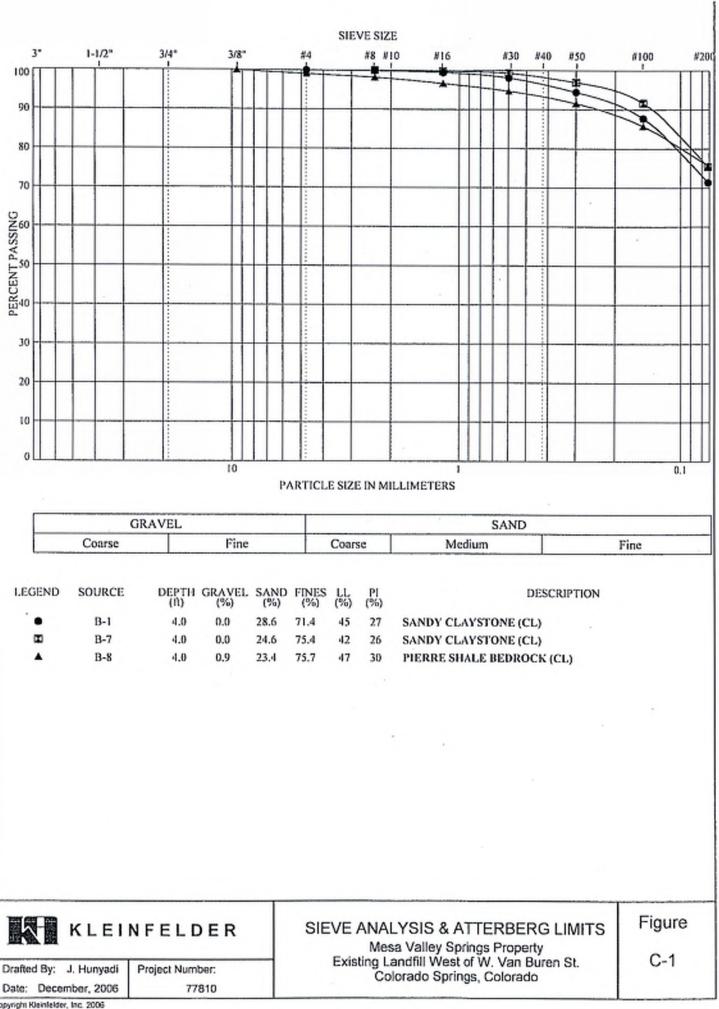
	ation:	ater (ft)			oring Locatio	on Plan							te Stat		_		/2006	
Drill Aug	ng C er Di	ompan ameter	r:	3"	n Auger		quipment: Drilling Meth	od:	CME	-55 Stem A	uger		gged E	-			nyadi	
Han	mer	Type:		Cathea	d				_									
					DESCRIPT	TION		Ь	FI	ELD					- 14	BORA	TORY	
Elevation (feet)	Depth (feet)	Graphical Log	Su		utface Elevat	tion (ft): (Sample Interval	Blow Counts per 6" Interval	Sample Type	USCS	Ory Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other
6205	. 1		1' To	psoil.														
0205	2		SAN	DY CLA' Ioisl, han	YSTONE, lig d, some ferri	ght brow ric staini	n, slightly ng present.		31 36	MCAL								•
6200	5 6 7 7								25 35 50/5	SPT								-
6195	8 - 9 - 10 -			PIERRE SHALE BEDROCK, dark gray, d			29 50/4	MCAL		119.9	15.3			-		-		
	12 - 13 - 14 - 15 -		PIER	RE SHA	LE BEDRO	ICK, dari hard, fise	k gray, dry sile.	-	10 30	SPT								
6190									50/5									
6185	19 20- 21							Ī	50/4	MCAL								
	22 -																	
6180	27 -																	
	28 - 29 - 30 -								50/5	SPT								
-6175	32 -		G	ng terminate Ground Boring was	twate	was no	ot encou	ntered di	uring dril	ling.		ð.						
	34 -	-																
		ĸ	LE	INF	ELD	ER			Existi	Mesa ng Lan	BORII Valley	Spring est of V	s Pro	an Bu	Jren	St.		BORING B-5
Draf Date	ed B	ly: J.H Januar	łunya y, 200		oject Numbe 778					Color	rado Sp	orings,	Colo	rado				Page 1 of 1

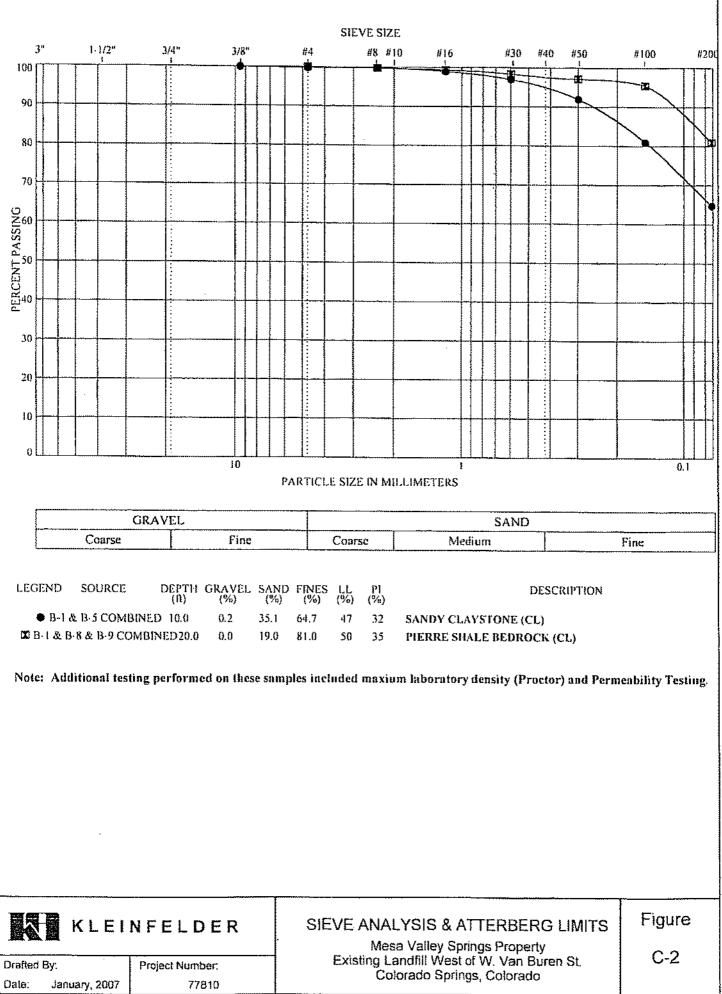
Gro Dril Aug	lling C ger Di	ater (ft) Iompan ameter	y:	See B None a Spect 3"	it Drillin Irum E	<u>g</u>		Equip	menl; g Meth	od:	CME Solid	-55 I Stern A	\uger	D;	ale Sta ate Co ogged	mpiet	ed:	1/3/2 1/3/2 J. Hu		······································
Har	nmer	Type:		Auton	natic	<u> </u>				1		ELD	r						ATORY	······································
_					DE	SCRIP	TION					1				1	ΤŰ			
Elevation (feel)	Depth (feet)	Graphical Log	ຽນ	Appx. 5 Inface Co	Surface	e Eleva n: Gra	Nion (1 ss & \	t): 6158, Veeds, S	0 Snow	l Sample interval	Blow Counts per 5' Interval	Sample Type	USCS SYMBOL	Dry Density (act)	Moisture Content (%)	Liquid Limit	Plesticity Index	'assing 4 Sieve (%)	PassIng #200 Sieve (%)	Olher Tests
-6155	- 2 - 3 -		Sana	dy Lean tilf.	CLAY	(CL),	ligh) t	νown, π	noisl,									<u>u.</u> ‡	1 UL 114	01-
- -	4 - 5~ 6 -										6 6 6	SPT								
-6150	7 - 8 -		m ha	DY CLA toist to r ard, son resent.	noist,	weath	ered t	o medlu	m											
- - -	- 9 - 10- 11-										6 6 7	SPT								 -
~6145	12 ~ 13 - 14 -																			
	15 16 - 17 ~									N	10 11 14	SPT								
	-		PIER	RE SH/ slightly	ALE B moist	EDRO , very l	CK, d hard, l	ark gray issile.	', dry		50/2	SPT								-
-6135	-																			
	24 - 25 - 26 - 27 -																			
6130	-										50/1	SPT								-
	30 - 31 - 32 -						B	Ģ	Sroundy	Naler	approxir was no	nately 2 t encour	9 feet bei niered du er cuttings	rina dril	ina.					
	33 - 34 - 35 -																			- -
		ĸ	L E	INF	E!	_ D	ER				Svietin	Mesa '	SORIN Valley S dfill We	Sprina	s Pro	pert	/			BORING
Drafte	ed By	J.H.	inyad	I Pro	ojeci N	lumbe	r.			1		Color	ado Spi	rings,	v. va Colo	n ado rado	iren	ર્ગ.		B-6
Dale:		lanuary	·· · ·	<u>, </u>		7781	0		[Page t of t

	ation			See Boring Location I	Plan						ite Stai		-		/2006	
1		ater (fl Iompan	• •••	None at Drilling				~~	·····	-		-	-		/2006	<u></u>
1		ameter		Custom Auger 3"	_ Equipment:		CME	-55 Stem A		Lo	gged £	iy;		J, Hu	nyadi	
		Type:	V	Cathead	Drilling Meth	100:	3010	Stell A	uger							
					······································		FI	ELD		·			1.0	000	TORY	·
				DESCRIPTIO	N	┢─			· · ·	1	<u>1</u>	I	1	1		
(in the second s		ទ្តា				ie,							×		র	
ц Ц Ц	(ji	1	ļ	Appx. Surface Elevation	(fi): 6226.0	닅	Sta Sta	ype		ଟୁ		묻	1 PE	8	1	
atio	5) 41	ohic Diric		ace Condition: Grass &		8	35	Die 1	ы В С	≩	a re		1 AF	52	25	
Elevation (feet)	Depth (feet)	Graphical Log				Sample Interval	Blow Counts per 6" Interval	Sampie Type	USCS SYMBOL	Dry Density (pcf)	Molsture Content (%)	Liquid Limi	Plasticity Index	assi 4 Gi	Passing #200 Sieve (%)	Other Tests
			1' Top	ISOII.			<u> </u>		(N		20		<u> </u>	<u>n</u> #	R. 16	<u> </u>
-6225	11		SAND	Y CLAYSTONE, light	brown, slightly											
E	2 -		ma	ist, hard, some ferric s	taining present.		25 35	MCAL					ļ			
]						45									
	5-						16 18 24	\$P7				42	26			
-6220	6-						24		CL			72	20		75	-
	7.															
•	8-															
ŀ	9-															
ŀ	10-						30 50	MCAL								_
-6215	11-															
ŀ	12 -															
	13 -															
-	14 -						14	SPT								
+ 	15-						14 20 24									-
-6210	16 -															
Ē	17 -															
ſ	18 - 19 -						I									
	20-			E SHALE BEDROCK,												
-6205	21 -		(O S	slightly moist, very hard	i, fissile.											
-	22 -															
-	23 -			•												
F	24 -						5024			124	13,9					
F	25-						50/4	MCAL		1.2.7	13,3					-
-6200	26 -															
-	27 -															
ł	28 -															
ŀ	29 ~			,												
1 (105	30~															
-6195	31 ~ 32 -															
	33 -															
ļ	34-														-	-
Ļ	35 -						50/2	146		I		i	ł	!	k	
-6190	36 -				Boring terminate	ed at	approvin	nately 3	4 feet hel	ow orev	ind cui	face				
ł	37 -				Ground	water	r was not	t encour	itered due	rina drill	ina.					
ŀ	38 -				Boring was	oack	unea wil	n auger	cuttings	on 11/3	u/2006					
ŀ	39 -															-
ŀ	40 -															
L																
-		-						P	ORIN	GIO	202					BORING
-6195		K	LEI	NFELDE	R			Mesa '	Vallev S	Sprinos	s Pro	pertv	,			
	. 1980. JA						Existin	ig Land	ifill We	stofV	V, Va;	n Bu	iren :	St.		B-7
Draft	ed By	7: J. H	lunyadi	Project Number:				Color	ado Spi	rings,	Color	ado				D~/
Date	:	January	y, 2007	77810												Page tof 1
Coovials				•												1

1	ation:			See Boring Location I	^o lan						le Star				/2006		
		ater (ft)		None at Drilling	•••••••						te Con				/2006		
1	-	ompan	-	Custom Auger	Equipmen		CME			Loj	gged B	iy:		J. Hu	nyadi		
1 -		ameler -		3"	_ Drilling Me	elhod:	Solid	Stem A	Uger								
Har	nmer	Туре:	(Cathead													
ļ				55661516			FI	ELD			,. <u></u> .		LA	BORA	TORY		
				DESCRIPTIO	N	-											
laaj		5a -				erve	kal Val	a		e e			dex	3	2		
ы	66			ppx. Surface Elevation		틷	nter	L.	ょ	l g		Ē	۲ ا	<u>ء</u>	eve		
Elevation (feet)	Depth (feel)	Graphical Log	Surfa	ace Condition: Grass &	Weeds, Snow	Sample Interval	0 ₹9	Sample Type	Sa	lsi b	ig ir	Liquid Limil	Plasticity Index	La Sec	sing 0.51	ច ច	
ü	D G	Ğ				Sar Sar	Blow Counts per 6" interval	Sar	USCS	Dry Density (pcf)	Maisture Cantent (%)	Ĕ	E C	Pas #	Passing #200 Sleve (?	Other Tesis	
	. 1		1' Top	soil.					·					[
-6205	1		SAND	Y CLAYSTONE, light I	brown, slightly							{					
-	2 -		៣០	isl, hard, some ferric s	taining presen	14.	10	SPT			ĺ						-
F	3 -						11 16				1	[
F	4 -																-
-	5-						14 28	MCAL		107.1	20,3						
-6200	6 -										}						-
0200											ł						-
ſ	7-										.						
ŕ	8 1							}				{					
ł	9-						12	SPT			[
F	10						12 17 30				ļ						
6195	11-						•••										
-	12 -			RE SHALE BEDROCK slightly moist, very har		У											
	13 -			and the state of t	-, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									1			•
	4																
F	4 - -						50/3	MCAL									
Ē.	1.5																
-6190	16 -		:														
F	17 -																
F	18 -							1									
-	19 -																
	20-						50/3	SPT				ŀ	ł				
1 102																	-
-6185														ł			-
Ī	22 -	••••• •••												ł			 -
f	23 -																-
	24 -											1	ļ				
ł	25-											ļ					
-6180	- 26 -							1					ł				
NOON -	27 -																
1/16/	28 -							1]						
<u>e</u>	29 -										ļ						
ider.		4		······································			50/3	MCAL		1	3	.i	ł	1	4		
ente	30 -	-															-
ž -6175	31 -	-			Boring termin	aled at	approxin	nately 2	9.5 feet b Intered di	below gr	ound s	urfaci	e .				
TEAL .	32 -				Boring V	was baci	kfilled w	ilh auge	r cuttings	s on 11/.	30/200	6.					-
Į.	33 -	-			-			_	-								_
ð[34 -	•															-
	35 -	•															
910																	
2				· · · · · · · ·									·			BOR	NG
AST				INFELDE	P			Maar		NG L	UG						U I U
		盟 n		INFELDE	IX		Evieti	NICSA	Valley	opring est of l	រូន Pñ ល <i>ហ</i>	pert	y Iron	St			
33.55				<u> </u>			CAISH	ny tan Colo	rado Sp	orinas	. Colo	n Di Sin Di	과면())	01.		B-	9
CSPRINGS, GEO_ASTM 77810, GINT GPJ purgeometricater.com 119/2007	fled B		Hunyadi	ł							2010		-				
ິກຼີ Dat	e:	Jauna	ry, 2007	77810								<u></u>				Page 1	DÍ 1

	ation:	ater (ft)		See Boring Location Pl	an						te Sta te Con		-	1/3/20		
Drill Aug	ing C er Di	ompany ameter Type:	y:	Spectrum Exploration 3" Automatic	Equipment: Drilling Metho	od:	CME- Solid	55 Stern A	uger		gged E		-	J. Hu		
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Nuturnatio		T	FIE	LD					LA	BORA	TORY	
Elevation (feet)	Depth (feet)	Graphical Log	Su	DESCRIPTION Appx. Surface Elevation (I rface Condition: Grass & V	R): 6194.0	Sample Interval	Blow Counts per 6° Interval	Sample Type	USCS	Dry Density (pcf)	Moisture Content (%)	Liquid Limit	Plasticity Index	Passing #4 Sieve (%)	Passing #200 Sieve (%)	Other Tests
<u> </u>	-		1' To	opsoil.		ő	88	ŝ	36	ŏŏ	žŏ	1 J	ä	2.4	5.5	0º
	2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		SAN	DY CLAYSTONE, light br noist, hard, some ferric sta	own, slightly lining present.											
-6190	4 - 5						20 20 18	SPT								-
-6185	7-8-9-						20	SPT								
	10- 11 - 12 - 13 -				20 20 20											
-	14 - 15 - 16 -					31 40 50/4	SPT									
-6175	17 - 18 - 19 - 20 -						28 25 32	SPT								
-	21 - 22 - 23 - 24 -															
-	25-		PIEF	RRE SHALE BEDROCK, o slightly moist, very hard,	dark gray, dry fissile.											-
	28 -															
-6160	30 - 31 - 32 - 33 -			B	oring terminate Ground Boring wa	water	Was no	encou	ntered du	ring dril	ling.					
		ĸ	LE	INFELDEF	2		Existir	Mesa ng Lan	BORIN Valley	Spring est of V	s Pro V. Va	n Bu	Iren	St.		BORING B-10
Date	:	y: J. H Januar,	y, 200					Color	rado Sp	rings,	Color	rado				Page 1 of 1

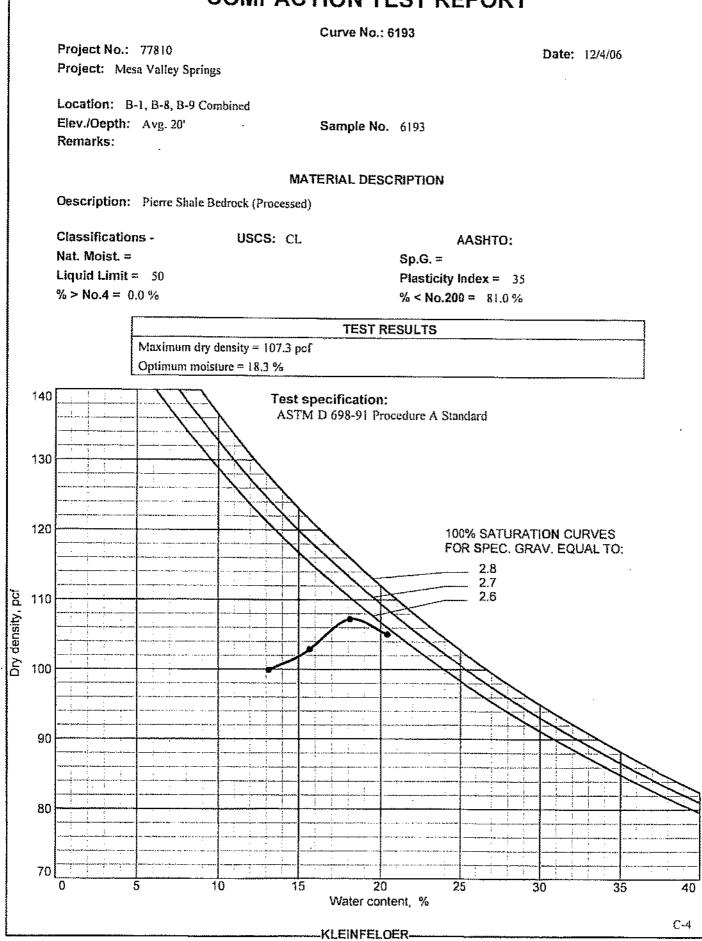

KLEINFELDER EXPECT MORE*

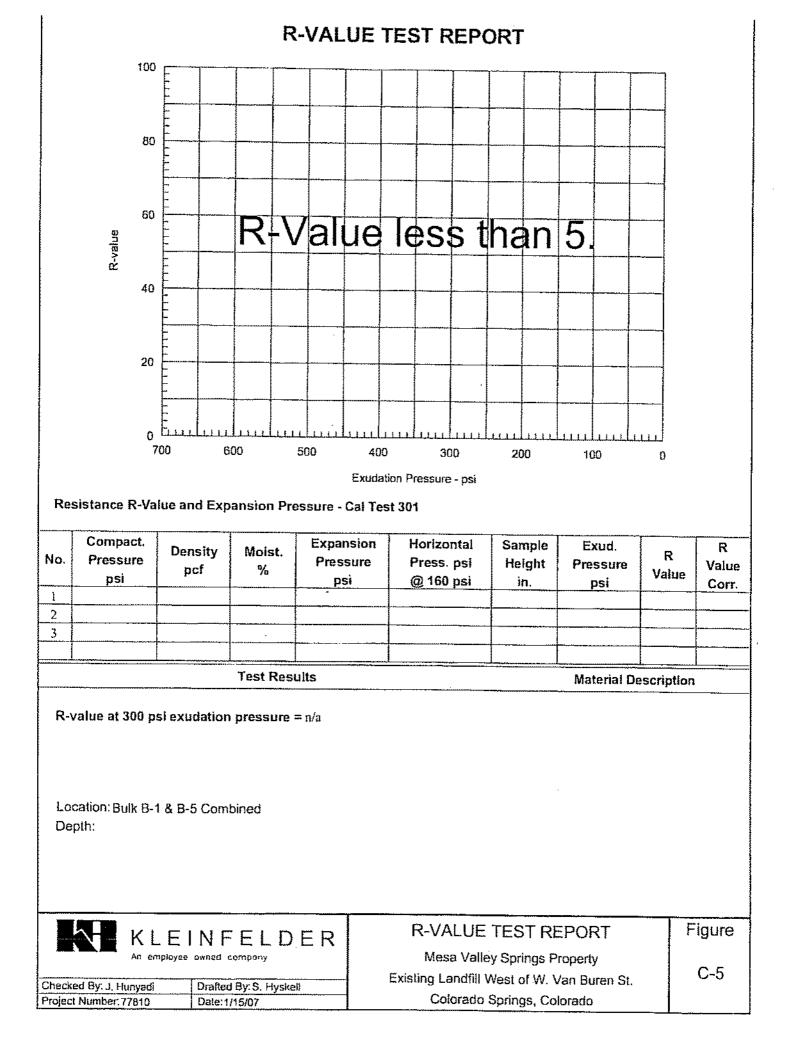

APPENDIX C

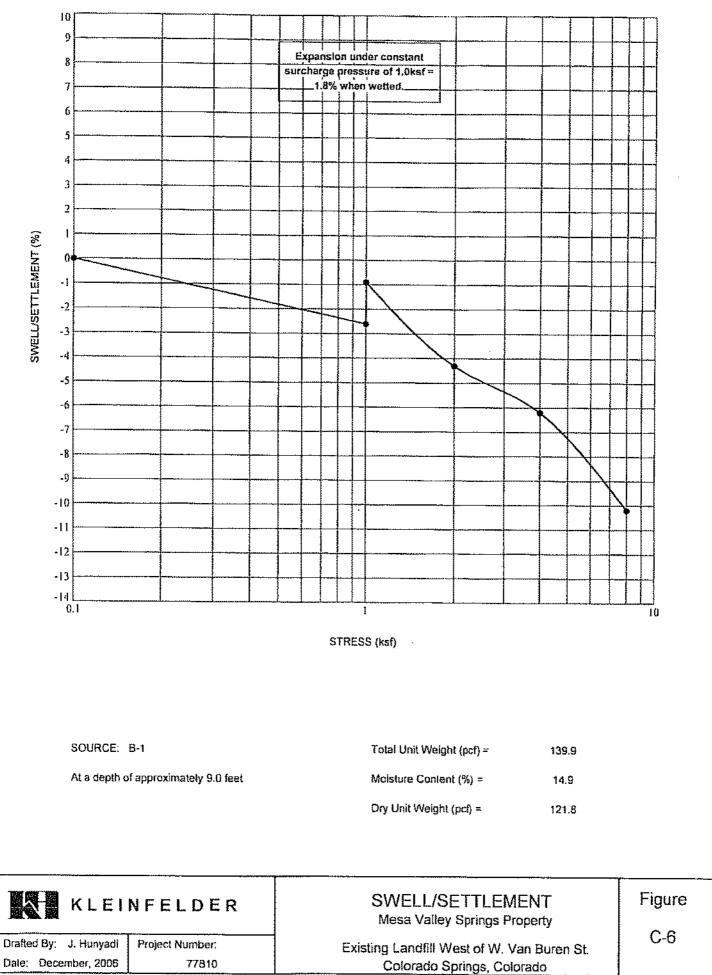
.

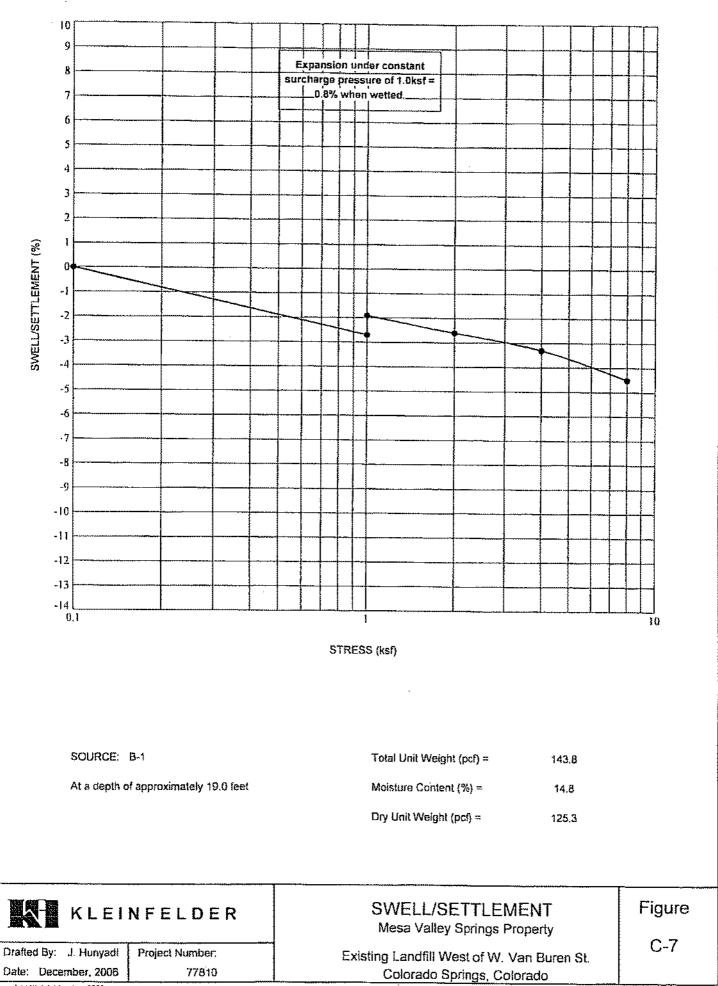
Laboratory Test Results

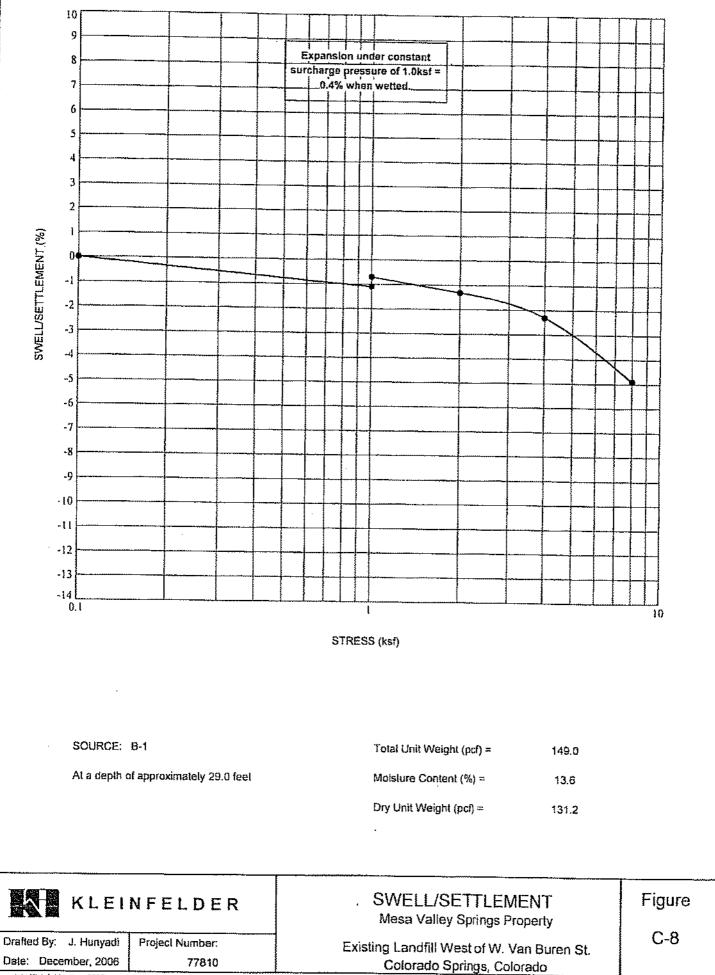
.



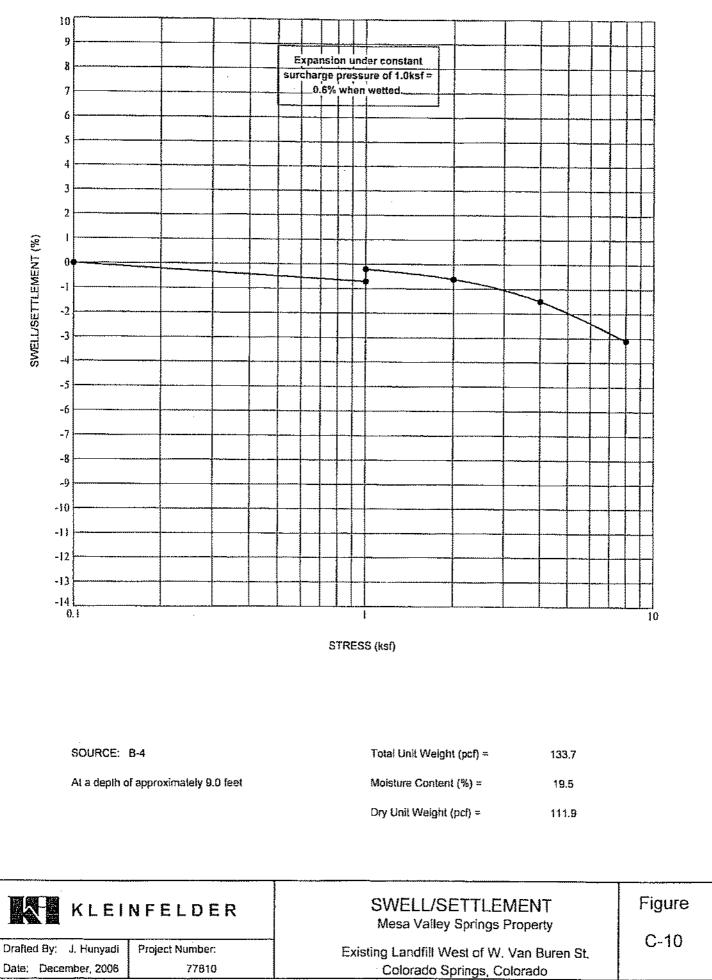


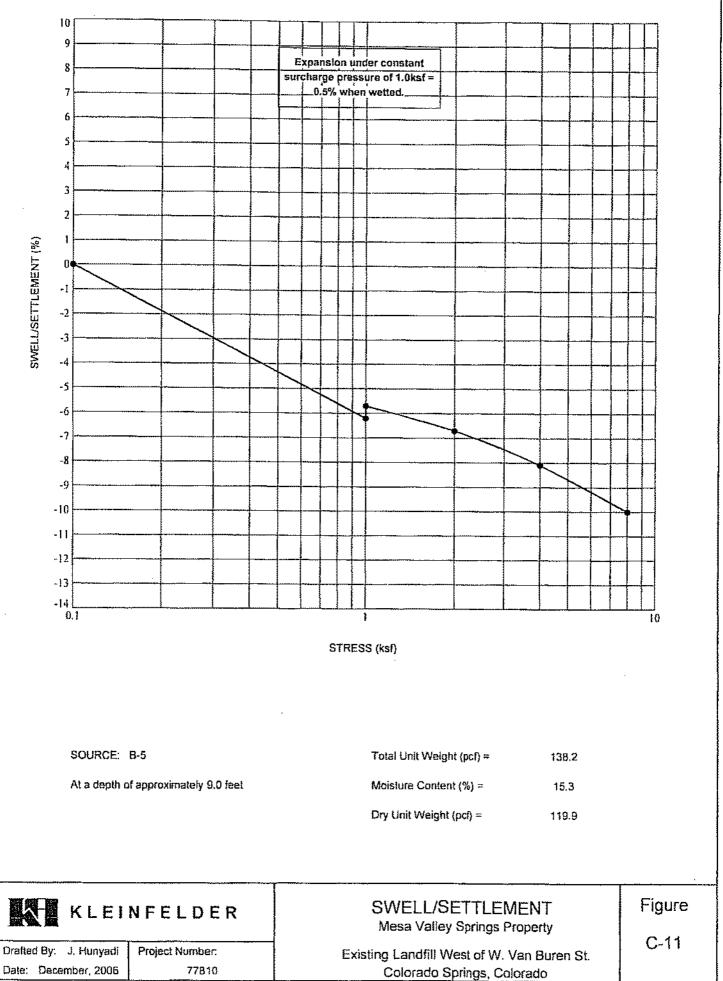

COMPACTION TEST REPORT

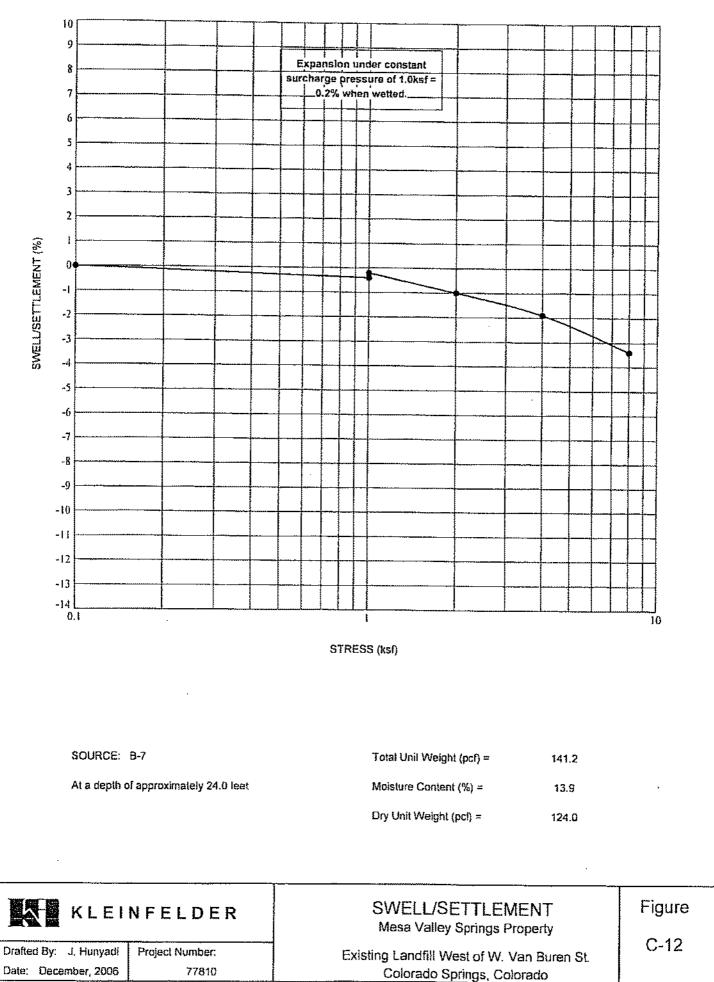

COMPACTION TEST REPORT



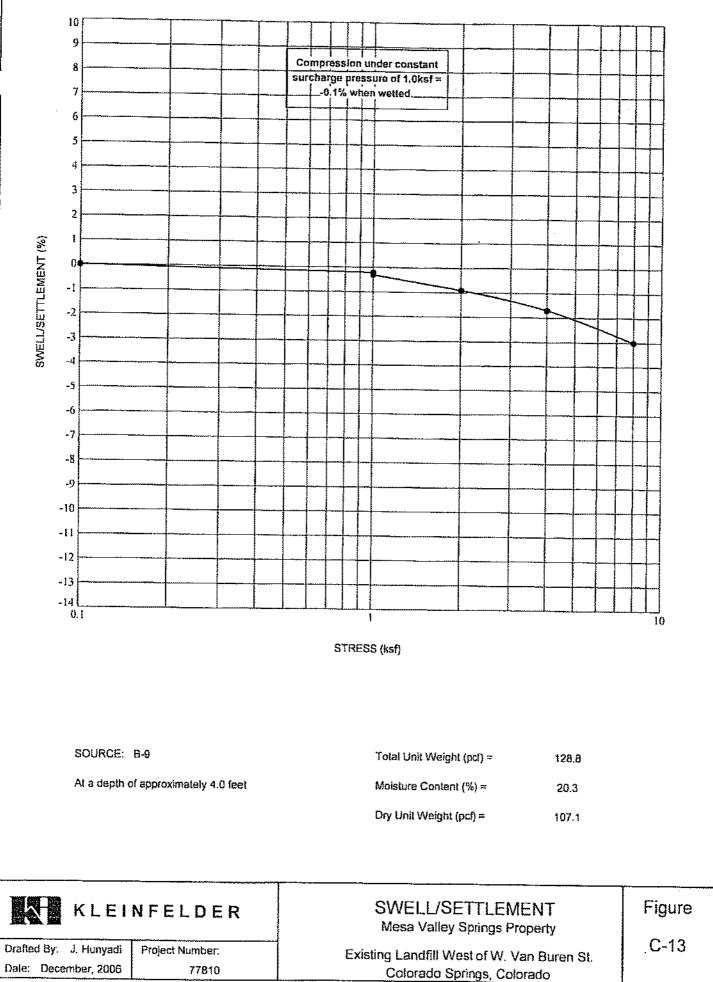

ZCONSOLID 778*


ZCONSOLID 778-


2CONSOLID 778*


ZCONSOLID 778-

ZCONSOLID 778



2CONSOLID 778*

T.GPJ]hunyadi@kleinfelder.com 12/27/2006

ZCONSOLID 778

ZCONSOLID 778-

1110 Eiknen Drive, Suite A Colorado Springe, CO 80907 (719) 593-9595 FAX (719) 593-9931 www.testAmericaine.com

13 December, 2006

John Hunyadi Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs, CO 80919

RE: n/a Work Order: A612012

Enclosed are the results of analyses for samples received by the laboratory on 12/04/06 15:34. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tom Fowler QA Manager/Lab Director

CA ELAP Certificate # 2000

Puge 1 of 7

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919	Project: n/u Project Number; 77810 Project Manager; John Hunyo	di		A612012 Reported: 12/13/06 12:43
	ANALYTICAL REPORT FOR SAMPI	.es		
Sample 1D	Laboratory ID	Matelx	Date Sampled	Date Received
B4@4'	A612012-01	Soil	12/04/06 00:00	12/04/06 15:34
B8 Combined	A612012-02	Soil	12/04/06 00:00	12/04/06 15:34

TestAmerica - Colorado Springs

The results in this report upply to the numples analyzed in necordance with the chain of custady document. Unless wherevise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

Kleintelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919	Te	Project N Project M Wet C	hem Preject: n/a number: 7781 nunager: John hem Prej ca - Color	Hunyodi paration				Аб12 Кера 12/13/07	led:
Analyte	it asoli	Aeporting Limit	Unis	Ditution	Baich	Prepared	Analyzeil	hlethod	Noles
B4@4' (1/612012-01) Soil Sampled: 12/84	/06 00:00 Received:	12/04/06 15	;34						
pH	8.4	0.0	pH Units	1	NL60405	12/04/06 {3:44	2/04/06	EPA 9045B	
Resistivity	410	0,0	uOhais	п	A£60406	12/04/06 16:03	[2/94/06	EPA 9045C	
B8 Combined (A612012-02) Soit Sampled	l; 12/04/06 ((():110 Rec	cived: 12/0	4/06 15:34						
p) [7.4	0.0	թել Ռոյք։	1	AL60405	12/04/06	12/04/06	ЕРА 90-15В	
Resistivity	790	0.0	aOhms	-	11.60404	12/04/06 16:03	12/04/06	EPA 9845C	

TestAmerica - Colorado Springs

.

The results in this report apply to the samples analyzed in accordince with the chain of custorly ductment. Unless otherwise stated, results are reported on a wet weight basis. This analytical report news be reproduced in its controly.

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project No	'rojeci: n/a unber: 778 mager: Johi					A6120 Report 12/13/06	sti
		eneral Cl TestAmei							
Analyte	Result	Reporting Limit	Units	Dilution	Baich	Prepared	Analyzed	Melhod	Notes
B4@4' (A612012-01) Soll Sampled: 12/04/06	0:00 Received:	12/04/06 15:	34						
Sulfate B8 Combined (A612012-82) Soil Sampled: 12	1290 /04/06 09:00 Re	200 ceived: 12/04	mg/kg 1/06 15:34	<u>2</u> 0	6121424	12/09/06	12/11/06	SW846 9056	
Sulfate	1620	200	mg/kg	20	6121424	12/09/06	12/11/06	SW846 9056	

TestAmerica - Colorado Springs

The results in this report apply to the samples analyzed in accordance with the choin of custody document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirety.

.

ſ

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project N	Projeci: 17/0 lumber: 77i anager: Jot						Reju	2012 irted: 16 12:43
		_		- Quality prado Sp	•	bl	^			
Analyte	Result	Reporting Limit	Units	Spike Level	Source Acsult	148.EC	WREC Limits	RPD	ItPD Limit	Notes
Butch AL60405 - Wei Chem prepu	ration / EPA 9045B									
Juplicate (AL60405-DUP1)	Source: A6120	11-01		Prepared &	Analyzed:	12/04/05				
5¥I	8.30	0.0	pH Units		8.3		<u></u>	0	20	
Butch AL60406 - Wet Chem prepar	ration / EPA 9045C									
Suplicate (AL60486-DUP1)	Source: A6120	12-02		Prepared &	Analyzed:	12/04/06				
Resistivity	B{0	0,0	uOluns		790		······································	2	20	

TestAmerica - Colorado Springs

The results in this report opply in the samples analyzed in accordance with the chain of costndy document. Unless otherwise stated, results are reported and wet weight basis. This undytical report must be reproduced in its entirety.

.

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project Ni							A61: Repo 12/13/0	rieů:
	General C	hemistry	Param	eters - Qu	ality C	ontrol				
	. '	TestAmer	ica - N	ashville, ʻ	TN					
Analyte	Kesuð	Reporting Limit	Units	Spike Level	Source Retuit	turec.	MAEC Liniu	KPD	RPD Limit	Notes
Batch 6121424 - METHOD PREF / SW84	6 9056							_		
Blask (6321424-BLR1)				Prepared:	12/09/06 /	\nolyzed: 1	2/10/06			
Sulfnte	ND	10.0	ing/kg							
Laboratory Control Sample (6121424-BS1)				Prepared	12/09/06 /	Analyzed: 1	2/10/06			•
Salâste	151	10,0	mg/kg	150		101	90-110			
Duplicate (6121424-DUP1)	Sunree; NPL	1430-01		Prepared:	12/09/06 /	Analyzed: F	2/10/06			
Sulfare	27.9	10,0	mg/\$g		22.1			23	20	F
Matrix Spike (6121424-MS1)	Source: NPL	0718-01		Prepared;	12/09/06 /	Analyzed: 1	2/10/06			
Sulfaje	288	10.0	ուք/եք	150	164	83	80-120			
Matrix Spike Dup (6121424-MSD1)	Source: NPL	0718-01		Prepared: 1	12/09/06 /	Analyzed: 1	2/10/06			
Sulfare	248	10.0	mg/kg	150	164	56	80-120	15	20	N

TestAmerica - Colorado Springs

.

The results in this report upply to the samples analyzed to occordance with the chain of costody document. Unless otherwise stated, results are reported on a wet weight barts. This analytical report much be reproduced to us contrep.

.

.

1110 Elkten Drive, Suite A Calenado Springa, CO 80307 (719) 593-9595 FAX (719) 593-9981 www.testatueticsinc.com

Kleinfelder - C/S 4815 List Drive, Unit 115 Colorado Springs CO, 80919		Project Number:	Project: 1/4 Project Number: 77810 Project Manager: John Hunyadi			
		Nutes and Def	īnitians.			
R2	The RPD exceeded the acceptance limit	٤.				
M2	The MS and/or MSD were below the acceptance limits due to sample matrix interference. See Blank Spike (LCS).					
DET	Anniyle DETECTED					
ND	Analyse NOT DETECTED at or allowe the reporting limit or MDL, if MDL is specified					
NR	Not Reported					
dry	Sample results reported on a dry weight instis					
RPD	Relative Percent Difference					

TestAmerica - Colorado Springs

The results in this report apply in the samples analyzed in accordance with the chain of cosmily document. Unless otherwise stated, results are reported on a wet weight basis. This analytical report must be reproduced in its entirely.

Appendix F Assessment Report Mesa Valley Landfill Investigation 2018

August 23, 2018 Kleinfelder Project No.: 20191069.001A/CSP18L83172

Mr. Jack Chappelle, P.E. Engineering Solutions & Design, Inc. 51 Corporate Woods 9393 West 110th Street, Suite 500 Overland Park, Kansas 66210 mailto:jack@esdworks.com

SUBJECT: Assessment Report Mesa Valley Landfill Investigation 2018 Colorado Springs, Colorado

Dear Mr. Chappelle:

This letter presents the results of our geotechnical and environmental investigation performed for the existing Mesa Valley Landfill, southwest of the intersection of Centennial Drive and West Van Buren Street in Colorado Springs, Colorado.

Purpose and Scope

The purpose of our geotechnical study was to further explore and evaluate the subsurface conditions at the existing landfill. To meet the intended purpose, we completed the following scope:

- Review of selected geologic and geotechnical data
- Preliminary site visit to locate the borings and assess access
- Notification of Utility Notification Center of Colorado (CO 811)
- Subsurface exploration consisting of the surveying, drilling and logging of 19 borings to bedrock or a maximum depth of 50 feet
- Installation of 7 gas monitoring wells
- Installation of 3 groundwater monitoring wells and associated permitting
- · Gas monitoring and collection of groundwater samples
- Groundwater and methane laboratory testing
- Report preparation

Our services excluded collection of geotechnical soil or bedrock samples, geotechnical laboratory testing, and groundwater monitoring well abandonment.

Field Investigation

Our field exploration program was performed using track-mounted and all-terrain drilling rigs equipped with 4-inch solid continuous flight augers. The approximate boring locations are shown in Figure 1. Actual surveyed boring coordinates are attached. Samples were collected at regular intervals using standard penetration test (SPT) samplers. As directed, no soil samples were removed from the site for laboratory testing. The exploration was directed by a qualified representative of the geotechnical engineer who logged the subsurface profile. Upon completion of drilling, borings not used for groundwater or gas monitoring were backfilled with grout.

Page 1 of 4

August 23, 2018

At 7 boring locations, temporary 1-inch PVC wells were installed in the 4-inch diameter boreholes at a depth of 15 feet for the purpose of landfill gas monitoring. The methane wells were constructed with 10 feet of 0.010-inch slotted screen and sufficient riser to reach approximately 2 feet above the ground surface to allow for future sampling. The slotted screen was surrounded with 10/20 silica sand to two feet above the screen. Bentonite was placed in the annular seal from the top of the filter pack to the ground surface.

Three groundwater monitoring wells were constructed using factory cleaned 2-inch diameter, PVC well casing with 20 feet of 0.010-inch slotted screen and sufficient riser to reach the ground surface. The slotted screen PVC pipe was surrounded with 10/20 silica sand. A 2- to 3-foot bentonite annular seal was placed at the top the filter pack. Grout was placed atop the bentonite annular seal to the ground surface. The State of Colorado groundwater well permit and construction logs are attached.

Boring logs, including well construction details, are attached.

Subsurface Conditions

A summary of the subsurface conditions encountered at the exploration locations is presented in the following table.

Boring ID	Boring Depth (feet)	Depth of Cover (feet)	Depth to Bedrock (feet)	Well Type	Groundwater Depth (feet) ¹	
B-16	41.5	20	41	Methane	27	
B-17	45.5	20	45	none	35	
B-18	46.5	15	45	Methane	28	
B-19	46.5	20	45	none	20	
B-20	26.5	15	36	Methane	19	
B-21	16.5	**	10	none	NGWE	
B-22	11	**	3	none	NGWE	
B-23	21.5	5	14	Methane	NGWE	
B-24	11.5	**	5	none	NGWE	
B-25	21.5	10	17	none	NGWE	
B-26	11.5	**	5	Methane	NGWE	
B-27	21.5	**	5	none	NGWE	
B-28	11.5	**	5	none	NGWE	
B-29	11.5	**	5	Methane	NGWE	
B-30	21	**	5	none	NGWE	
B-31	36.5	**	10	Methane	NGWE	
B-32	31	5	30	none	NGWE	
GW-1	46.5	35	45	Groundwater	31 (18.86)	
GW-2	51.5	5	45	Groundwater	23 (18.52)	
GW-3	36.5	5	35	Groundwater	29 (19.87)	

Notes:

** No debris encountered to maximum depth of boring1. At completion of drilling, (7/25/18)

NGWE = no groundwater encountered

Page 2 of 4

Groundwater and Methane Sampling and Testing

On July 25, 2018, Kleinfelder collected measurement of methane (CH₄), hydrogen sulfide (H₂S) and oxygen (O₂) using a 4-gas monitor at the seven methane wells installed on the site. Methane and depressed oxygen levels were detected in wells B20 and B23; therefore, air samples were collected from the wells and submitted to an accredited laboratory for methane analysis. Analytical results show methane concentrations of 82.4% by volume in the sample collected from B20 and 0.399% by volume in the sample collected from B23.

Depth to groundwater was measured and groundwater samples collected approximately one week following drilling. Three casing volumes were removed from each well and general waterquality parameters (e.g., temperature, pH, and electrical conductivity) were collected and documented. A groundwater sample was collected from each well and sent to ACZ Laboratories, Inc. in Steamboat Springs, Colorado under standard chain of custody procedures. The groundwater samples were analyzed for the following constituents:

- Antimony
- Arsenic
- Barium
- Beryllium
- Cadmium
- Calcium-dissolved
- Chromium
- Cobalt
- Copper
- Iron
- Lead
- Magnesium-dissolved
- Manganese-dissolved
- Nickel
- Potassium-dissolved
- Selenium
- Silver
- Sodium-dissolved
- Thallium
- Vanadium
- Zinc

The results of the groundwater laboratory testing are attached.

LIMITATIONS

Limited assessments such as this are non-comprehensive by nature and will not identify all environmental problems or eliminate all risk, associated with environmental issues. The scope of services on this project was presented in our proposal and subsequently approved by our client. Please be aware our scope of services was limited to those items specifically identified in the proposal. Environmental issues not specifically addressed in the proposal or this report are beyond the scope of our services and not included in this evaluation.

Although risk can never be eliminated, more detailed and extensive investigations yield more information, which may help you understand and better manage your risks. Since such detailed

Page 3 of 4

August 23, 2018

services involve greater expense, we ask our clients to participate in identifying the level of service that will provide them with an acceptable level of risk. Please contact the signatories of this report if you would like to discuss this issue of risk further.

Land use, site conditions (both on-site and off-site) and other factors will change over time. Since site activities and regulations beyond our control could change at any time after the completion of this report, our observations, findings and opinions can be considered valid only as of the date of this report.

The property owner is solely responsible for notifying all governmental agencies, and the public at large, of the existence, release, treatment or disposal of any hazardous materials or conditions detected at the project site. Kleinfelder assumes no responsibility or liability whatsoever for any claim, loss of property value, damage, or injury which results from pre-existing hazardous materials being encountered or present on the project site, or from the discovery of such hazardous materials.

If you have any questions regarding this letter or need additional information, please do not hesitate to call our office at 303.327.6601.

Respectfully submitted,

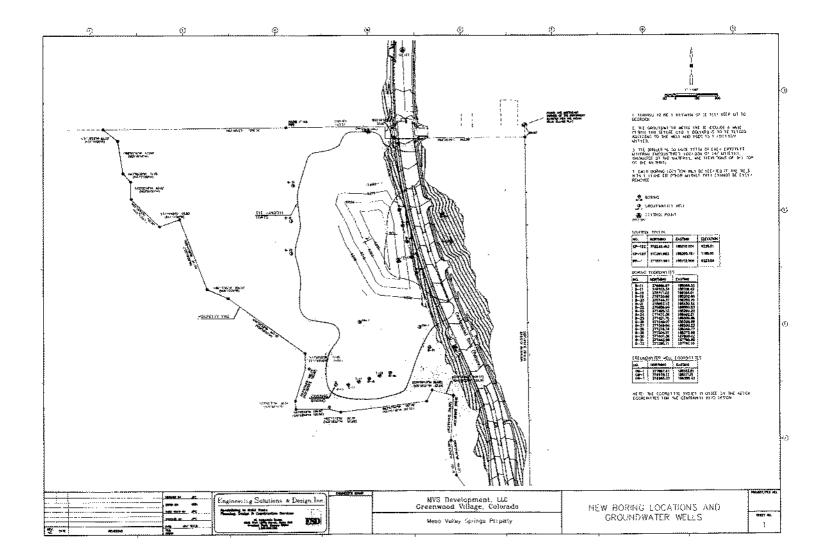
KLEINFELDER, INC.

Ken the

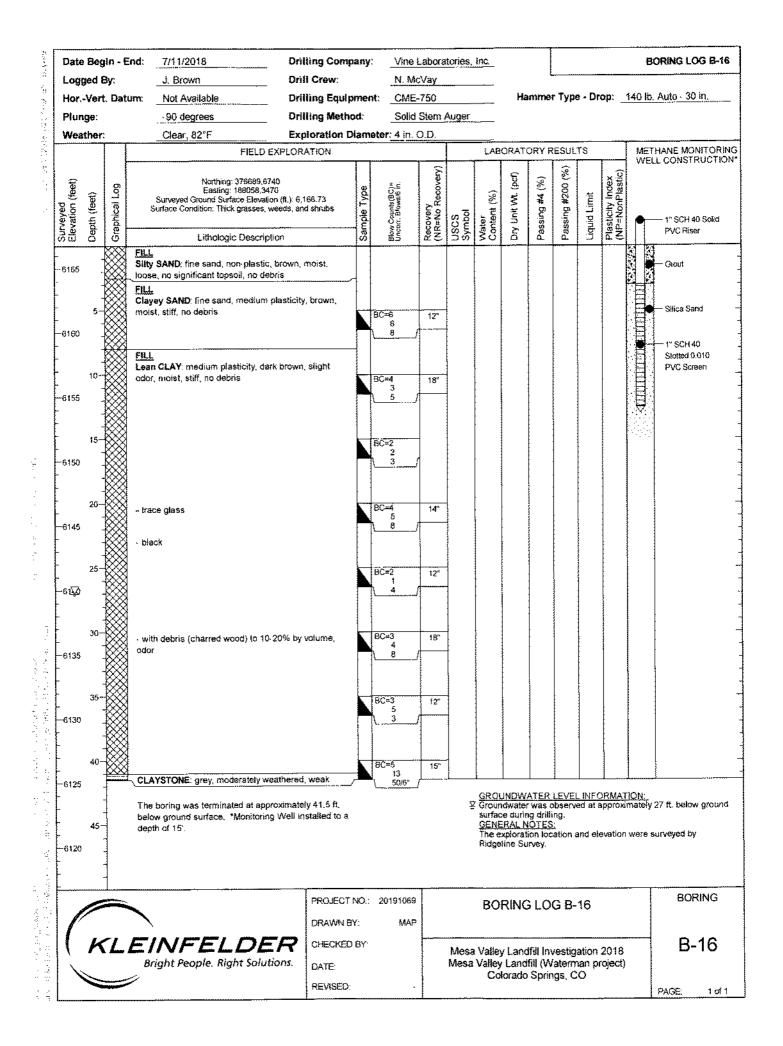
J. Kevin White, PE Principal Professional

Attachments:

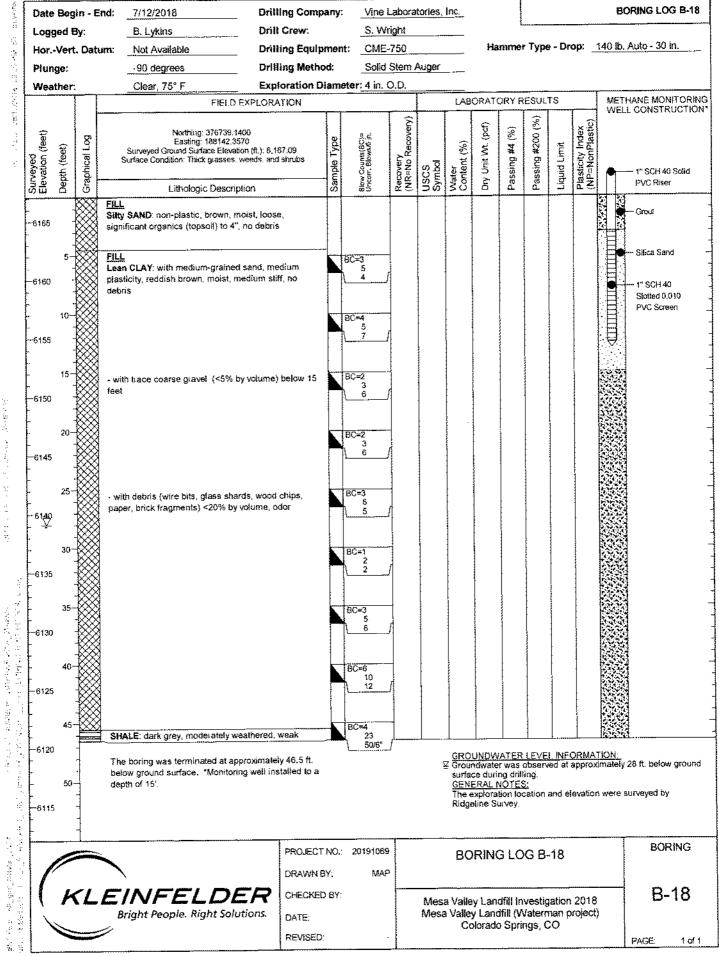
Figure 1, New Boring Locations Boring Coordinates Groundwater Well Permit Boring and Well Construction Logs Methane Test Results Groundwater Test Results


BG World

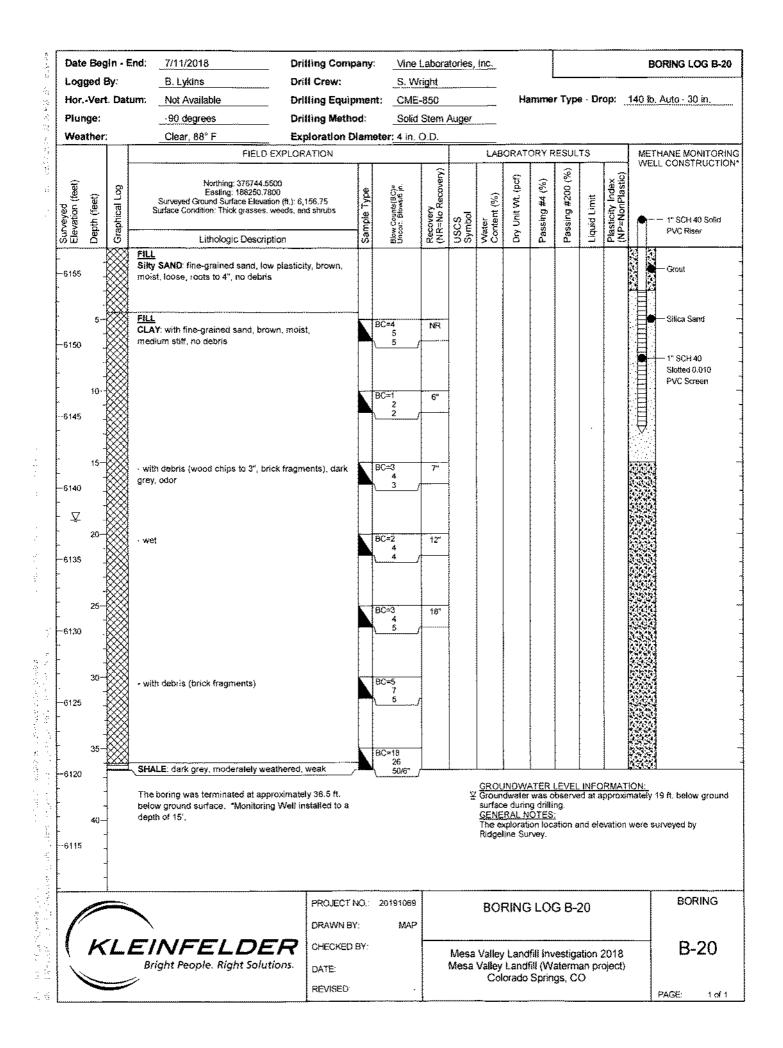
Brad A. Woodard, CPG Senior Project Manager


Page 4 of 4

August 23, 2018

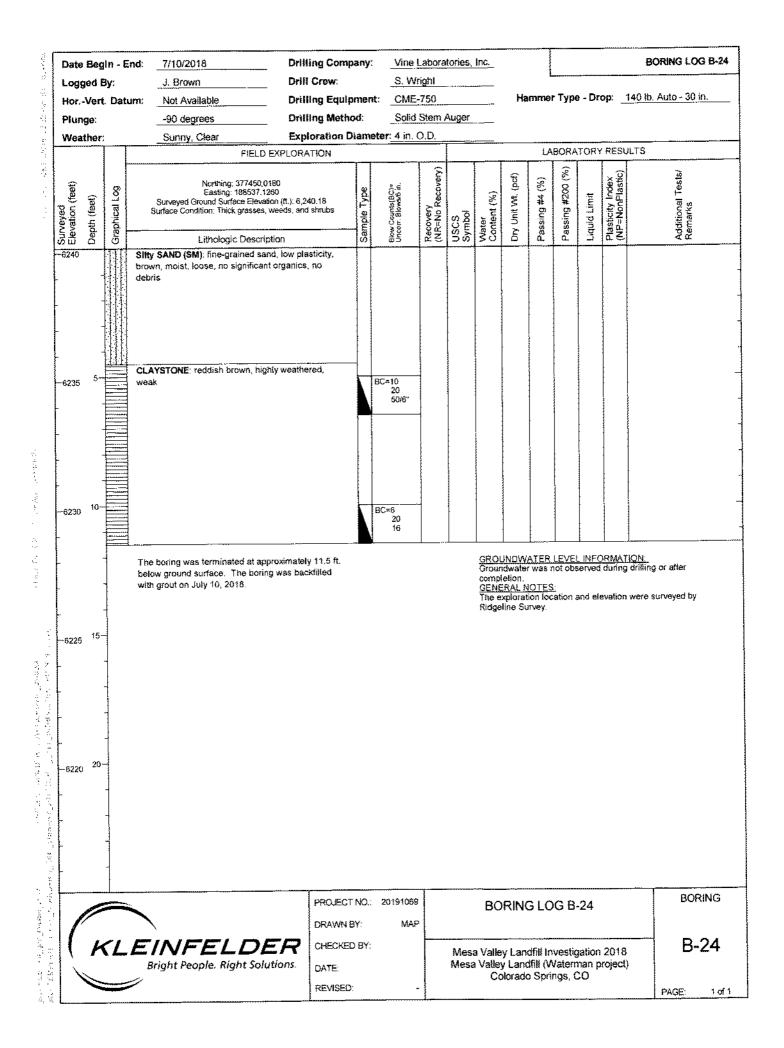

KLEINFELDER 4815 List Drive, Unit 115, Colorado Springs, CO 80919 p | 719.632.3593 f | 719.632.2648

	DIV. 2 RECEIVED
GWS-51 02/2017 NOTICE OF INTENT TO CONSTRU Please type or print legibly in black or blue ink or f State of Colorado, Office of the State E Denver, CO 80203 Phone 303-860	ILE online, dwrpermitsonline@state.co.us ingineer 1313 Sherman St, Room 821, WWFED to 19
Well Owner Name(s): MVS Development, LLC	
Address: P. O. Box 27560, Albuquerque, NM 87125	Township 14 IN OS, Range 67 DE W, PM
Phone: (505) 553-4218	County: El Paso
Email: waterman@watermaninc.net	Subdivision: Filing:
Landowner's Name: MVS Development LLC	Site/Property Address SW of Centennial Blvd and Van Buren Street, Colorado Spring, CO
Please check one and complete as indicated including contact info:	GPS Location in UTM format if known:
Water Well Driller Licensed in Colorado - Lic. No.	Set GPS unit to true north, datum NAD83, and use meters for the distance units, Zone 12 or Zone 13.
Professional Engineer Registered in Colorado - Reg. No. 50163	Easting 38.8576444 Northing -194.843214
Professional Geologist per C.R.S. 23-41-208(b)	# of Monitoring Holes to be constructed in Section:3
Other — anyone directly employed by or under the supervision of a licensed driller, registered professional engineer or professional geologist	Estimated Depth 50 Ft., Aquifer 30
Contact / Company Kleinfelder	
Address 4815 List Drive, 115	Purpose of Monitoring Hole(s) groundwater
City, State & Zip Colorado Springs	samping, level
Phone (720) 660-5825	
Email jkwhite@kleinfelder.com	Anticipated Date of Construction: 07/12/2018
Print Name: Kevin White	Date Notice Submitted: 07/09/2018
Signature or enter full name here: Kevin White	Date Notice Submitted: 07/09/2018 (Nust be at least 3 days prior to construction)
ACKNOWLEDGEMENT FROM STA For Office Use	
ACKNOWLEDGEMENT FROM STA For Office Use	ONLY
ACKNOWLEDGEMENT FROM STA FOR OFFICE USE 58184 - MH	PROCESSED BY KF
ACKNOWLEDGEMENT FROM STA FOR OFFICE USE 58184 - MH	ONLY
ACKNOWLEDGEMENT FROM STA FOR OFFICE USE 	PROCESSED BY KF DATE ACKNOWLEDGED 7/9/18 DATE ACKNOWLEDGEMENT
ACKNOWLEDGEMENT FROM STA FOR OFFICE USE 	PROCESSED BY KF DATE ACKNOWLEDGED 7918 DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE.
ACKNOWLEDGEMENT FROM STA FOR OFFICE USE 	PROCESSED BY KF DATE ACKNOWLEDGED 7918 DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE.
ACKNOWLEDGEMENT FROM STA FOR OFFICE Use <u>58184</u> - MH DW. <u>Q</u> WD <u>10</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the disputping shall not exceed a total of 200 hours unless prior written approvidesting <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test	PROCESSED BY KF DATE ACKNOWLEDGED 7918 DLE ACKNOWLEDGEMENT INT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Nate notice was given to the State Engineer. Testing and/or ral is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting.
ACKNOWLEDGEMENT FROM STA FOR OFFICE Use 58184 - MH DW. 2 WD 10 BAS MD CONDITIONS OF MONITORING HO A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approvides to be used for beneficial purposes. The owner of the hole(s)	PROCESSED BY KF DATE ACKNOWLEDGED 7018 DATE ACKNOWLEDGEMENT INT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Nate notice was given to the State Engineer. Testing and/or ral is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting. 402-2. Standard permit application and work report forms are instruction and Yield Estimate Reports (GWS-31) must be individual must submit the completed forms to this office within 60
ACKNOWLEDGEMENT FROM STA FOR OFFICE Use <u>58184</u> - MH DW. <u>Q</u> WD <u>10</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR - found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con- completed for each hole drilled. The licensed contractor or authorized id days of monitoring hole completion. Aquifer testing information must b 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted w acknowledgement number, owner's structure name, and owner's name ar construction and abandonment reports.	PROCESSED BY KF DATE ACKNOWLEDGED 7018 DATE ACKNOWLEDGEMENT INT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Nate notice was given to the State Engineer. Testing and/or ral is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting. 402-2. Standard permit application and work report forms are enstruction and Yield Estimate Reports (GWS-31) must be individual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). Se plugged and sealed within eighteen (18) months after ithin 60 days of plugging & sealing. The above MH and address must be provided on all well permit application(s), well
ACKNOWLEDGEMENT FROM STA For OFFICE Use <u>58184</u> - MH DW. <u>Q</u> WD <u>10</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the do pumping shall not exceed a total of 200 hours unless prior written approvi testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Cor completed for each hole drilled. The licensed contractor or authorized is days of monitoring hole completion. Aquifer testing information must b 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted we acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WAT permanent dewatering system, if constructed in accordance with the Water below the structure of the water in accordance with the Water Construction of the loce is the converted in accordance with the Water Source of the system, if constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system, if constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is constructed in accordance with the Water Source of the system is co	PROCESSED BY KIF DATE ACKNOWLEDGED 7918 DATE ACKNOWLEDGED 7918 DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Nate notice was given to the State Engineer. Testing and/or val is obtained from the State Engineer. Testing and/or val is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting. 402-2. Standard permit application and work report forms are astruction and Yield Estimate Reports (GWS-31) must be individual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). The plugged and sealed within eighteen (18) months after ithin 60 days of plugging & sealing. The above MH and address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a iter Well Construction Rules and policies of the State Engineer.
ACKNOWLEDGEMENT FROM STA FOR OFFICE Use <u>58184</u> - MH DW. <u>Q</u> WD <u>10</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR - found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con- completed for each hole drilled. The licensed contractor or authorized i days of monitoring hole completion. Aquifer testing information must b 4) Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted w acknowledgement number, owner's structure name, and owner's name ar construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WAT	PROCESSED BY KIF DATE ACKNOWLEDGED 7918 DATE ACKNOWLEDGEMENT INT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Nate notice was given to the State Engineer. Testing and/or val is obtained from the State Engineer. Testing and/or val is obtained from the State Engineer. Testing and/or val is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting. 402-2. Standard permit application and work report forms are astruction and Yield Estimate Reports (GWS-31) must be individual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). The plugged and sealed within eighteen (18) months after ithin 60 days of plugging & sealing. The above MH and address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a iter Well Construction Rules and policies of the State Engineer. DAYS, PLEASE WRITE "NO HOLES CONSTRUCTED" ON A COPY OF
ACKNOWLEDGEMENT FROM STA FOR OFFICE USE <u>58184</u> - MH DW. <u>Q</u> WD <u>10</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the do pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR of found on the DWR website at <u>http://www.water.state.co.us</u> . Well Cor- completed for each hole drilled. The licensed contractor or authorized is days of monitoring hole completion. Aquifer testing information must b 4). Unless a well permit is obtained or variance approved, the hole(s) must be acknowledgement number, owner's structure name, and owner's name and construction and abandonment Report (GWS-09) must be submitted we acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATT permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO THE	PROCESSED BY KIF DATE ACKNOWLEDGED JQ IB DATE ACKNOWLEDGED JQ IB DATE ACKNOWLEDGEMENT INT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Take notice was given to the State Engineer. Testing and/or ral is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting. 202-2. Standard permit application and work report forms are estruction and Yield Estimate Reports (GWS-31) must be individual must submit the completed forms to this office within 60 to esubmitted on Well Yield Test Report (GWS-39). The plugged and sealed within eighteen (18) months after ithin 60 days of plugging & sealing. The above NH and address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a iter Well Construction Rules and policies of the State Engineer. DAYS, PLEASE WRITE "NO HOLES CONSTRUCTED" ON A COPY OF THE DIVISION OF WATER RESOURCES AT
ACKNOWLEDGEMENT FROM ST/ FOR OFFICE Use <u>58184</u> - MH DW. <u>Q</u> WD <u>10</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEME 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the do pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR afound on the DWR website at <u>http://www.water.state.co.us</u> . Well Con- completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must b 4). Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted we acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATT permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO TD DWRpermitsonline@state.co.us.	PROCESSED BY KIF DATE ACKNOWLEDGED <u>3</u> (<u>9</u>) DATE ACKNOWLEDGEMENT INT SHALL BE AVAILABLE AT THE DRILLING SITE. Construction of monitoring & observation hole(s). Tate notice was given to the State Engineer. Testing and/or ral is obtained from the State Engineer. Testing and/or ral is obtained from the State Engineer. Water diverted during (s) is responsible for obtaining permit(s) and complying with all rules ting. 202-2. Standard permit application and work report forms are estruction and Yield Estimate Reports (GWS-31) must be ndividual must submit the completed forms to this office within 60 es submitted on Well Yield Test Report (GWS-39). Se plugged and sealed within eighteen (18) months after ithin 60 days of plugging & sealing. The above MH and address must be provided on all well permit application(s), well ER WELL, except for purposes of remediation (recovery) or as a ther Well Construction Rules and policies of the State Engineer. DAYS, PLEASE WRITE "NO HOLES CONSTRUCTED" ON A COPY OF THE DIVISION OF WATER RESOURCES AT ATE THAT WELL PERMIT(S) CAN BE APPROVED.


tan Vraffa	Date	B	egi	n - E	nd:	7/11/2018		Drilling Con	npany	: Vine	Labora	tories,	Inc.						BOF	UNG LO	G 8-17
й Х	Log	geo	i By	y:		J. Brown		Drill Crew:		<u>N. M</u>	cVay				1						
2	Hor.	-Ve	ərt.	Date	um:	Not Available		Drilling Equ	ipme	nt: <u>CM</u> E	-750			Ha	mme	г Туре	e ∙ Dr	op:	140 lb. Ai	uto - 30 i	n
N N	Plun	ıge	:			-90 degrees		Drilling Met	hod:	Solid	Stem	Auger									
1	Wea	the	ar:			Partly Cloudy	<i>i</i>	Exploration	Diam	neter: 4 in.	0.D.										
							FIELD EX								LA	BORA	TORY	RESL	ILTS		
4	Surveyed Elevation (feet)	Depth (feet)		Graphical Log		North East Surveyed Ground Surface Condition: 1	ving: 376712.0340 ing: 188104.6560 Surface Elevation Thick grasses, we) (ft.): 6,166.45	Sample Type	Blow Counts(8C)≓ Uncorr, Blows/8 in.	Recovery (NR≃No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		Additionał Tests/ Remarks	
	Sur Sur	De		5		Lithol	logic Descriptio	xn	Sal	Blov	88 S	Sys	\$°≷	â	đ	Pa	Ē	₫Ū,		Re	
k. k	-6165				no o	y SAND : fine sand odor, moist, loose soil), no debris															
	6160 -		, Shakaka	\bigotimes	- wit	h clay, trace fine	gravel			8C=6 5 6	11"										
	- 6155 -	10	whore		meq	∎ ID with Cłay: coa lium plasticity, bri se, no debris				BC=4 5 6	t t"										
	- 6150	15	- 		· loc	ose below 15 féet				BC=3 4 4	8"										
····	- - 6145 -	20	whyty			n CLAY: medium st, stiff, trace deb				BC=2 4 7	18*										
	- - 6140 - ~	2	topopopo		• Wit ado	th debris (wood, p r	Xasiic) 15-25%	by volume, no		BC=3 4 3	11"						-				
	- 6135 - -	30	hhhh		- ve	ry stiff				BC=5 7	18"										
	- <u>V</u> 6130		shebopopi							BC=15 13 11	8"		-								
	- 6125 	4	poportop							BC=18 23 32	18"	- - - - -									
	- 6120	5	2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	**	bete	e boring was term ow ground surface i grout on July 11	e. The baring v				<u>_</u>		Grour surfac Grour surfac <u>GENE</u> The e	dwate e durir dwate e at th RAL N xploral	r was o ng drilli r was o e end i lOTES ion loc	observ ing. observ of drilli	ed at a ed at a ng.	ipproxi	<u>IQN:</u> mately 35 mately 35 were sun	ft. belaw	•
and a state of the second second second second second second second second second second second second second s								DRAWN	BY:	20191069 MAP				RINC		G B-	17			BOR	
Distriction of the		KLEINFELDER Bright People. Right Solutions										Mesa Mesa	Valley Valley Co	/ Land Land lorado	fill (W	aterm	ian pr	2018 oject)	PI	B-'	1 of 1

ų 1

1. N. N. N. H. and the second se 0.000 Ş


Date Begi	in - Ene	d: <u>7/11/2018</u>	Drilling Comp	any	Vine	Labora	tories,	Inc.						BORING LOG B-19
Logged B	y:	B. Lykins	Drill Crew:		S. W	right				E				
HorVert.	Datun	n: Not Available	Dritting Equip	mer	t: <u>CME</u>	850			Ha	mme	г Тур	e - Dr	op: _	140 lb. Auto - 30 in.
Plunge:		-90 degrees	Dritting Metho	od:	Solid	Stem /	Auger							
Weather:		Clear, 90° F	Exploration D	ham	eter: 4 in.	D.D.								
		FIELD (EXPLORATION							١A	BORA	TORY	RES	JLTS
Surveyed Elevation (feet) Depth (feet)	Graphical Log	Nonthing: 376766.65 Easting: 188185.13 Surveyed Ground Surface Elevati Surface Condition: Thick grasses, v	10 an (ft.): 6,166,96	Sample Type	Blew Counts(BC)= ⊔ncorr, Ձlowsเริ เก.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Ptasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
Dep Elevin	Gra	Lithologic Descrip	tion	San	Blew Unco	Rec	Syn	Cor	δ	Pas	Pas	ĽÝ.	ta A	A R A P
-6165 -	XX	TLL SIHy SAND: fine-grained sand, low moist, loose, roots to 4", no debris												
-6160	888 i	FILL Lean CLAY: with coarse sand, me reddish brown, moist, medium stif			BC=4 6 ↓4									Dill rig grinding at 5 feet
-6155 -					BC=3 5 \5									
- 15 - 15 - 6150					BC=1 2 1									
-6145 -		FILL Fat CLAY: high plasticity, black to very soft, debris (glass, wood) to 1			BC=1 2 2									
		- with debris (wood chips to 2" in l	ength, plastic)		BC=6 3 ↓ 4		-							
- 30 - 30 6135 -					8C=2 2 3	-								
- 35- - 6130 - 		• with debris (glass shards) to 5%	by volume, odor		BC=3 3 3		-							
- 40- 					BC∓3 6 \7	-								
- 45-		SHALE: dark grey, moderately we	athered, weak		BC=22 37		1		ļ	1				
	ł	The boring was terminated at app below ground surface. The boring with grout on July 11, 2018.			50/5"	ſ <u></u>	<u>Σ</u>	surfac <u>GEN8</u> The e	ce durii ERAL N	ng dritt IOTES tion loc	ing. <u>S.</u>			1 TION: imately 20 ft. below groun i were surveyed by
			PROJECT DRAWN B		20191069 MAP			BO	RING	ΞLO	G B-	-19		BORING
K		EINFELDE Bright People. Right Solut		BY:			Mesa Mesa	a Valle Valley Co		ifill (W	/atem	nan pi		
			REVISED.			1								PAGE: 1 of

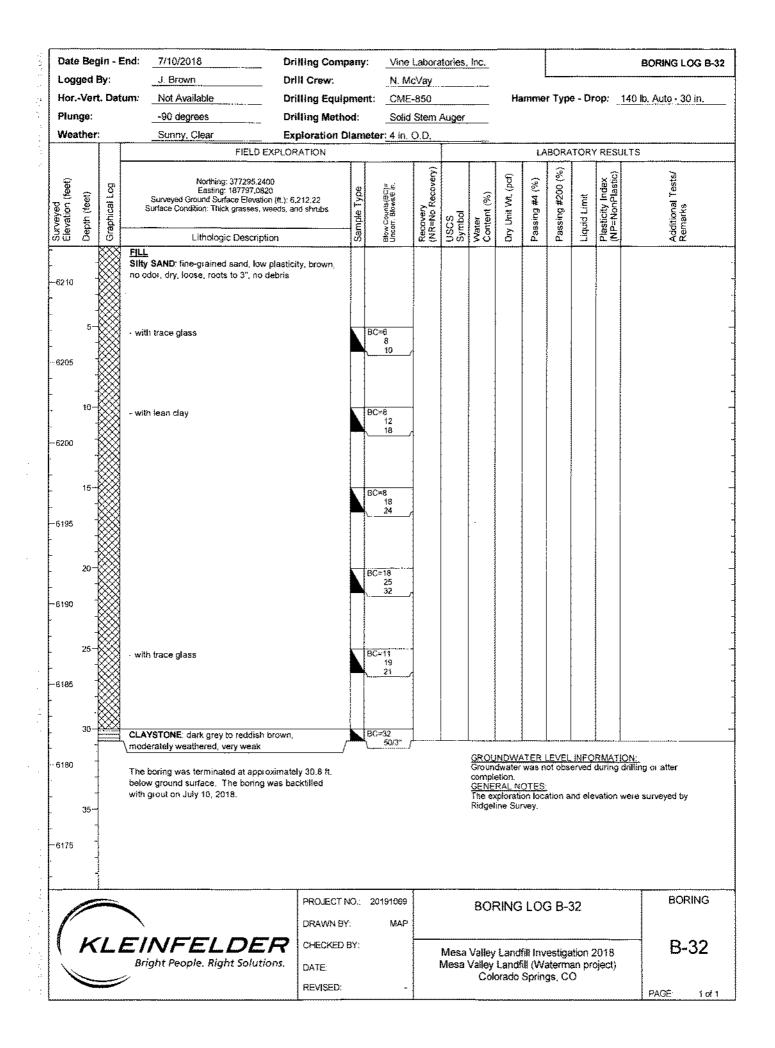
Date B			Drilling Comp	апу		Labora	tories,	Inc.						BORING LOG B-2
Logged		K. White	Drill Crew:		<u>N.M</u> nt: CME				Ha	me	r Tvo4	a - Dra	op: -	140 lb. Auto - 30 in.
HorVe		<u>.</u>	Drilling Equip				Augor						ор	110 10.1 10.0
Plunge		-90 degrees	Drilling Metho			Stem /	Huger							
Weath	er:	Clear, 81°F	Exploration D XPLORATION	aam	eter <u>4 I</u> B.	<u></u>	ſ	<u></u> n.		ŧ.A	BORA	TORY	RESU	JETS
						ि				[1			1
Surveyed Elevation (feet) Denth (feet)	alLoc	Northing: 376862.16 Easting: 188430.610 Surveyed Ground Surface Elevatio Surface Condition; Thick grasses, w	0 n (ft.): 6,188.94	1 type	Bław Counts(BC)≂ Uncorr. Blows/6 m.	Recovery (NR=No Recovery)		t (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Limit	Plasticity Index (NP=NonPtastic)	Additional Tests/ Remarks
Surveyed Elevation (fe Denth (feet)	Graphical Loo	Lithologic Descript		sample Type	Jack Cou	Recove	USCS Symbol	Water Content (%)	Dry Uni	Passin	Passin	Liquid Limit	Plastic (NP=N	Additio
<u></u>		Silty SAND (SM): fine-grained sand		+			1							Easy drilling
		brown, no odor, maist, no debris								3				
	and the second se													
-														
-6185	5-1-1					100							-	
	· · · · · · · · · · · · · · · · · · ·				8C=5 5 5	12"								
-				1						-				
-	_													
6180					E 									
- 1		CLAYSTONE: greyish brown, mois weathered, weak, (Lean Clay, med	t, highly ium plasticity)		BC=9 17	15"								
_					23									
-														
~•6175														
- 1		-dark grey			8C=12 21	15"	-		ļ					
				·	29								1	
•	+++++++++++++++++++++++++++++++++++++++	The boring was terminated at app below ground surface. The boring	oximately 16.5 ft. was backfilled					comp	etion.			L INF(servec	<u>DRMA</u> I during	<u>TION:</u> g dritting or after
		with grout on July 11, 2018.						<u>GEN</u> The e	ERAL I	tion lo	S: cation a	and el	evatior	n were surveyed by
6170	ļ							ridge	eline Si	ы чеү.				
	20-													
ŀ	-													
ŀ	4													
-														
-6165	-													
÷			PROJECT	NO.	: 2019106)		80	RIN	<u></u>)G R.			BORING
			DRAWN		MA			50	AL SINU		,U D'	-21		
	K	EINFELDE		D BY	:		Mes	a Valle	y Lan	dfill Ir	vestig	ation	2018	B-21
	_	Bright People. Right Solut					Mesa	a Valle	y Lani olorad	dfill (V	Vaterr	nan p	roject)
			REVISED	1		<u> </u>								PAGE: 1 of

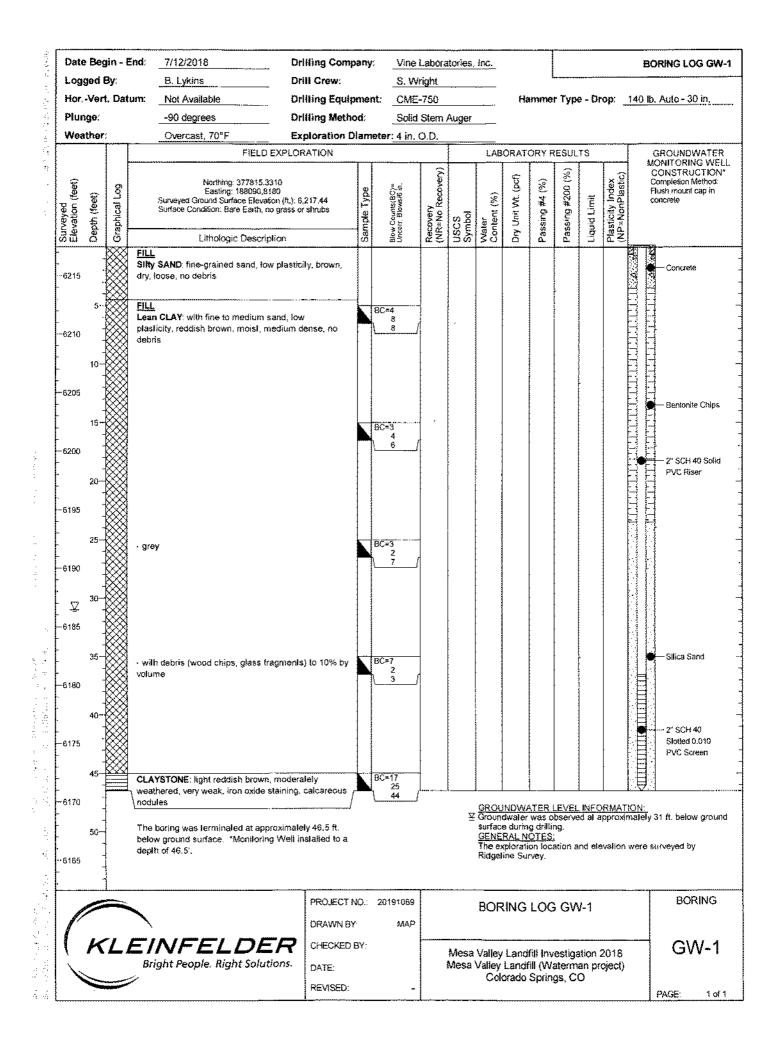
Date	e Be	igin -	End:	7/11/2018	Drilling Com	рапу	: Vine	abora	tories,	Inc.						BORING LOG B-23
Log	ged	By:		K. White	Drili Crew:		N. M.	Vay				L,				
Hor.	Ve	rt. Da	tum:	Not Available	Drilling Equip	pmes	nt: <u>CME</u>	750			Ha	mme	r Туре	9 - Dr	op:	140 lb. Auto - 30 in.
Plur	nge:			-90 degrees	Drilling Meth	od:	Solid	Stem	Auger							
Plur Wea	athe	er:	.	Clear, 83°F	Exploration [Jam	eter: 4 in. i).D.		<u> </u>				.		
			L	FIELD	EXPLORATION				ļ			LA 1	BORA	TORY	' RESL	ILTS
Surveyed Elevation (feet)	Depth (feel)	Graphical Log		Northing: 376846,6 Easting: 188572.95 Surveyed Ground Surface Elevati Location Offset: -30' east due and overhead power Surface Condition: Sparse grasses Lithologic Descrip y SAND (SM): fine-grained sar	190 ion (ft.): 6, 197.10 to sleep slope the weeds, and shrubs wion	Sample Type	Blow Counts(BC)≐ Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
-6195			no d CLJ mo	wn, moist, łoose, no significan debris, no ador AYSTONE: dark grey lo reddist derately weathered, weak, moi dlum plasticity)	h brown,											
	5															
4	ų						BC+12 19 22	16"						-		
-6190)										-					
1 1																
	10		- FILLELINI F		<u>,,</u> ,		BC=32 50/6"	 	-	-			-			
-6185	5	<u> </u>	bel	e boring was terminated at app ow ground surface. The borin h grout on July 11, 2018.	proximately 11 ft. g was backfilled					Groun comp GENE The e	letion. ERAL N	r was i IOTES	not obs	served	during	<u>ION:</u> drilling or after were surveyed by
6180																
	2	0														
617!	5															
					PROJEC					вс	RIN	GLC	G B-	-22	<u>, </u>	BORING
		KL		NINFELDE Bright People. Right Solu			MAF		Mes Mesa	a Valle a Valle	y Lan y Lan	dfill (M	Vatern	nan p	2018 roject	B-22
	1	_			REVISED): 		_				- 140	nya, t			PAGE: 1 of

Date	Be	gin	- E	nd: <u>7/11/2018</u>		Drilling Com	pany	r: _Vine	Labora	tories,	Inc.						B	ORING LOG B-2
Log	ogged By: <u>B. Lykins</u> or,-Vert. Datum: <u>Not Available</u>					Drill Crew:		<u>N.</u> N	cVay									
Hor.	-Ve	rt. C	Date	m: Not Available		Drilling Equip	ome	nt: CM	-850			Ha	mmei	г Туре	9 - Dro	op: _	140 lb	. Auto - 30 in.
Plun	ige:			·90 degrees		Drilling Meth	od:	Soli	Stem /	Auger								
Wea	the	F:		Clear, 80° F		Exploration D)ian	neter: 4 in.	0.D.									
					FIELD EXP		. .				LAB	ORAT	ORY R	ESUL	TS		MET WE	HANE MONITORI
Surveyed Elevation (feet)	Depth (feet)	shinal Lan	urapnical tog	Northin Easting Surveyed Ground Su Surface Condition: Thi	g: 377495.1590 g: 188294.1460 rfaca Elevation (ff ck grasses, shrub): 6,202.89 s, and weeds	L Sample Type	Blow Counts(BC)= Uncorr. Blows:6 a.,	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		— 1" SCH 40 Solid PVC Riser
5 a	Dep		5	Litholog	gic Description		Sar	Blow	Rec	Syr	80 N	δ	Pa	Ба	Ľ.	er (
- 6200				FILL Silty SAND: fine-graine moist, loose, significant debris	ka sand, low pla t organics (tops	sticity, brown, ioil) to 4", по												Grout
	5			FILL Lean CLAY: brown, mo staining, debris (metal s volume				BC=3 2 3	13"									— Şilica Sand
-6195																		- 1" SCH 40 Slotted 0.010 PVC Screen
	10			- with calcareous nodul	jes			BC=8 17 20	16"	-								
-6190				CLAYSTONE: reddish 1		eathered,											A	
	15	ЩЦ		very weak, iron oxide st	taining		-	BC=10	12"	1			1		ŀ			
		Į.						17 20	1									
										ł								
-6185																		
	20	mannan						BC=10 18 22										
- 			<u> </u>	The boring was terminibelow ground surface. depth of 15'.	ated at approxit *Monitoring W	mately 21.5 ft. ell installed to a					comp <u>GENé</u> The e	tetion. ERAL N	IOTES	<u>:</u>				g or after surveyed by
						PROJECT DRAWN E		: 2019106 MA			BO	RINC	G LO	G B-	23			BORING
				EINFEL Bright People. Rig					-	Mesa Mesa	Valley	y Lanc / Land lorado	餔 (W	atem	han pr	2018 oject)		B-23
	-	-		/		REVISED					00		- Print	.go. U	2			PAGE: 1 of

Date	Be	gin	- E	nd: <u>7/11/2018</u>	Drilling Com	pany	: Vine L	abora	tories,	Inc.						BORING LOG B-2
Logg	ged	By:		B. Lykins	Drill Crew:		S. Wr	ght								
lor.	-Ver	t. D	Datu	m: Not Available	Drilling Equip	me	nt: <u>CME-</u>	850			Ha	mme	г Туре	e - Dro	op:	140 lb. Auto - 30 in.
Plun	ige:			-90 degrees	Drilling Meth	od:	Solid S	Stem /	Auger							
Wea	the	r:		Clear, 80° F	Exploration C	Diam	ieter: 4 in, C).D.		<u> </u>						
		1		Fit	ELD EXPLORATION							A.J	BORA	TORY	RESL	μts
Elevation (feet)	Depth (feet)	ation 1 ac	Graphical Log	Northing: 3774 Easting: 1883 Surveyed Ground Surface E Surface Condition: Thick gras	09.8590 levation (ft.): 6,203.77	I Sample Type	Blow Counts(BC)≖ Uncorr. Blows/8 n.	Recovery (NR≖No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
Ξ.	Cep		5	Lithologic De	scription	San	No. Cuck	Rec NB	Syr	Col V3	δ	Ъ В В	с Э	Lig.	₫Ē	Ad Re
-6200				FILL Silty SAND (SM): fine-grainer brown, moist, significant orga to 4", no debris												
	E.					_	ļ		1	ļ	-					
	L			ELL Lean CLAY (CL): medium pla medium stiff, iron oxide stain	islicity, brown, maist, ing, no debris		BC=6 9 9	11"								
-6195	10			 with medium sand, very sol fragments, wood chips to ½" volume, odor 			BC≠2 0 1	10"								
- 6190 -	15						BC≠1 0 1	10"								
6185	5			CLAYSTONE: brownish red, weak, iron oxide staining, ca												
-	20	rithmitic					BC=10 14 22	18"								
- 6180	9	1 1		The boring was terminated below ground surface. The with grout on July 11, 2018.	at approximately 21.5 ft. boring was backfilled					comp <u>GEN</u> The c	ERAL	NOTE	<u>S:</u>			<u>TION:</u> g drilling or after n were surveyed by
	-			$\mathbf{\hat{\mathbf{A}}}$	PROJEC		.: 20191069 MAF			BC	RIN	G L.C)G B	-25		BORING
	KLEINFELDER Bright People. Right Solutions					D 81	<i>f</i> :		Mes Mes	a Valle a Valle Co	ey Lan y Lan piorad	dfill (V	Vateri	man p	2018 project	B-25
		-			REVISE	Э:										PAGE: 1

Date Begi	in - E	End: 7/11/2018	Dritling Com	pany	r: <u>Vine</u>	Labora	tories,	Inc.						в	ORING LOG B-2
Logged B	y:	B. Lykins	Drill Crew:		<u>N. M</u>	:Vay	-			L					
HorVert.	Dat	um: Not Avallable	Drilling Equi	pme	nt: <u>CME</u>	-850			Ha	nme	r Type	ə - Dr	op:	40 lb	Auto 30 in.
Plunge:		-90 degrees	Drilling Meth	od:	Solid	Stem	Auger								
Weather:		Clear, 85° F	Exploration (Diam	neter: 4 in.	<u>O.D.</u>							,		
		FIELE	EXPLORATION	,			ļ	LAB	ORAT	ORY R	ESUL				HANE MONITOR
Surveyed Elevation (feet) Depth (feet)	Graphical Log	Northing: 377348. Easting: 188328. Surveyed Ground Surface Elev Surface Condition: Thick grasses	7920 ation (ft.): 6,202.81 a, weeds, and shrubs	L Sample Type	Błow Counts(9C)≂ Uncorr, Blows/6 In.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	•	— 1" SCH 40 Solid PVC Riser
ក៏ញាំណី	Ö XXX	Lithologic Descr Silty SAND: fine-grained sand, k		0	85	αe	30	50	<u> </u>	<u>a</u> .	<u>a</u>				1
6200		moist, loose, roots to 4". no debi													- Grout
5	\propto	CLAYSTONE: dark grey to reddi	sh brown,		BC=16	18"									
-		moderately weathered, very wea	ĸ		25 35		ł			ŀ	-				1" SCH 40
											[ŀ			Slotted 0.010 PVC Screen
-6195				-		}									
0155	_														
						ł						1			ł
10-		- with calcareous nodules below	10 feet	-	BC=15	18'		ļ				ŀ			
		- with calcareous nodules below	10 1001		26 32		-		 			ļ		Ę	
-6190 _		The boring was terminated at a below ground surface. 'Monitor depth of 15'.						compl <u>GENE</u> Th a e	etion. RAL N	OTES	:) or after surveyed by
-6185 _															
20-															
-6180 _															
		<u> </u>	PROJECT	ſ NQ.	: 20191069			во	RINC	GLO	G B-	-26			BORING
1		\	DRAWN	BY:	MAF										_
K	<u>[</u>	EINFELD		D BY:			Mesa	a Valle	y Land	dfill In	vestig	ation	2018		B-26
		Bright People. Right Sol	utions. DATE:				Mesa	Valley	y Land Iorado	ifill (M	Vatern	nan p	roject)	:	


Date	Beg	jin - E	ind:	7/10/	2018	·			Di	rilling (Comp	any:	:	Vine	Labor	atories	, Inc.						В	ORING LOG
Logg	.ogged By:J_Br lorVert. Datum:Not /			own				Di	rill Crev	N:			S. W											
Hor	-Ver	t. Dat	um;	Not /	Vaila	ole			Di	rilling E	Equip	mea		CME				Н	amme	я Тур	e - Di	ob: ⁻	140 lb.	Auto - 30 in.
Plun	ge:			-90 c	legiec	s				rifling I						Auger								
Weat	ther	: 		Sunr	iy, Cle	er				cplorati		iam	eter:	4 in.	O.D.									
							FIE	LDE	XPLO	RATION	 	1 1			T -			1	τ	ABOR/	T	r RESU	T	
Surveyed Elevation (feet)	Depth (feet)	Graphical Log	Ę	Surveye Surface (E d Giou Conditio	n Thic	1885 face El k gras	18,698 levalio ises, w	0 n (fl.): 6 eeds, 8	6,217.88 and shrub	5	Sample Type		erow countriacioni≓ Urcorr. Blows/8 in.	Recovery (NR±No Recovery)	USCS Svmbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)		Additional Tests/ Remarks
<i>ดี</i> พื	ă	Ō XXX	Silb	SAND		hologi				city, brow		Ö	<u></u> i	5 5	126	. ⊃ ú	50		<u> </u>	<u>a</u> .		0. =	-	
-6215			mois	t, very l	oose. E: dar	no dek	oris, r	no oda	PE	a, highly														
	Ş-		wea	hered,	weak									15 36 48	NR									
-6210	10-												BC=	10	NR									
6205 - -	15-	trong (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	belo		nd surf	ace. 1	The b			tely 10.7 ackfilled							com <u>GEN</u> The	pletion. ERAL	NOTE:	S:				g ol after surveyed by
- 6200 - -	20-	- · · · · · · · · · · · · · · · · · · ·																						
- - •6195 -																								
1										DRA		Y:		191069 MAI			B	ORIN	G L.C	G B	-27			BORIN
	K	(L		\mathcal{N}					.R ions.	-	ECKED	BY:				Me	sa Vall	ey Lar	dfill Ir	vesti	pation man p	2018	5	B-2


	-	in - E	2000	Drilling C		·	e Labori	atories,	THG.						BORING LOG
Logg			B. Lykins	Brill Crew			Wright							a n , 4	40 lb Auto 20 in
Hor	Vert	. Dat		Drilling E			1E-750			Ma	mme	гтур	3 - Uf	op:	40 lb. Auto - 30 in
Plung	je:		-90 degrees	Drilling M			lid Stem	Auger	<u> </u>						
Weat	her		Clear, 85° F	Exploration	n Dian	neter: 4 i	n, O.D.	<u> </u>							
				FIELD EXPLORATION		T		 	۲		دی 	<u>.</u>	IORI	' RESU	LIS
Surveyed Elevation (feet)	Depth (feet)	Graphical Log	Easting: Surveyed Ground Surt	: 377276.9690 188349.6840 face Elevation (ft.): 6,201.97 k grasses, weeds, and shrubs	Samole Type	Biow Counts(BC)≖ Uncorr, Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
문민	ő	- S	Lithologi	ic Description	Sar	Chev	Sa S	Sy I S	\$°≷	ā	å	ď	Ę.	άZ	βά
-6200	-		Silfy SAND: fine-grained dry, no debris, no odor	sand, low plasticity, brow	n.										
	5	\bigotimes	CI AVETONE: dark area	to reddish brown, highly	<u> </u>	BC=11	18"	-	ļ		ŀ		-		
			weathered, weak	to reducin prown, nighty		20 28									
~6195															
	10-		- with iron oxide staining	3		8C=11 17 18	18"	-{ 					•		
-6190			The boring was termina below ground surface. with grout on July 11, 24	ited at approximately 11.5 The boring was backfilled 018.	ťt.				Grou comp <u>GENI</u> The e	ndwate letion. ERAL I	r was : <u>NOTES</u> tion loc	nat ob: B:	served		i <u>ON:</u> drilling or after were surveyed by
-	15-														
6185															
- -															
-	20														
-6180															
- -		1													BORI
P					IECT NO NN BY:	L: 20191 ≸	069 IAP		BC	RIN	GLC)G B	-28		DURI
(k	٢L	EINFEL Bright People. Rig		CKED BY	<i>t</i> :		Mes	a Valk	ey Lar	dfill Ir	vesti	gation	2018	— В-2
· ·			bright reome. An	ght Solutions. DATE			i i	Mes	a valie	iy Lan olorad	atill (V	vateri	nan p	project)	

	Date	Beg	gin - I	End:	7/11/2018	Dr	illing Comp	bany	: <u>Vine</u>	Labora	atories,	Inc.						B	ORING LOG B-29
	Log	ged	By:		B. Lykins	_ Dr	ill Crew:		<u>S. W</u>	right				į					
	Hor.	-Ver	t. Dai	tum:	Not Available	Dr	illing Equlp	me	nt: <u>CME</u>	-850			Ha	mme	г Тур	e - Dr	op:	140 lb.	Auto - 30 in.
1	Plur	ige:			-90 degrees	Dr	illing Meth	od:	Solid	Stem	Auger								
	Wea	ther	:		Clear, 85° F	Ex	ploration D	lam	eter: 4 in.	0.D.									
			1		FIEL	D EXPLO	RATION					LAB	ORAT	ory r	ESUL	†s			HANE MONITORING
	Surveyed Elevation (feet)	Depth (feel)	Graphical Log		Northing: 377204 Easting: 188372. Surveyed Ground Surface Elev Surface Condition: Thick grasse Lithologic Desc	/ation (ft.): 6 s. weeds, a	,202.10 nd shrubs	Sample Type	Blow Counts(BC)≑ Uncorr. Blows% in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	WEL	LL CONSTRUCTION* 1" SCH 40 Solid PVC Riser
	-6195	5- - - - - - - - - - - - - - - - - - -		CLA wea	y SAND: fine-grained sand, i loose, no debris, no odor VSTONE : dark grey, highly i	low plastic	i, very	S	BC=4 8 10 BC±11 16	12"		>0							Grout Silica Sand 1" SCH 40 Slotted 0.010 PVC Screen
	- 6190	-		belo	boring was terminated at an w ground surface. 'Monitor th of 15'.				18			Groun comple <u>GENE</u> The ex	etion. RAL N	was n <u>OTES:</u> on loca	ot obs	erved	during	drilling	or after urveyed by
		K	1		INFELDE		PROJECT I DRAWN BY CHECKED DATE:	<i>t</i> :	20191069 MAP		Mesa Mesa	Valley Valley	Landf	ill Inv	estiga	ation 2	2018 oject)		BORING B-29
				/			REVISED		•			Cole	orado	Spring	gs, C(ر 			PAGE: 1 of 1

Date E	Beg	in - E	nd: 7/09/2018	Dr	illing Com	bany	: Vine	Labora	itories,	Inc.						BORING LOG B-3
Logge	od E	By:	B. Lykins	Dr	ill Crew:		<u>S. W</u>	right								
HorV	/ert	. Dat	um: Not Available	Dr	illing Equip	omei	nt: <u>CME</u>	-850			Ha	mme	г Тури	e - Dr	op: _	140 lb. Auto - 30 in.
Plung	e:		-90 degrees	Ďr	illing Meth	od:	Solid	Stem	Auger							
Weath	ier:		Clear, 82° F	Ex	ploration C	lam	eter: 4 in.	0.D.								
				FIELD EXPLO	RATION							LA	BORA	TORY	RESU	JLTS
Surveyed Elevation (feet)	Liepin (reet)	Graphical Log	Northing Easting Surveyed Ground Su Surface Condition: Thic	j: 377607.4690 : 187805.0570 face Elevation (ft.): 6 k grasses, weeds, a	,220.91 and shrubs	Sample Type	Blow Counts(BC)≓ Uncorr. Blows/8 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	Additional Tests/ Remarks
n an c		5	Litholog	ic Description		Sar	Blow CICC	Rec	Sig	Cor	δ	Pas	à	Liqu	Pla NF	Add Red
-6220	-		Sitty SAND: fine-grained dry, loose, roots to 3", n		sity, brown,		ann an t-standar									
-6215	5		CLAYSTONE: dark grey weathered, extremely w calcareous nodules				BC#8 12 15									
1-6210	- 		- moderately weathered	, very weak below	10 feel		8C≈12 18 25									
1-6205	-		SHALE: dark grey, mode hard, no debris	erately weathered.	. very		BC+15 26 50/6"									Hard drilling at 16 feel
-6200	- -0%						8C=26 50/5"									
			The boring was termina below ground surface. with grout on July 09, 20	The boring was ba						Groun comple GENE The ex	dwater elion. RAL N	was n OTES on loca	ot obs	erved		ION: drilling or after were surveyed by
/					PROJECT		20191069 MAP			BOI	RING	LO	G B-3	30		BORING
	K =		EINFEL Bright People. Rig		CHECKED DATE: REVISED:	BY:			Mesa Mesa	Valley Valley Col	Land Landf orado	ill (W	aterm	an pri	2018 oject)	B-30
								1								PAGE: 1 of

Date Begin - i	End: <u>7/09/2018</u>				e Laboratories, Inc.					BORING LOG B-31			
Logged By:	B. Lykins	Drill Crew: S. Wright					1						
HorVert. Dat	um: <u>WGS 1984 - Not Available</u>	Drilling Equipment: CME-850			Hammer Type - Drop: 140 lb. Auto - 30 in.				140 lb. Auto - 30 in.				
Plunge:	-90 degrees	Drilling Meth	iod:	Solid	Stem	Auger							
Weather:	Clear, 84° F	Exploration I	Diame	ter: 4 in,	O.D.								
	FIELD EXP	LORATION					LAB	ORAT	ORY F	RESUL	TS		METHANE MONITORI
Surveyed Elevation (feet) Depth (feet) Graphical Log	Northing: 377444.0160 Easting: 187795.9900 Surveyed Ground Surface Elevation (f Surface Condition: Thick grasses, weet	ft.): 6,215.52 ds, and shrubs	Sample Type	Blow Counts(BC)= Usncort Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity index (NP=NonPlastic)	WELL CONSTRUCTIO
Dep Dep	Lithologic Description		San	Blow	Rec NR	Syn	Con Vai	à	pas	Pas	Ligu	Pla:	PVC Riser
6215	Sitty SAND (SM): fine-grained sand, it brown, dry, loose, roots to 3", no debri				6"								Grout
-6210 5	Lean CLAY (CL): medium plasticity, li moist, stiff, no debris	ght grey,		3C=8 14 16	18"								Silica Sand
	CLAYSTONE: medium to high plastici moist, very stiff	ty, grey,		3C=13 20 30	18"								
6200	- dark grey			3C=20 36 40	18"								
.6195 20	- with iron oxide staining			3C=10 18 18	181			· · ·					
-6190 25				3C=12 24 25	18"								Grout
-6185	- with calcareous nodules			3C=19 30 36	18"								
-6180 35	SHALE: dark bluish grey, hard, moder	ately		3C=40 50/5"	11"						~~~~~		
	Weathered The boring was terminated at approxi- below ground surface. *Monitoring W depth of 15'.	/	<u> </u>	, <u> </u>		Groun compl <u>GENE</u> The e Ridgel An iPa	etion. RAL N xplorati ine Su	was n OTES on loc rvey. prated	iot obs	erved ind ele	during evation	<u>IQN:</u> drilling or after were surveyed by I to locate the exploration	
			î¥:	20191069 MAP			BOI	RING	6 LO	G 8-	31		BORING
	EINFELDEF Bright People. Right Salution	i				Mesa Mesa	Valley Valley Col	Land Land orado	Fill (W	aterm	an pr	2018 oject)	B-31

Date	Beç	jin - I	End: <u>7/12/2018</u>				Labora	aboratories, Inc.				BORING LC				ORING LOG GW-2
Logg	ed I	By:	B. Lykins	Drill Crew:		<u>S. W</u>	right					L				
HorN	Verl	t, Dat	tum: Not Available	Drilling Equi	ртө	nt: CME	-760	50 Ham			mme	er Type - Drop: 140). Auto - 30 in.
Plung	je:		·90 degrees	Drilling Meth	Drilling Method: Solid S			Stem Auger								
Weat	her	:	Overcast, 66° F	Exploration i	Exploration Diameter: 4 in, O.D.											
			FIEL	D EXPLORATION					LA8	ORAT(DRY F	ESUL	TS			GROUNDWATER
Surveyed Elevation (feet)	Depth (feet)	Graphical Log	Northing: 37699 Easting: 188125 Surveyed Ground Surface Ele Surface Condition: Thick grasse Lithologic Desc	1.6840 vation (ft.): 6,185.68 es, weeds, and shrubs	L Sample Type	Ĥlew Counts(BC)= Uncorr. Blows/6 in,	Recovery (NR≠No Recovery)	Recovery (INR=No Recovery) (INR=No Recovery) Symbol Water Content (%) Dry Unit Wt. (pcf) Passing #4 (%) Passing #200 (%) Passing #200 (%) Passing #200 (%) Passing #200 (%) Passing #200 (%)			IONITORING WELL CONSTRUCTION* Completion Method. Flush mount cap in concrete					
-6185		wx	FILL			44.J	<u> </u>					- 34m		1		2
	1	*	Silty SAND: fine sand, low plas loose, roots to 4", no debris	ticity, brown, moist,									3			Concrete
6180	5		Fill SAND with Clay: fine to mediur brown, moist, very soft, debris (20% by volume			BC=2 1 3	-									
\$175	10					BC=1	ſ								╶╶╶╶╶╶╶╶╶╴╴	
6170	- 15 - - -		 with debris (concrete chunks t 	o 1,5" diameter)		BC=3 5 5	r									
6165 .V	20— - -					8C=2 2 6	r -									8entonite Chips 2" SCH 40 Salid PVC Riser
	1						1									
6160	25		FILL Lean CLAY: dark grey to black, debris (metal scraps, wood chij 1.5" diameter, glass shards) to	os, concrete chunks to		BC=5 5 6						-			╶╴╴╴╴╴╴╴╴╴ ╶╶╵╴╴╴╴╴╴╴╴╴	
6155	30-					BC=4 3 3									ביוויז נוגו דידי יידי	
6150	35															
6t45	40					BC=7 3 20										
6140	45 - -		CLAYSTONE: dark grey, highly iron oxide staining	weathered, weak,		BC=4 6 11	г. Г.									2" SCH 40 Siotled 0.010
6135	50- -		moderately weathered			BC=8	 									PVC Screen
6130		The boring was terminated at a below ground surface. *Monitor depth of 51.5'.			23	I	Ÿ	Ground surface <u>GENE</u> The ex	e during RAL NO	was o o drillin OTES: on loca	bserve 1g.	data	pproxin	iately	23 ft. below ground	
P			\	PROJECT DRAWN 8		20191069 MAP		,.,,,,,	BOR	ING	LOG	G G M	1-2			BORING
	KLEINFELDER Bright People. Right Solutions.				BY:			Mesa Mesa '	Valley		ll (Wa	aterma	an pri			GW-2
	-		*	REVISED:		-			- +1							PAGE: 1 of 1

Date B	egin	- E	nd: 7/12/2018 [Laboratories, Inc.				BORIN				ORING LOG GW-3		
Logge	d By:	:	B. Lykins E	Drifi Crew:		<u>S.</u> V	/right					L						
Hor,-Ve	ert. E	Date	im: Not Available E	Orlilling Equi	pme	nt: <u>CM</u>	-750			Ha	mme	г Тур	9 - Dr	op: _	140 K	. Auto - 30 in.		
Plunge	:		-90 degrees C	Drilling Meth	od:	Holl	w Ster	n Auge	эг <u> </u>									
Weath	er:		Clear, 80° F	Exploration I	Dian	ieter: 4 in	0.D.											
				EXPLORATION				LABORATORY RESULTS GROUNDWATER						GROUNDWATER				
Surveyed Elevation (feet) Denth (feet)		urapnical Log	Northing: 376987.5920 Easting: 188389.2310 Surveyed Ground Surface Elevation (ft.): Surface Condition: Thick grasses, weeds, Lithologic Description	6,191.33 and shrubs	Sample Type	Blow Counts(BC)= Uncorr. Blows/6 in.	Recovery (NR=No Recovery)	USCS Symbol	Water Content (%)	Dry Unit Wt. (pcf)	Passing #4 (%)	Passing #200 (%)	Liquid Limit	Plasticity Index (NP=NonPlastic)	1	IONITORING WELL CONSTRUCTION* Completion Method: Flush mount cap in concrete		
-6190			FILL Sity SAND: fine sand, low plasticity, bro loose, roots to approximately 4", no debr										:			Concrete		
-6185			FILL Lean CLAY: medium plasticity, reddish t moist, soft, debris (wood chips, glass fra 15% by volume			BC=3 5 3									╶╵ <u>╴</u> ╷╶╵╹╹╹	 Bentonite Chips 		
10 6180			- odor			BC≠3 10 15												
15 6175		- with debris (Irace metal scraps)			BC≖3 5 6													
20 •6170			FILL Fat CLAY: high plasticity, dark brown, me iron oxide staining	oist, soft,		BC=1 3 3												
26 -6165			~ with debris (wood chips) to 5% by volu	ne		BC=2 2 6										-		
⊈ 30 ~6160			CLAYSTONE: reddish brown, highly wea very weak, iron oxide staining	ithered,		BC=2 3 6	- /									2" SCH 40 Slotted 0.010 PVC Screen		
. 3: -6155			SHALE: dark bluish grey, moderately we weak	athered		BC=28 50/6"												
-6150 -			The boring was terminated at approxima below ground surface. *Monitoring Well depth of 36.5'.	mately 36 ft. Hell installed to a				Ä	Groun surface <u>GENE</u> The ex	e durin RAL N	was o g drilliu OTES: on loca	bserve ng.	data	pproxin	nalely	29 ft. below ground		
P	-			PROJECT DRAWN B		20191069 MAF			BOF	ING	LOG	GW	/-3			BORING		
	KLEINFELDER Bright People. Right Solutions.							Mesa Mesa	Valley	Landf	ill (Wa	aterm	an pro	2018 oject)		GW-3		
	_						<u> </u>							Colorado Springs, CO PAGE: 1				

Form No. GWS-31 02/2017	1313 ww	Sherman St., R w.water.state.	orado, Office o toom 821, Den .co.us_and_dwr	of the State ver, CO 8020 permitsonlin			For	Office Use C	Inly
	t Number: 58184-A		Receipt I	Number:			-		
	Il Designation: GW						-		
3. Well Owner	Name: MVS Develo on Street Address	opment, LLC	A 416-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0		6		-		
4. Well Location	S Well Location (re	P.U. Box 2750	ono 12	ue, NM 6/12	2	rthing: 2	77815.3310		
5. AS BUILT OP:	Location: 1/		Sec.	Two				w	P.M.
County: _					, Lot,				
7 Ground Sur	face Elevation: 62	17.44 fe	et Date Com				hod: Solid Stem		
	Aquifer Name : _			otal Depth:		-	oth Completed:		feet
	tification: Was N	otification Reg							018
10. Aquifer Ty		One Confining			Multiple Confining				
(Check on	e) Type II	(Not overlain b	y Type III)	Type II	(Overlain by Type	III)	Type III (a	lluvial/collu	rvial)
11. Geologic	Log:				12. Hole Diame	ter (in.)	From	(ft)	To (ft)
Depth	Туре	Grain Size	Color	Water Loc.	4)	46.5
0' - 4.5'	SAND	FINE	BROWN						
4.5' - 45'	CLAY	CLAY	BROWN	31'					
45' - 46.5'	CLAYSTONE	CLAY	LT BROWN		13. Plain Casing OD (in)		Wall Size (in)	From (ft)	To (ft)
					2.375	PVC	.375	0	36.5
-					Dorforsted Ca	ncing a			
						Kind	reen Slot Size (i Wall Size (in)	n): <u>0.010</u> From (ft)	To (ft)
		-				PVC	.375	36.5	46.5
			-				.575	50.5	
					14. Filter Pack:	S	15. Packe	er Placemer	nt:
			(Material Sili	ica Sand	Type	N/A	
						10/20		N/A	
						. <u>5' - 46.</u> 5	Depth		
					16. Grouting Re				
					-	mount	Density	Interval	Method
Remarks:					Bentonite Chips	20	4 bags	2 - 22	gravity
					Cement Mix	3.5	2	0' - 3.5'	gravity
17 Disisfeat	ant Time M/A				Amt. Used No				
	ion: Type N/A Estimate Data:		Check by	ov if Test Da	ta is submitted on		umber GWS-39	Well Yield T	est Report
	Estimate Method:		Deneck bi	ox in rescion	ta is submitted on	i i oi iii i ii	under on 5 57,	ment mento i	esemepore
Static Leve				Estimated `	Yield (gpm)				
					ength (hrs)				
	e measured:			estimate L	angen (m s)				
Remarks:	the statements made	barrie and long	the contents the	coof and they	are true to my bagy	ladaa Th	is decumpent is sin	and (or name	antored if
filing online) and statements is a v	i certified in accordan fiolation of section 37 er considers the entry	ce with Rule 17.4 91 108(1)(e), C.R	of the Water W	ell Constructio hable by fines	n Rules, 2 CCR 402 2. up to \$1,000 and/or r	. The filin revocation	ng of a document t	hat contains fa	alse
Company Nam			Email:			ne w/are	ea code:	License Nu	mber:
Kleinfelder, Ir			jkwhite@kle	infelder.con	n	(719)	632-3593	50163	
Mailing Addres	55:								
Sign (or enter	name if filing onlir	ie)	Print Nan	ne and Title				Date:	

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see online form submittal instructions at <u>http://water.state.co.us/groundwater/wellpermit/onlineformsubmittal/Pages/DWRSite1.aspx</u> You may also save, print and email the completed form to: <u>dwrpermitsonline@state.co.us</u>

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- 2. Provide the identification (owner's well designation) for the well.
- 3. Fill in well owner name.
- 4. Provide the street address where the well is located.
- 5. Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- 6. Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- Indicate the aguifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See http://water.state.co.us/groundwater/BOE/Pages/VariancesWaivers.aspx for more information on Notifications.
- 10. Check the box indicating the type aguifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples
 of descriptive terms include:

Type - sandstone, sand, etc. Grain size - Boulders, gravel, sand, silt, clay, etc. Color - Denote for all materials, most critical in sedimentary rock Water Location - Depth where water is encountered (if it can be determined)

- Provide the diameters of the drilled borehole.
- The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- 18. Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.

Rule 17.4 Certification - Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us

IF YOU HAVE ANY QUESTIONS regarding any item on this form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to our web site at www.water.state.co.us for general information, forms, online filing instructions and access to state rules and statutes.

Form No. GWS-31 02/2017	1313	Sherman St., R	orado, Office oom 821, Der	of the State over, CO 802	Engineer 203 303.866.3			For Office Use	Only	
		w.water.state.			ine@state.co.	<u>us</u>				
	t Number: 58184-A		Receipt	Number:			_			
	ell Designation: GV						_			
	Name: MVS Devel						_			
	on Street Address									
	S Well Location (re				376999.395					
	Location: 1		sec.,	_ Iwp	L N OF S	, Range _		E or W 🗖, _	P.M.	
					, Lot	_, Block -	,	Filing (Unit)		
	face Elevation: 61	85.68 fe				-				
	Aquifer Name : _				: <u>51.5</u> f			eted: 51.5	feet	
the second second second second second second second second second second second second second second second s	otification: Was Ne								2018	
10. Aquifer Ty		One Confining			(Multiple Con			_		
(Check on		(Not overlain b	y Type III)	Type II	I (Overlain by			e III (alluvial/col		
11. Geologic				Inc	12. Hole D		.)	From (ft)	To (ft)	
Depth	Туре	Grain Size	Color	Water Loc	<u>. </u>	4		0	51.5	
0' - 4'	SAND	FINE - MED	BROWN							
4' - 25' 25' - 45'	SAND W/ CLAY CLAY	FINE - MED	BROWN	23'	13. Plain C	ada a				
45' - 51.5'	CLAY	CLAY	GREY		OD (in)	Kind	Wall Size	(in) From (ft)	To (ft)	
45 - 51.5	CLAISTONE	CDA	GRET	-	2.375	KIIIG	.375	(iii) FIGHT(IC)	41.5	
							1979			
-					Perforate	ed Casing o	creen Slot S	Size (in): 0.010		
					OD (in)	Kind	Wall Size (To (ft)	
					2.375	PVC	.375	41.5	51.5	
					14. Filter P			Packer Placeme		
					Material	Silica San	d Typ	e N/A		
					Size	10/20	-	N/A		
					Interval	35.5' - 51.	5 Dep	oth	-	
					16. Groutin Material		Dancity	Interval	Hathad	
Remarks:					Bentonite Chi	Amount 33	Density 5 bags		Method gravity	
Remarks:							1	0 - 2.5	gravity	
					Cement Mix	2.3		0.2.5	Basich	
17. Disinfecti	on: Type N/A				Amt. Use	d None				
	Estimate Data:		Check b	ox if Test Da			umber GW	S-39, Well Yield	Test Report	
Well Yield	Estimate Method:					_				
Static Leve	H:			Estimated	Yield (gpm) _					
Date/Time	measured:			Estimate L	ength (hrs)					
Remarks:				-						
	the statements made I	nerein and know t	he contents the	ereof, and they	are true to my	knowledge. 1	This document	is signed (or name	entered if	
	certified in accordance									
	iolation of section 37 er considers the entry						on of the cont	racting license. If f	iling online	
Company Name	e:		Email:			Phone w/a	rea code:	License N	umber:	
Kleinfelder, In			jkwhite@kle	infelder.com	n) 632-3593	50163	10000	
Mailing Addres	s:									
Sign (or enter	name if filing onlin	e)	Print Nan	ne and Title				Date:		

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see online form submittal instructions at <u>http://water.state.co.us/groundwater/wellpermit/onlineformsubmittal/Pages/DWRSite1.aspx</u> You may also save, print and email the completed form to: <u>dwrpermitsonline@state.co.us</u>

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- Provide the identification (owner's well designation) for the well.
- Fill in well owner name.
- 4. Provide the street address where the well is located.
- Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- 6. Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- Indicate the aquifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See http://water.state.co.us/groundwater/BOE/Pages/VariancesWaivers.aspx for more information on Notifications.
- 10. Check the box indicating the type aquifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples
 of descriptive terms include:

Type - sandstone, sand, etc. Grain size - Boulders, gravel, sand, silt, clay, etc. Color - Denote for all materials, most critical in sedimentary rock Water Location - Depth where water is encountered (if it can be determined)

- 12. Provide the diameters of the drilled borehole.
- The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- 18. Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.

Rule 17.4 Certification - Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us

IF YOU HAVE ANY QUESTIONS regarding any item on this form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to our web site at www.water.state.co.us for general information, forms, online filing instructions and access to state rules and statutes.

Form No. GWS-31 02/2017	1313	State of Col Sherman St., F w.water.state	JCTION AND Y orado, Office o coom 821, Denv co.us and dwr Receipt N	of the State ver, CO 8020 permitsonlin	Engineer 03 303.866.35			For Office Use	Dnly
	I Designation: GW		Receipt n	umper:			-		
	Name: MVS Develo						_		
	on Street Address		50 Albauquerg	IP NM 8712	5		-		
	S Well Location (re					Northing:	376987.5920		
	Location: 1/							P.M.	
County: _					, Lot				
7. Ground Sur	face Elevation: 61	91.33 fe				-			
	Aquifer Name :				36.5 fe		pth Complet		feet
	tification: Was No	tification Req					Notification (Given: 07/09/2	018
10. Aquifer Ty		One Confining			Multiple Confi			ie-Fox Hills	
(Check on	e) Type II	(Not overlain b	y Type III)	Type II	(Overlain by T	ype III)	Type	II (alluvial/coll	uvial)
11. Geologic	Log:				12. Hole Dia	ameter (in.) F	rom (ft)	To (ft)
Depth	Туре	Grain Size	Color	Water Loc.		4	_	0	36.5
0' - 5'	SAND	FINE	BROWN						
5' - 19.5'	LEAN CLAY	CLAY	BROWN						
19.5' - 29'	FAT CLAY	CLAY	DRK BROWN	29'	13. Plain Ca	sing			-
29' - 35'	CLAYSTONE	CLAY	RED-BROWN		OD (in)	Kind	Wall Size (in		To (ft)
35' - 36'	SHALE		DRK GREY		2.375		.375	0	26.5
					Porforato	d Carina a	ci . ci	0.010	
					OD (in)	Kind	Wall Size (in	e (in): 0.010 From (ft)	To (ft)
					2.375	PVC	.375	26.5	36.5
					2.575			20.0	
					14. Filter Pa	ack:	15. P	acker Placeme	nt:
					Material	Silica Sano	Type		
					Size	10/20			
					Interval	11.5 - 36	Dept	h	
					16. Grouting	g Record			
					Material	Amount	Density	Interval	Method
Remarks:					Bentonite Chip		2	2' - 12'	gravity
					Cement Mix	2	1	0' - 2'	gravity
	ion: Type N/A		Checkbe	if Test De	Amt. Used		lumber CWS	39, Well Yield	Tort Papart
	Estimate Data:			ix ir rest Da	ta is submitte	o on Form N	umber Gw5-	59, well field	resc keport
	Estimate Method:			Estimated	Yield (gpm)	-			
Static Leve									
	e measured:			Estimate Lo	ength (hrs)				
Remarks:									
19. I have read	the statements made certified in accordan	herein and know	the contents the	reof, and they	are true to my l	mowledge. T	his document i	s signed (or name	entered if
statements is a v	violation of section 37	91 108(1)(e). C.F	S., and is punish	able by fines	up to \$1,000 and	l/or revocatio	in of the contra	cting license. If	filing online
the State Engine	er considers the entry	of the licensed of	contractor's name	to be compli	ance with Rule 1	7.4.			
Company Nam			Email:			Phone w/ar	ea code:	License N	umber:
Kleinfelder, In			jkwhite@klei	infelder.con			632-3593	50163	
Mailing Addres									
-	name if filing onlir	le)	Print Nam	e and Title				Date:	
- D. for enter									

GWS-31 02/2017

INSTRUCTIONS FOR WELL CONSTRUCTION AND YIELD ESTIMATE REPORT

This report must be computer generated online, typed or printed in <u>BLACK OR BLUE INK</u> and may be reproduced by photocopy or computer generation. Photocopy reproductions must retain margins and print quality. Attach additional sheets if more space is required. Each additional sheet must be identified at the top by the well owner's name, the permit number, form name/number and a sequential page number. Report depths in feet below ground surface. If filing online please see online form submittal instructions at <u>http://water.state.co.us/groundwater/wellpermit/onlineformsubmittal/Pages/DWRSite1.aspx</u> You may also save, print and email the completed form to: <u>dwrpermitsonline@state.co.us</u>

The form must be submitted to the State Engineer's Office within 60 days after completing the well or 7 days after the permit expiration date, whichever is earlier. A copy of the form must be provided to the well owner.

Item Instructions: (numbers correspond with those on the front of this form)

- 1. Complete the well permit and receipt number.
- 2. Provide the identification (owner's well designation) for the well.
- 3. Fill in well owner name.
- 4. Provide the street address where the well is located.
- 5. Provide the GPS location where the well was drilled (required field).

Colorado contains two (2) UTM zones. Zone 13 covers most of Colorado. The boundary between Zone 12 and Zone 13 is the 108th Meridian (longitude). West of the 108th Meridian is UTM Zone 12 and east of the 108th Meridian is UTM Zone 13. The 108th Meridian is approximately 57 miles east of the Colorado-Utah state line. On most GPS units, the UTM zone is given as part of the Easting measurement, e.g. 12T0123456. Check the appropriate box for the zone.

- 6. Complete the legal description location of the well and county. For wells located in subdivisions, the name, lot, block, and filing, must be provided.
- Report the ground surface elevation in feet above sea level if available. This value may be obtained from a topographic map. Provide the date the well was completed and describe the drilling method used to construct the well.
- 8. Indicate the aguifer in which the well was completed, the total depth drilled, and the actual completed depth of the well.
- Indicate whether or not the well inspection team was required to be notified prior to construction. If required, provide the date notification was given. See http://water.state.co.us/groundwater/BOE/Pages/VariancesWaivers.aspx for more information on Notifications.
- 10. Check the box indicating the type aquifer in which the well is completed (See Rule 5.2.2 Well Construction Rules).
- Fully describe the materials encountered in drilling. Do not use formation names unless they are in conjunction with a description of materials. Examples
 of descriptive terms include:

Type - sandstone, sand, etc. Grain size - Boulders, gravel, sand, silt, clay, etc. Color - Denote for all materials, most critical in sedimentary rock Water Location - Depth where water is encountered (if it can be determined)

- 12. Provide the diameters of the drilled borehole.
- The outside diameter, type, wall thickness, and interval of plain and perforated casing lengths must be indicated. For perforated casing, the screen size must be indicated.
- 14. Indicate the material and size of filter pack (e.g. sand, gravel, etc.) and the interval where placed.
- 15. Indicate the type and setting depth for any packers installed.
- 16. The material, amount, and interval of the grout slurry must be reported. Density may be indicated as pounds per gallon, gallons of water per sack, total gallons of water used, or number of sacks used, etc. Specify the grout placement method, i.e. tremie pipe or positive placement. The percentage of additives mixed with the grout should be reported under remarks.
- 17. Record the type and the amount of disinfection used, how placed, and the length of time left in the hole.
- 18. Report Well Yield Estimate data as required by Rule 17.1.1. Spaces are provided to report all estimates made during the assessment. The report should show that the estimate complied with the provisions of the rules. If available, report clock time when measurements were taken. If an estimate was not performed, explain when it will be done. A full Well Yield Test may be performed instead of an estimate; if so, check the appropriate box and submit the data on form GWS-39.
- 19. Fill in Company Name, Email, and Address and License Number (or PE/PG) of the Individual who is responsible for the well construction. The licensed contractor or authorized individual responsible for the construction of the well must sign or if filing online, enter his/her name on the report. If filing online the State Engineer considers the entering of the licensed contractors name on the form to be a certification of accuracy and truthfulness in compliance with Rule 17.4 of the Water Well Construction Rules and Regulations, 2 CCR 402-2.

Rule 17.4 Certification - Work reports must be signed and certified as to accuracy and truthfulness of the information on the report by the well construction or pump installation contractors or authorized individuals responsible for the work performed by them or under their direction or supervision, or by the private driller or private pump installer if the work was performed by them. Such reports are deemed to be completed, signed and certified under oath.

Submit completed report to: State of Colorado, Office of the State Engineer, 1313 Sherman St, Room 821, Denver, CO 80203. You may also save, print, scan and email the completed form to dwrpermitsonline@state.co.us

IF YOU HAVE ANY QUESTIONS regarding any item on this form, please call the Division of Water Resources Ground Water Information Desk (303-866-3587), or the nearest Division of Water Resources Field Office located in Greeley (970-352-8712), Pueblo (719-542-3368), Alamosa (719-589-6683), Montrose (970-249-6622), Glenwood Springs (970-945-5665), Steamboat Springs (970-879-0272), or Durango (970-247-1845), or refer to our web site at www.water.state.co.us for general information, forms, online filing instructions and access to state rules and statutes.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

LABORATORY REPORT

August 13, 2018

Brad Woodard Kleinfelder 1801 California Street, Suite 100 Denver, CO 80202

RE: Mesa Valley Landfill / 20191069

Dear Brad:

Enclosed are the results of the samples submitted to our laboratory on July 30, 2018. For your reference, these analyses have been assigned our service request number P1803928.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

12:44 pm 68/13/18

Kate Kaneko Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

Client: Kleinfelder Project: Mesa Valley Landfill / 20191069 Service Request No: P1803928

CASE NARRATIVE

The samples were received intact under chain of custody on July 30, 2018 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Methane Analysis

The samples were analyzed for methane according to modified EPA Method 3C (single injection) using a gas chromatograph equipped with a thermal conductivity detector (TCD). This procedure is described in laboratory SOP VOA-EPA3C. This method is included on the laboratory's DoD-ELAP scope of accreditation, however it is not part of the NELAP accreditation.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 F: +1 805 526 7270 www.alsglobal.com

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	http://dec.alaska.gov/eh/lab.aspx	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	http://www.deq.louisiana.gov/page/la-lab-accreditation	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtml	2016036
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	1347317
New Jersey DEP (NELAP)	http://www.nj.gov/dep/enforcement/oqa.html	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-005
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/ga/env_lab_accreditation.html	T104704413- 18-9
Utah DOH (NELAP)	http://health.utah.gov/lab/lab_cert_env	CA01627201 7-8
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

ALS ENVIRONMENTAL

DETAIL SUMMARY REPORT

			DI	ETAIL SUM	MARY REP	ORT			
Client:	Kleinfelder							Service Request: P1803928	
Project ID:	Mesa Valley La	undfill / 20	191069						
								as a	
Date Received:	7/30/2018								
Time Received:	09:15							Gases	
) px	
								L L L	
								eq	
								diffed	
			Date	Time	Container	Pit	Pf1	Wo	
Client Sample ID	Lab Code	Matríx	Collected	Collected	ID	(psig)	(psig)	30	
SG-1	P1803928-001	Air	7/25/2018	12:33	SC01533	-2.92	3.71	X	

U	
1	

Air - Chain of Custody Record & Analytical Service Request

	2
_	-
	Page

	2655 Park Center Drive, Suite A Simi Valley, California 93065	Suite A 1065								
(SIS)	Phone (805) 526-7161 Fax (805) 526-7270		Requested Tumaro 1 Day (100%) 2 Day (Requested Termanound Time in Business Days (Surcharges) please circle 1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10-Day-Standard	Days (Surcharge Day (35%) 5 Day	s) please circle (25%) 10-Day-St	andard	ALS	ALS Project Ng 92 &	928
								ALS Contact		
Company Name & Address (Heporting Information)	mation)		Masa Ver	Valles Land Alles	Nit.			Analysis Method	ethod	
しまちとうブ				Number 2019 1069						
Project vie stard			P.O. # / Biling Information	ation						
	Fur		102	20191069	((Comments e.g. Actual
-	1 lew fold	1	Sampler Prints Signt	Le a.	1	P	Λ			Preservative
	Laboratory Date ID Number Collected	ed Collected	Canister ID Bar code #- AC SC etc)	Flow Controller ID (Ber code # - FC #)	Cantidater Start Pressure "Ho	Canistor End Pressure "Matesia	Sample Volume			specific instructions
54-1	CISSIT EESIO	17 12: 33	0	AUGOH745		0	61	Meddene		
252	001 82 71511	_		ANGICHERTH	12	0	GL	7		
		_								I
5 of 1								1		
e										
				7						
			14	petro						
		C	The state							
		A	2							
	1									
								_		
								T	1	
Repo The I - Results (Default Ja-mot specified) The II (Results + 90'Summaries	Report Ther Levels - please select Ter II (Results + OC & Calibration Summaries) Trany (Date Valdation Pockage) 10% Surths	elect bration Summaries) kagej 10% Surcharge		EDD required YES / No Type:	/ No Ugits:	4	Antact 1	Chain of Custody Seal: (Circle) (NTACT BROKEN ABSENT		Project Requirements (MRLs, QAPP)
Rainquistred for (Starffurth		m20/15	T=1620	Received by: (Signature)	A-	13-Co	er-	0 1/20/18 mg	2/120	
Reinquished Sur Sagnaturi		C 1	Timec	Received by: (Bignature)				Date: Time:		Cooler / Blank TemperatureC

ALS Environmental Sample Acceptance Check Form

Client:	Kleinfelder		-	-		Work order:	P1803928			
Project:	Mesa Valley I	Landfill / 20191069								
Sample((s) received on:	7/30/2018			Date opened:	7/30/2018	by:	AARO	N GON	VZALEZ
	f		The constant of the factor	5 6 11 1	and the first of				diantian	
		il samples received by ALS.							idication	01
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at t	the request of the	e client and/or as rec	paired by the metho	od/SOP. <u>Yes</u>	No	<u>N/A</u>
I	Were sample	containers properly n	narked with cli	ient sample ID	?			$\overline{\mathbf{X}}$		
2	Did sample c	ontainers arrive in goo	od condition?	-				X		
3	Were chain-o	f-custody papers used	l and filled out	?				\mathbf{X}		
4	Did sample c	ontainer labels and/or	tags agree wit	th eustody pap	ers?			X		
5	Was sample v	volume received adequ	late for analysi	is?				X		
6	Are samples v	within specified holding	g times?					X		
7	Was proper to	emperature (thermal p	preservation) o	f cooler at rect	eipt adhered t	10?				X
								_	_	_
8	Were custody	seals on outside of co							X	
		Location of seal(s)?				******	_ Sealing Lid?			×
	-	re and date included?								X
	Were seals int									×
9	Do containe	ers have appropriate pr	reservation, ac	ccording to me	thod/SOP or	Client specified	information?			X
	ls there a clie	ent indication that the s	ubmitted samp	les are pH pre	served?					X
	Were <u>VOA v</u>	ials checked for prese	nce/absence of	f air bubbles?						X
	Does the clien	it/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alte	r it?			X
10	Tubes:	Are the tubes capp	ped and intact?)						X
11	Badges:	Are the badges pr	operly capped	and intact?						X
- <u> </u>		Are dual bed badg	zes separated a	und individuall	y capped and	t intact?				X
P1803928	8-001.01	6.0 L Source Can				[[

Explain any discrepancies: (include lab sample ID numbers):

6.0 L Source Can

6.0 L Source Can

P1803928-002.01

P1803928-003.01

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Suffar (pH>4)

ALS ENVIRONMENTAL

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Project ID:	Kleinfelder Mesa Valley Landfill / 20191069			ALS Project ID: P1803928		
			Methane			
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA Method 3C Modified HP5890 II/GC1/TCD Gilbert Gutierrez 6.0 L Summa Canister(s)				Date(s) Collected: 7/25/18 Date Received: 7/30/18 Date Analyzed: 8/1/18	
Client Sample ID	ALS Sample ID	Container Dilution Factor	Injection Volume ml(s)	Result %, v/v	MRL %, v/v	Data Qualifier
SG-1	P1803928-001	3.36	0.10	0.399	0.34	·······
SG-2	P1803928-002	4.16	0.10	82.4	0.42	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

1.00

P180801-MB

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

0.10

ND

0.10

Method Blank

ALS ENVIRONMENTAL

LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

•	Kleinfelder Lab Control Sample Mesa Valley Landfill / 20191069	ALS Project ID: P1803 ALS Sample ID: P1808	
Test Code: Instrument ID; Analyst: Sample Type: Test Notes:	EPA Method 3C Modified HP5890 II/GC1/TCD Gilbert Gutierrez 6.0 L Summa Canister	Date Collected: NA Date Received: NA Date Analyzed: 8/01/1 Volumc(s) Analyzed:	8 NA ml(s)

					ALS	
CAS #	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
	_	ppmV	ppmV		Limits	Qualifier
74-82-8	Methane	40,000	39,600	99	98-110	

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Analytical Report

August 10, 2018

Report to: Bill Bergeron Kleinfelder, Inc. 1801 California Street Denver, CO 80002

cc: Brad Woodard

Bill to: Brenda Anthony Kleinfelder, Inc. 4815 List Drive, Unit 115 Colorado Springs, CO 80919

Project ID: 20191069 ACZ Project ID: L45886

Bill Bergeron:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 27, 2018. This project has been assigned to ACZ's project number, L45886. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan. The enclosed results relate only to the samples received under L45886. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Except as noted, the test results for the methods and parameters listed on ACZ's current NELAC certificate letter (#ACZ) meet all requirements of NELAC.

This report shall be used or copied only in its entirety. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 09, 2018. If the samples are determined to be hazardous, additional charges apply for disposal (typically \$11/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical raw data reports for ten years.

If you have any questions or other needs, please contact your Project Manager.

Max janicely

Max Janicek has reviewed and approved this report.

Project ID: 20191069 Sample ID: GW-1

Inorganic Analytical Results

ACZ Sample ID:	L45886-01
Date Sampled:	07/26/18 10:45
Date Received:	07/27/18
Sample Matrix:	Groundwater

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate	M200.2 ICP-MS								08/03/18 14:28	rap
Digestion										
Total Hot Plate Digestion	M200.2 ICP				•				08/02/18 13:45	dcm
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.011	В		mg/L	0.004	0.02	08/06/18 14:10	bsu
Arsenic, total	M200.8 ICP-MS	10	0.048			mg/L	0.002	0.01	08/06/18 14:10	bsu
Barium, total	M200.7 ICP	5	0.60			mg/L	0.02	0.08	08/03/18 23:26	dcm
Beryllium, total	M200.8 ICP-MS	10	0.0014	в		mg/L	0.0005	0.003	08/06/18 23:21	mfm
Cadmium, total	M200.8 ICP-MS	10	0.004	в		mg/L	0.001	0.005	08/06/18 14:10	bsu
Calcium, dissolved	M200.7 ICP	5	39.5			mg/L	0.5	3	08/06/18 13:46	aeh
Chromium, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:26	dcm
Cobalt, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:26	dcm
Copper, total	M200.7 ICP	5	0.08	в		mg/L	0.05	0.3	08/03/18 23:26	dcm
Iron, total	M200.7 ICP	5	63.2		•	mg/L	0.1	0.3	08/03/18 23:26	dcm
Lead, total	M200.8 ICP-MS	10	0.257			mg/L	0.001	0.005	08/06/18 14:10	bsu
Magnesium, dissolved	M200.7 ICP	5	485			mg/L	1	5	08/06/18 13:46	aeh
Manganese, dissolved	M200.7 ICP	5	0.05	в	•	mg/L	0.03	0.1	08/06/18 13:46	aeh
Nickel, total	M200.7 ICP	5	0.07	в		mg/L	0.04	0.2	08/03/18 23:26	dcm
Potassium, dissolved	M200.7 ICP	5	57			mg/L	1	5	08/06/18 13:46	aeh
Selenium, total	M200.8 ICP-MS	10	0.017			mg/L	0.001	0.003	08/06/18 14:10	bsu
Silver, total	M200.7 ICP	5		U		mg/L	0.05	0.1	08/03/18 23:26	dcm
Sodium, dissolved	M200.7 ICP	5	4090			mg/L	1	5	08/06/18 13:46	aeh
Thallium, total	M200.8 ICP-MS	10		U		mg/L	0.001	0.005	08/06/18 14:10	bsu
Vanadium, total	M200.7 ICP	5	0.11			mg/L	0.03	0.1	08/03/18 23:26	dcm
Zinc, total	M200.7 ICP	5	0.75			mg/L	0.05	0.3	08/03/18 23:26	dcm
Wet Chemistry						_				
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		2100			mg/L	1	30	08/10/18 0:00	calc
the million to the second	M200.7/200.8/3005A	1							08/01/18 17:00	dcm

Project ID:	20191069
Sample ID:	GW-2

Inorganic Analytical Results

L45886-02	
07/26/18 11:45	
07/27/18	
Groundwater	
	07/26/18 11:45 07/27/18

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate Digestion	M200.2 ICP-MS							08/03/18 14:48	rap
Total Hot Plate Digestion	M200.2 ICP			•				08/02/18 13:57	dcm
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.016	В	mg/L	0.004	0.02	08/06/18 14:12	bsu
Arsenic, total	M200.8 ICP-MS	10	0.494		mg/L	0.002	0.01	08/06/18 14:12	bsu
Barium, total	M200.7 ICP	5	9.20		mg/L	0.02	0.08	08/03/18 23:30	dcm
Beryllium, total	M200.8 ICP-MS	10	0.0421		mg/L	0.0005	0.003	08/06/18 23:24	mfm
Cadmium, total	M200.8 ICP-MS	10	0.064		mg/L	0.001	0.005	08/06/18 14:12	bsu
Calcium, dissolved	M200.7 ICP	5	304		mg/L	0.5	3	08/06/18 13:49	aeh
Chromium, total	M200.7 ICP	5	1.16		mg/L	0.05	0.3	08/03/18 23:30	dcm
Cobalt, total	M200.7 ICP	5	0.45		mg/L	0.05	0.3	08/03/18 23:30	dcm
Copper, total	M200.7 ICP	5	2.09		mg/L	0.05	0.3	08/03/18 23:30	dcm
Iron, total	M200.7 ICP	5	1300	•	mg/L	0.1	0.3	08/03/18 23:30	dcm
Lead, total	M200.8 ICP-MS	10	4.98		mg/L	0.001	0.005	08/06/18 14:12	bsu
Magnesium, dissolved	M200.7 ICP	5	258		mg/L	1	5	08/06/18 13:49	aeh
Manganese, dissolved	M200.7 ICP	5	1.05		mg/L	0.03	0.1	08/06/18 13:49	ach
Nickel, total	M200.7 ICP	5	1.05		mg/L	0.04	0.2	08/03/18 23:30	dcm
Potassium, dissolved	M200.7 ICP	5	32		mg/L	1	5	08/06/18 13:49	ach
Selenium, total	M200.8 ICP-MS	10	0.035		mg/L	0.001	0.003	08/06/18 14:12	bsu
Silver, total	M200.7 ICP	5		U	mg/L	0.05	0.1	08/03/18 23:30	dcm
Sodium, dissolved	M200.7 ICP	5	2570		mg/L	1	5	08/06/18 13:49	aeh
Thallium, total	M200.8 ICP-MS	10	0.010		mg/L	0.001	0.005	08/06/18 14:12	bsu
Vanadium, total	M200.7 ICP	5	1.95		mg/L	0.03	0.1	08/03/18 23:30	dcm
Zinc, total	M200.7 ICP	5	18.7		mg/L	0.05	0.3	08/03/18 23:30	dcm
Wet Chemistry									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		1820		mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A	1						08/01/18 17:00	dom

Project ID:	20191069
Sample ID:	GW-3

Inorganic Analytical Results

L45886-03
07/26/18 12:25
07/27/18
Groundwater

Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Total Hot Plate	M200.2 ICP-MS							08/03/18 15:07	rap
Digestion Total Hot Plate Digestion	M200.2 ICP			·				08/02/18 14:09	dcm
Metals Analysis									
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.006	В	mg/L	0.004	0.02	08/06/18 14:14	bsu
Arsenic, total	M200.8 ICP-MS	10	0.238		mg/L	0.002	0.01	08/06/18 14:14	bsu
Barium, total	M200.7 ICP	5	2.43		mg/L	0.02	0.08	08/03/18 23:33	dcm
Beryllium, total	M200.8 ICP-MS	10	0.0141		mg/L	0.0005	0.003	08/06/18 23:27	mfm
Cadmium, total	M200.8 ICP-MS	10	0.009		mg/L	0.001	0.005	08/06/18 14:14	bsu
Calcium, dissolved	M200.7 ICP	5	239		mg/L	0.5	3	08/06/18 13:53	aeh
Chromium, total	M200.7 ICP	5	0.36		mg/L	0.05	0.3	08/03/18 23:33	dcm
Cobalt, total	M200.7 ICP	5	0.20	в	mg/L	0.05	0.3	08/03/18 23:33	dcm
Copper, total	M200.7 ICP	5	0.34		mg/L	0.05	0.3	08/03/18 23:33	dcm
Iron, total	M200.7 ICP	5	339	•	mg/L	0.1	0.3	08/03/18 23:33	dcm
Lead, total	M200.8 ICP-MS	10	0.354		mg/L	0.001	0.005	08/06/18 14:14	bsu
Magnesium, dissolved	M200.7 ICP	5	547		mg/L	1	5	08/06/18 13:53	aeh
Manganese, dissolved	M200.7 ICP	5	0.32		mg/L	0.03	0.1	08/06/18 13:53	aeh
Nickel, total	M200.7 ICP	5	0.31		mg/L	0.04	0.2	08/03/18 23:33	dom
Potassium, dissolved	M200.7 ICP	5	35		mg/L	1	5	08/06/18 13:53	aeh
Selenium, total	M200.8 ICP-MS	10	0.018		mg/L	0.001	0.003	08/06/18 14:14	bsu
Silver, total	M200.7 ICP	5		U	mg/L	0.05	0.1	08/03/18 23:33	dom
Sodium, dissolved	M200.7 ICP	5	4490		mg/L	1	5	08/06/18 13:53	aeh
Thallium, total	M200.8 ICP-MS	10	0.004	в	mg/L	0.001	0.005	08/06/18 14:14	bsu
Vanadium, total	M200.7 ICP	5	0.74		mg/L	0.03	0.1	08/03/18 23:33	dom
Zinc, total	M200.7 ICP	5	1.44		mg/L	0.05	0.3	08/03/18 23:33	dcm
Wet Chemistry					_				
Parameter	EPA Method	Dilution	Result	Qual XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		2850		mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A	1						08/01/18 17:01	dcm

Project ID: 20191069 Sample ID: GW-4

Inorganic Analytical Results

ACZ Sample ID:	L45886-04	
Date Sampled:	07/26/18 11:00	
Date Received:	07/27/18	
Sample Matrix:	Groundwater	

Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	POL	Date	Analyst
Total Hot Plate	M200.2 ICP-MS	Dilution	Result	Qual		Units	MDL	FGE	08/03/18 15:27	rap
Digestion	M200.2 IGP-M6								00/05/10 15.27	Tap
Total Hot Plate	M200.2 ICP				•				08/02/18 14:45	dcm
Digestion										
Metals Analysis										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Antimony, total	M200.8 ICP-MS	10	0.011	в		mg/L	0.004	0.02	08/06/18 14:16	bsu
Arsenic, total	M200.8 ICP-MS	10	0.049			mg/L	0.002	0.01	08/06/18 14:16	bsu
Barium, total	M200.7 ICP	5	0.41			mg/L	0.02	0.08	08/03/18 23:50	dcm
Beryllium, total	M200.8 ICP-MS	10	0.0013	в		mg/L	0.0005	0.003	08/06/18 23:30	mfm
Cadmium, total	M200.8 ICP-MS	10	0.003	в		mg/L	0.001	0.005	08/06/18 14:16	bsu
Calcium, dissolved	M200.7 ICP	5	38.6			mg/L	0.5	3	08/06/18 13:56	aeh
Chromium, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:50	dcm
Cobalt, total	M200.7 ICP	5		U		mg/L	0.05	0.3	08/03/18 23:50	dcm
Copper, total	M200.7 ICP	5	0.07	в		mg/L	0.05	0.3	08/03/18 23:50	dom
Iron, total	M200.7 ICP	5	44.4		•	mg/L	0.1	0.3	08/03/18 23:50	dcm
Lead, total	M200.8 ICP-MS	10	0.257			mg/L	0.001	0.005	08/06/18 14:16	bsu
Magnesium, dissolved	M200.7 ICP	5	488			mg/L	1	5	08/06/18 13:56	aeh
Manganese, dissolved	M200.7 ICP	5	0.04	в	•	mg/L	0.03	0.1	08/06/18 13:56	aeh
Nickel, total	M200.7 ICP	5		U		mg/L	0.04	0.2	08/03/18 23:50	dom
Potassium, dissolved	M200.7 ICP	5	57			mg/L	1	5	08/06/18 13:56	aeh
Selenium, total	M200.8 ICP-MS	10	0.017			mg/L	0.001	0.003	08/06/18 14:16	bsu
Silver, total	M200.7 ICP	5		U		mg/L	0.05	0.1	08/03/18 23:50	dom
Sodium, dissolved	M200.7 ICP	5	4100			mg/L	1	5	08/06/18 13:56	aeh
Thallium, total	M200.8 ICP-MS	10		U		mg/L	0.001	0.005	08/06/18 14:16	bsu
Vanadium, total	M200.7 ICP	5	0.06	в		mg/L	0.03	0.1	08/03/18 23:50	dom
Zinc, total	M200.7 ICP	5	0.45			mg/L	0.05	0.3	08/03/18 23:50	dcm
Wet Chemistry										
Parameter	EPA Method	Dilution	Result	Qual	XQ	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3 (dissolved)	SM2340B - Calculation		2110			mg/L	1	30	08/10/18 0:00	calc
Lab Filtration (0.45um) & Acidification	M200.7/200.8/3005A	1							08/01/18 17:01	dcm

Inorganic Reference

	A distinct set of samples analyzed at a specific time		
Found	Value of the QC Type of interest		
Limit	Upper limit for RPD, in %.		
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)		
MDL	Method Detection Limit. Same as Minimum Reporting Limit u	nless omitted or e	gual to the PQL (see comment #5).
	Allows for instrument and annual fluctuations.		
PCN/SCN		ufacturer's certific	ate of analysis
POL	Practical Quantitation Limit. Synonymous with the EPA term		
QC	True Value of the Control Sample or the amount added to the		
Rec	Recovered amount of the true value or spike added, in % (ex		(Ka)
RPD	Relative Percent Difference, calculation used for Duplicate Q		
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)		
Sample	Value of the Sample of Interest		
	and the state of the second to buy deduce the second state of the	and a support of the support	
C Sample Ty		100000	Laboratora Control Samala - Matar Pustante
AS	Analytical Spike (Post Digestion)	LCSWD LFB	Laboratory Control Sample - Water Duplicate
ASD	Analytical Spike (Post Digestion) Duplicate		Laboratory Fortified Blank
CCB	Continuing Calibration Blank	LEM	Laboratory Fortified Matrix
CCV	Continuing Calibration Verification standard	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
ICB	Initial Calibration Blank	MS	Matrix Spile
ICV	Initial Calibration Verification standard	MSD	Matrix Spike Duplicate
ICSAB	Inter-element Correction Standard - A plus B solutions	PBS	Prep Blank - Soll
LCSS	Laboratory Control Sample - Sol	PBW	Prep Blank - Water
LCSSD	Laboratory Control Sample - Soil Duplicate	PQV	Practical Quantitation Verification standard
LCSW	Laboratory Control Sample - Water	SDL	Serial Dilution
C Sample Ty	pe Explanations		A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLES AND A CARLE
04.			
Blanks	Verifies that there is no or minimal of	ontamination in the	e prep method or calibration procedure.
Blanks Control Sa			
	mples Verifies the accuracy of the method	, including the prep	procedure.
Control Sa Duplicates	mples Verifies the accuracy of the method	, including the prep ant and/or method.	procedure.
Control Sa Duplicates	mples Verifies the accuracy of the method Verifies the precision of the instrume	, including the prep ant and/or method. noes, if any.	procedure.
Control Sa Duplicates Spikes/For Standard	mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration	, including the prep ant and/or method. noes, if any.	procedure.
Control Sa Duplicates Spikes/For	mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration	, including the prep ant and/or method. hoes, if any.	procedure.
Control Sa Duplicates Spikes/For Standard	mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration s (Quali)	, including the prep ant and/or method, hoes, if any. PQL. The associat	e procedure. Ied value is an estimated quantity.
Control Sa Duplicates Spikes/For Standard B	mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and	, including the prep ant and/or method. hoes, if any. PQL. The associat n immediate hold t	e procedure. Ied value is an estimated quantity.
Control Sa Duplicates Spikes/For Standard 22 QUB1flor B H	mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne	, including the prep ant and/or method, noes, if any. PQL. The associat n immediate hold to gative threshold.	e procedure. Ied value is an estimated quantity. Ime.
Control Sa Duplicates Spikes/For Standard 22 Qualifier B H L	mples Verifies the accuracy of the method Verifies the precision of the instrume tified Matrix Determines sample matrix interferen Verifies the validity of the calibration s (Qual) Analyte concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a	, including the prep ant and/or method, noes, if any. PQL. The associat n immediate hold to gative threshold. re level of the associat	e procedure. Ted value is an estimated quantity. Ime.
Control Sa Duplicates Spikes/For Standard 2 Qualifier B H L U	mples Verifies the accuracy of the method Verifies the precision of the instrument field Matrix Determines sample matrix interferent Verifies the validity of the calibration (Coust) Analytic concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	, including the prep ant and/or method, noes, if any. PQL. The associat n immediate hold to gative threshold. re level of the associat	e procedure. Ted value is an estimated quantity. Ime.
Control Sa Duplicates Spikes/For Standard 22 Qualifier B H L	mples Verifies the accuracy of the method Verifies the precision of the instrument field Matrix Determines sample matrix interferent Verifies the validity of the calibration (Coust) Analytic concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or	, including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the associan the sample detect	e procedure. led value is an estimated quantity. lime. lociated value. loon limit.
Control Sa Duplicates Spikes/For Standard 22 Qualifier 8 H L U U sthod Refer (1)	In the associated value is either the sample quantitation limit or the second values of Weren and the sample matrix interference of the second value is either the value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or the associated value is either the sample quantitation limit or the second value is for Chemical Analysis of Water the the field test of Water analysis of	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the associan the sample detect and Wastes, Marc	e procedure. ted value is an estimated quantity. time. ticated value. tion limit.
Control Sa Duplicates Spikes/For Standard 22 Qualifier 8 H L U U sthod Refer (1) (2)	mples Verifies the accuracy of the method Verifies the precision of the instrument field Matrix Determines sample matrix interferent Verifies the validity of the calibration s (Guest) Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marc nic Substances in	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1993. Environmental Samples, August 1993.
Control Sa Duplicates Spikes/For Standard 22 Qualifier 8 H L U U sthod Refer (1) (2) (3)	Imples Verifies the accuracy of the method Verifies the precision of the instrument tifled Matrix Infection Determines sample matrix interferent Verifies the validity of the calibration Infection Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or EPA 600/R-93-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorga EPA 600/R-94-111. Methods for the Determination of Metals	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marc nic Substances in	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1993. Environmental Samples, August 1993.
Control Sa Duplicates Spikes/For Standard 22 Qualifier 8 H L U U sthod Refer (1) (2)	mples Verifies the accuracy of the method Verifies the precision of the instrument field Matrix Determines sample matrix interference Verifies the validity of the calibration (Goost) Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgan	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marc nic Substances in in Environmental in	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1993. Environmental Samples, August 1993.
Control Sa Duplicates Spikes/For Standard 22 Qualifier B H L U U athod Refer (1) (2) (3) (4) (5)	Imples Verifies the accuracy of the method Verifies the precision of the instrument tifled Matrix Infection Determines sample matrix interferent Verifies the validity of the calibration Infection Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined ne The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorga EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste.	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marc nic Substances in in Environmental in	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1993. Environmental Samples, August 1993.
Control Sa Duplicates Spikes/For Standard Z Qualifier B H L U U athod Refer (1) (2) (3) (4) (5)	Imples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Determines sample matrix interference Verifies the validity of the calibration (Coust) Analytic concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined me The material was analyzed for, but was not detected above th The associated value is either the sample quantitation limit or ences EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-100. EPA 600/R-94-111. Methods for the Determination of Inorga EPA 600/R-94-111. EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew	including the prep ent and/or method. noes, if any. PQL. The associat n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marconic Substances in in Environmental ator.	e procedure. Ied value is an estimated quantity. Ime. Iociated value. Ion limit. In 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Control Sa Duplicates Spikes/For Standard Z Qualifier B H L U U athod Refer (1) (2) (3) (4) (5) ommonts (1)	Imples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Determines sample matrix interference Verifies the validity of the calibration Implementation Implementatinter Implementation	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marconic Substances in in Environmental ator.	e procedure. Ited value is an estimated quantity. Itme, Ited value. Iten limit. Iten limit. Iten 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Control Sa Duplicates Spikes/For Standard 2 Qualifier B H L U U sthod Refer (1) (2) (3) (4) (5) omments (1) (2)	Imples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Determines sample matrix interferent Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration of the instrume The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or Image: EPA 600/R-93-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Image EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soli, Sludge, and Plant matrices for Image: analyses are results	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marconic Substances in in Environmental ator.	e procedure. Ited value is an estimated quantity. Itme, Ited value. Iten limit. Iten limit. Iten 1983. Environmental Samples, August 1993. Samples - Supplement I, May 1994.
Control Sa Duplicates Spikes/For Standard 2 Qualifier B H L U U sthod Refer (1) (2) (3) (4) (5) ormnents (1) (2) (3)	mples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Education Determines sample matrix interferent Verifies the validity of the calibration Education Analytic concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined me The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorga EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soli, Sludge, and Plant matrices for Inorganic analyses are re Animal matrices for Inorganic analyses are reported on an "a	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marconic Substances in in Environmental ator.	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1903. Environmental Samples, August 1903. Samples - Supplement I, May 1994. slues are used in the calculations. eight basis.
Control Sa Duplicates Spikes/For Standard 2 Qualifier B H L U U sthod Refer (1) (2) (3) (4) (5) omments (1) (2)	mples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Determines sample matrix interference Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration of the instrume The material was analyzed for, but was not detected above the The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or ences EPA 600/R-93-020. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soli, Sludge, and Plant matrices for Inorganic analyses are re Animal matrices for Inorganic analyses are reported on an "a An asterisk in the "XQ" column indicates there is an extended	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marconic Substances in in Environmental ator.	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1903. Environmental Samples, August 1903. Samples - Supplement I, May 1994. slues are used in the calculations. eight basis.
Control Sa Duplicates Spikes/For Standard 2 Qualifier B H L U U sthod Refer (1) (2) (3) (4) (5) ormsents (1) (2) (3) (4) (3) (4)	mples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Education Determines sample matrix interferent Verifies the validity of the calibration Education Analytic concentration detected at a value between MDL and Analysis exceeded method hold time. pH is a field test with a Target analyte response was below the laboratory defined me The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or EPA 600/R-93-100. Methods for Chemical Analysis of Water EPA 600/R-93-100. Methods for the Determination of Inorga EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soli, Sludge, and Plant matrices for Inorganic analyses are re Animal matrices for Inorganic analyses are reported on an "a	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marco nic Substances in in Environmental ator.	e procedure. ted value is an estimated quantity. time. bolated value. tion limit. th 1903. Environmental Samples, August 1903. Samples - Supplement I, May 1994. elues are used in the calculations. eight basis. ertification qualifier
Control Sa Duplicates Spikes/For Standard 2 Qualifier B H L U U sthod Refer (1) (2) (3) (4) (5) ormnents (1) (2) (3)	Imples Verifies the accuracy of the method Verifies the precision of the instrume tifled Matrix Determines sample matrix interferent Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration Image: Count of the instrume Verifies the validity of the calibration of the instrume The material was analyzed for, but was not detected above the The associated value is either the sample quantitation limit or Proces Image: Count of the instrume Verifies the validity of the calibration of Metals EPA 600/R-93-100. Methods for the Determination of Inorgan EPA 600/R-94-111. Methods for the Determination of Metals EPA SW-846. Test Methods for Evaluating Solid Waste. Standard Methods for the Examination of Water and Wastew QC results calculated from raw data. Results may vary slight Soli, Sludge, and Plant matrices for Inorganic analyses are re Animal matrices for Inorganic analyses are reported on an "a An asterisk in the "XQ" column indicates there is an extended associated with the result.	including the prep ent and/or method. noes, if any. PQL. The associan n immediate hold to gative threshold. the level of the association the sample detect and Wastes, Marco nic Substances in in Environmental ator.	e procedure. ted value is an estimated quantity. time. tociated value. tion limit. th 1903. Environmental Samples, August 1903. Samples - Supplement I, May 1994. elues are used in the calculations. eight basis. ertification qualifier

REP001.03.15.02

Kleinfelder, Inc.

ACZ Project ID: L45886

Antimony, total			M200.8 IC				-		-				
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.02		.01952	mg/L	98	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgit		-0.0012	0.0012			
WG453142LRB	LRB	08/06/18 13:23				U	mg.C.		-0.00088	0.00058			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.01		.01032	mgit	103	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS10XW	.1	U	.1052	mg.C.	105	70	130			
L45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.1	U	.1051	mgit	105	70	130	0	20	
Arsenic, total			M200.8 IC	P-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV.	08/06/18 13:19	MS180730-1	.05		.04645	mgit	93	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgit		-0.0006	0.0006			
WG453142LRB	LRB	08/06/18 13:23				U	mgL		-0.00044	0.00044			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.0501		.04853	mgt.	97	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS100W	.501	U	.4822	mgL	96	70	130			
L45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.501	U	.4902	ngt	98	70	130	2	20	
Barium, total			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216										CARD CALCOD			
WG453216ICV	ICV	08/03/18 22:12	1180626-2	2		1.953	mg1.	98	95	105			
WG453216ICB	ICB	08/03/18 22:18		-		U	mgL		-0.009	0.009			
WG453040LRB	LRB	08/03/18 22:31				U	mgt		-0.0066	0.0066			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.5025		.4975	mgL	99	85	115			
L45886-03LFM	LEM	08/03/18 23:36	II5XWATER	2.5	2.43	5.025	rom	104	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.5	2.43	5.01	mgt	103	70	130	0	20	
Beryllium, total			M200.8 IC	P-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453313								A COLORED & LOUISING					
WG453313ICV	ICV	08/06/18 22:32	MS180730-1	.05		.04621	mgL	92	90	110			
WG453313ICB	ICB	08/06/18 22:35		100		U	mgt		-0.00015	0.00015			
WG453142LRB	LRB	08/06/18 22:38				U	mgt		-0.00011	0.00011			
WG453142LFB	LFB	08/06/18 22:41	MS180621-2	.05035		.04878	mgt	97	85	115			
L45881-01LFM	LFM	08/06/18 23:16	MS10XW	.5035	.0062	.5135	mgt	101	70	130			
L45881-01LFMD	LFMD	08/06/18 23:19	MS10XW	.5035	.0062	.5157	mgit	101	70	130	0	20	
Cadmium, total			M200.8 IC	P-MS									
ACZID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.04825	mgit	97	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgit		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U	mg/L		-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.05005		.04994	mg/L	100	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS10XW	.5005	.231	.7125	mg4.	96	70	130			
	LFMD	08/06/18 14:08	MS10XW	.5005	.231	.7219							

Kleinfelder, Inc.

ACZ Project ID: L45886

Calcium, dissol	hev		M200.7 I	CP									
ACZ ID	Type	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268				and the second second			No. of Concession, Name						all sectors
WG453268ICV	ICV	08/06/18 12:38	180727-1	100		100.38	mgit	100	95	105			
WG453268ICB	ICB	08/06/18 12:45				U	mg.t.		-0.3	0.3			
WG453268LFB	LFB	08/06/18 12:58	II180731-2	68.22088		70.98	mgit	104	85	115			
L45886-04AS	AS	08/06/18 13:59	II180731-2	341.1044	38.6	393.45	mgit	104	85	115		20	
L45886-04ASD	ASD	08/06/18 14:03	■180731-2	341.1044	38.6	395.95	mgit	105	85	115	1	20	
Chromium, total			M200.7 I										
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV.	08/03/18 22:12	■180626-2	2		1.98	mgit	99	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mgit		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mgit		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	∎180731-2	.5		.505	mg.t.	101	85	115			
L45886-03LFM	LFM	08/03/18 23:36	ISXWATER	2.505	.36	2.879	mg.t.	101	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	II5XWATER	2.505	.36	2.894	mgit	101	70	130	1	20	
Cobalt, total			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	180526-2	2.002		1.909	mg.t.	96	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mgit		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mg.t.		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	■180731-2	.501		.494	mgit	99	85	115			
L45886-03LFM	LFM	08/03/18 23:36	ISXWATER	2.5	.2	2.495	mg/L	92	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	ISXWATER	2.5	.2	2.504	mg.l.	92	70	130	0	20	
Copper, total			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216							International Statements						
WG453216ICV	ICV	08/03/18 22:12	1180628-2	2		1.954	mg/L	98	95	105			
WG453216ICB	ICB	08/03/18 22:18		-					-0.03	0.03			
						U	mag/L						
	IRB					U	mg/L mg/L			0.022			
WG453040LRB	LRB	08/03/18 22:31	1180731-2	4975		U	mg4.	100	-0.022	0.022			
WG453040LRB WG453040LFB	LFB	08/03/18 22:31 08/03/18 22:35	II180731-2	.4975	34	U .497	mgA. mgA.	100	-0.022 85	115			
WG453040LRB WG453040LFB L45886-03LFM		08/03/18 22:31	II180731-2 II5XWATER II5XWATER	.4975 2.5 2.5	.34 .34	U	mg4.	100 95 97	-0.022		1	20	
WG453040LRB WG453040LFB L45886-03LFM L45886-03LFMD	LFB LFM	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36	II5XWATER II5XWATER	2.5 2.5		U .497 2.726	mgA. mgA. mgA.	95	-0.022 85 70	115 130	1	20	
WG453040LRB WG453040LFB L45886-03LFM L45886-03LFMD Iron, total	LFB LFM LFMD	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36 08/03/18 23:40	II5XWATER	2.5 2.5 CP		U .497 2.726	ngA ngA ngA ngA	95	-0.022 85 70	115 130		20 Limit	Qual
WG453040LRB WG453040LFB L45886-03LFM L45888-03LFMD Iron, total ACZ ID	LFB LFM	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36	II5XWATER II5XWATER M200.7 I	2.5 2.5	.34	U .497 2.726 2.755	ngA ngA ngA ngA	95 97	-0.022 85 70 70	115 130 130			Qual
WG453040LRB WG453040LFB L45886-03LFM L45886-03LFMD Iron, total ACZ ID WG453216	LFB LFM LFMD	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36 08/03/18 23:40 Analyzed	II5XWATER II5XWATER M200.7 I PCN/SCN	25 25 CP QC	.34	U .497 2.726 2.755 Found	mgA mgA mgA mgA Units	95 97 Rec%	-0.022 85 70 70	115 130 130 Upper			Qual
WG453040LRB WG453040LFB L45886-03LFM L45886-03LFMD Iron, total ACZ ID WG453216 WG453216ICV	LFB LFM LFMD Type	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36 08/03/18 23:40 Analyzed 08/03/18 22:12	II5XWATER II5XWATER M200.7 I	2.5 2.5 CP	.34	U .497 2.725 2.755 Found 1.906	mgA mgA mgA mgA Units	95 97	-0.022 85 70 70 70 Lower	115 130 130 Upper			Qual
WG453040LRB WG453040LFB L45886-03LFM L45886-03LFMD Iron, total AG21D WG453216 WG453216ICV WG453216ICV WG453216ICB	LFB LFM LFMD Type ICV IC8	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36 08/03/18 23:40 Analyzed 08/03/18 22:12 08/03/18 22:12	II5XWATER II5XWATER M200.7 I PCN/SCN	25 25 CP QC	.34	U .497 2.726 2.755 Found 1.906 U	ngA, ngA, ngA, ngA Units ngA, ngA,	95 97 Rec%	-0.022 85 70 70 70 Lower	115 130 130 Upper 105 0.06			Qual
WG453040LRB WG453040LFB L45886-03LFM Iton, total AG210 WG453216 WG453216ICV WG453216IC8 WG453040LRB	LFB LFM LFMD Type ICV ICB LRB	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36 08/03/18 23:40 Analyzed 08/03/18 22:12 08/03/18 22:18 08/03/18 22:31	II5XWATER II5XWATER M200.7 II PCN/SCN II180626-2	2.5 2.5 CP QC 2	.34	U .497 2.726 2.755 Found 1.906 U U U	ngA ngA ngA ngA ngA ngA ngA ngA	95 97 Rec% 95	-0.022 85 70 70 70 Lower 95 -0.05 -0.044	115 130 130 Upper 105 0.06 0.044			Qual
WG453040LRB WG453040LFB L45886-03LFM L45888-03LFMD Iron, total ACZID	LFB LFM LFMD Type ICV IC8	08/03/18 22:31 08/03/18 22:35 08/03/18 23:36 08/03/18 23:40 Analyzed 08/03/18 22:12 08/03/18 22:12	II5XWATER II5XWATER M200.7 I PCN/SCN	25 25 CP QC	.34	U .497 2.726 2.755 Found 1.906 U	ngA, ngA, ngA, ngA Units ngA, ngA,	95 97 Rec%	-0.022 85 70 70 70 Lower	115 130 130 Upper 105 0.06			Qual

Kleinfelder, Inc.

ACZ Project ID: L45886

36/18 13:19 MS 36/18 13:21 36/18 13:23 36/18 13:25 MS 36/18 13:25 36/18 13:25 MS 36/18 13:25 MS 36/18 13:25 MS 36/18 14:06 MS 36/18 14:06 MS 36/18 14:06 MS 36/18 12:38 II14 36/18 12:35 II14 36/18 12:35 II14 36/18 12:35 II14 36/18 12:38 II14 36/18 12:38 II14 36/18 12:38 II14 36/18 12:45 36/18 12:45		QC 100 50.05667 250.28335 250.28335 250.28335 27 QC 2 2 .5005	Sample .136 .136 Sample 488 488 Sample	Found .04895 U .0487 .6309 .6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982 U	mgL mgL mgL mgL mgL mgL mgL mgL mgL mgL	Rec% 98 98 100 102 Rec% 101 101 102 105 Rec% 100	Lower 90 -0.0003 -0.00022 85 70 70 70 Lower 95 -0.6 85 85 85 85 85 85	Upper 110 0.0003 0.00022 115 130 130 Upper 105 0.6 115 115 115 115 115 115 115 11	RPD 2 RPD 1 RPD	20	Qual
A6/18 13:21 J6/18 13:23 J6/18 13:25 MS J6/18 14:06 MS J6/18 14:08 MS J6/18 12:38 II1 J6/18 12:45 II1 J6/18 12:58 II1 J6/18 12:58 II1 J6/18 12:38 II1	IS 180621-2 IS 10XW IS 10XW M200.7 IC CNISCN 180727-1 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180727-1 180731-2	.0496 .496 .496 .496 .00 00 100 50.05667 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335	.136 Sample 488 488	U U .0487 .6309 .6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982	mgil, mgil, mgil, mgil, mgil, mgil, mgil, mgil, mgil,	98 100 102 Rec% 101 101 102 105 Rec%	-0.0003 -0.00022 85 70 70 70 Lower 95 -0.6 85 85 85 85 85	0.0003 0.00022 115 130 130 Upper 105 0.6 115 115 115 115	RPD	Limit 20	
A6/18 13:21 J6/18 13:23 J6/18 13:25 MS J6/18 14:06 MS J6/18 14:08 MS J6/18 12:38 II1 J6/18 12:45 II1 J6/18 12:58 II1 J6/18 12:58 II1 J6/18 12:38 II1	IS 180621-2 IS 10XW IS 10XW M200.7 IC CNISCN 180727-1 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180727-1 180731-2	.0496 .496 .496 .496 .00 00 100 50.05667 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335 250.28335	.136 Sample 488 488	U U .0487 .6309 .6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982	mgil, mgil, mgil, mgil, mgil, mgil, mgil, mgil, mgil,	98 100 102 Rec% 101 101 102 105 Rec%	-0.0003 -0.00022 85 70 70 70 Lower 95 -0.6 85 85 85 85 85	0.0003 0.00022 115 130 130 Upper 105 0.6 115 115 115 115	RPD	Limit 20	
16/18 13:23 16/18 13:25 MS 16/18 13:25 MS 16/18 13:25 MS 16/18 14:06 MS 16/18 14:08 MS 16/18 14:08 MS 16/18 12:38 II1 16/18 12:45 II1 16/18 12:58 II1 16/18 13:59 II1 16/18 14:03 II1 16/18 12:38 II1	IS10XW IS10XW M200.7 IC CNISCN 180727-1 180731-2 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180727-1	.496 .496 .496 .496 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.136 Sample 488 488	U .0487 .6309 .6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982	mgL mgL mgL mgL mgL mgL mgL mgL mgL mgL	100 102 Rec% 101 101 102 105 Rec%	-0.00022 85 70 70 20 Lower 95 -0.6 85 85 85 85 85	0.00022 115 130 130 Upper 105 0.6 115 115 115 115	RPD	Limit 20	
A6/18 13:25 MS A6/18 14:06 MS A6/18 14:06 MS A6/18 14:06 MS A6/18 14:06 MS A6/18 14:08 MS A6/18 12:38 II1 A6/18 12:35 II1 A6/18 12:55 II1 A6/18 12:58 II1 A6/18 12:38 II1	IS10XW IS10XW M200.7 IC CNISCN 180727-1 180731-2 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180727-1	.496 .496 .496 .496 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.136 Sample 488 488	.0487 .6309 .6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982	mgL mgL mgL mgL mgL mgL mgL mgL mgL mgL	100 102 Rec% 101 101 102 105 Rec%	85 70 70 Lower 95 -0.6 85 85 85 85 85	115 130 130 Upper 105 0.6 115 115 115 115	RPD	Limit 20	
Morris 14:06 MS 66/18 14:08 MS 66/18 14:08 MS 66/18 12:38 II14 66/18 12:45 II14 66/18 12:45 II14 66/18 12:58 II14 66/18 12:58 II14 66/18 12:58 II14 66/18 12:58 II14 66/18 12:38 II14	IS10XW IS10XW M200.7 IC CNISCN 180727-1 180731-2 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180727-1	.496 .496 .496 .496 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	.136 Sample 488 488	.6309 .6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982	mgL mgL Units mgL mgL mgL Units mgL	100 102 Rec% 101 101 102 105 Rec%	70 70 Lower 95 -0.6 85 85 85 85 85	130 130 Upper 105 0.6 115 115 115 Upper	RPD	Limit 20	
b6/18 14:08 MS b6/18 14:08 PC b6/18 12:38 II12 b6/18 12:45 II12 b6/18 12:58 II12 b6/18 12:58 II12 b6/18 13:59 II12 b6/18 13:59 II12 b6/18 12:38 II12	IS 10XW M200.7 IC CNISCN 180727-1 180731-2 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180731-2	.496 QC 100 50.05667 250.28335 250.28355 250.28355 250.28355 250.28355 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.28555 250.285555 250.285555 250.285555 250.285555 250.285555 250.285555 250.2855555 250.2855555 250.2855555 250.285555555555555555555555555555555555	.136 Sample 488 488	.6406 Found 101.38 U 50.45 743.5 751.5 Found 1.9982	mgt. Units mgt. mgt. mgt. Units mgt.	102 Rec% 101 101 102 105 Rec%	70 Lower 95 -0.6 85 85 85 85 85	130 Upper 105 0.6 115 115 115 Upper	RPD	Limit 20	
Nyzed PC 06/18 12:38 II14 06/18 12:45 06/18 12:58 II14 06/18 13:59 II14 06/18 13:59 II14 06/18 12:58 II14 06/18 12:38 II14 06/18 12:45 06/18 12:58 II14	M200.7 IC CN/SCN 180727-1 180731-2 180731-2 180731-2 M200.7 IC CN/SCN 180727-1 180731-2	2 0 0 0 0 0 0 0 2 0 2 0 2 0 0 0 2 0 0 0 0 2 0	Sample 488 488	Found 101.38 U 50.45 743.5 751.5 Found 1.9982	Units mgL mgL mgL mgL Units mgL	Rec% 101 101 102 105 Rec%	Lower 95 -0.6 85 85 85 85	Upper 105 0.6 115 115 115 115	RPD	Limit 20	
Nyzed PC 6/18 12:38 II1 6/18 12:45 06/18 12:58 II1 06/18 12:58 II1 06/18 12:58 II1 Nyzed PC 06/18 12:38 II1 06/18 12:45 06/18 12:58 II1	CNISCN 180727-1 180731-2 180731-2 180731-2 M200.7 IC CNISCN 180727-1 180731-2	QC 100 50.05667 250.28335 250.28335 250.28335 27 QC 2 2 .5005	488 488	101.38 U 50.45 743.5 751.5 Found	mgit mgit mgit mgit Units mgit	101 101 102 105 Rec%	95 -0.6 85 85 85	105 0.6 115 115 115 Upper	1	20	
36/18 12:38 II1 36/18 12:45 11 36/18 12:58 II1 36/18 13:59 II1 36/18 13:59 II1 36/18 13:59 II1 36/18 12:38 II1 36/18 12:38 II1 36/18 12:38 II1 36/18 12:38 II1	180727-1 180731-2 180731-2 180731-2 M200.7 IC GNISCN 180727-1 180731-2	100 50.05667 250.28335 250.28335 29 0.0 2 2 5005	488 488	101.38 U 50.45 743.5 751.5 Found	mgit mgit mgit mgit Units mgit	101 101 102 105 Rec%	95 -0.6 85 85 85	105 0.6 115 115 115 Upper	1	20	
36/18 12:45 36/18 12:58 II 1: 36/18 13:59 II 1: 36/18 13:59 II 1: 36/18 14:03 II 1: 36/18 12:38 II 1: 36/18 12:38 II 1: 36/18 12:38 II 1: 36/18 12:45 36/18	180731-2 180731-2 180731-2 M200.7 IC GNISCN 180727-1 180731-2	50.05667 250.28335 250.28335 2P QC 2 5005	488	U 50.45 743.5 751.5 Found 1.9982	mgiL mgiL mgiL Units mgiL	101 102 105 Rec%	-0.6 85 85 85	0.6 115 115 115 Upper			Qual
36/18 12:45 36/18 12:58 II 1: 36/18 13:59 II 1: 36/18 13:59 II 1: 36/18 14:03 II 1: 36/18 12:38 II 1: 36/18 12:38 II 1: 36/18 12:38 II 1: 36/18 12:45 36/18	180731-2 180731-2 180731-2 M200.7 IC GNISCN 180727-1 180731-2	50.05667 250.28335 250.28335 2P QC 2 5005	488	U 50.45 743.5 751.5 Found 1.9982	mgiL mgiL mgiL Units mgiL	101 102 105 Rec%	-0.6 85 85 85	0.6 115 115 115 Upper			Qual
06/18 12:58 II 1 06/18 13:59 II 1 06/18 13:59 II 1 06/18 14:03 II 1 llyzod PC 06/18 12:38 II 1 06/18 12:38 II 1 06/18 12:38 II 1 06/18 12:38 II 1	180731-2 180731-2 M200.7 IC CNISCN 180727-1 180731-2	250.28335 250.28335 29 00 2 2 .5005	488	50.45 743.5 751.5 Found	mgiL mgiL mgiL Units mgiL	102 105 Rec%	85 85 85 Lower	115 115 115 Upper			Qual
06/18 12:58 II 1 06/18 13:59 II 1 06/18 13:59 II 1 06/18 14:03 II 1 llyzod PC 06/18 12:38 II 1 06/18 12:38 II 1 06/18 12:38 II 1 06/18 12:38 II 1	180731-2 180731-2 M200.7 IC CNISCN 180727-1 180731-2	250.28335 250.28335 29 00 2 2 .5005	488	50.45 743.5 751.5 Found	mgiL mgiL Units mgiL	102 105 Rec%	85 85 Lower	115 115 Upper			Qual
18/18 13:59 II1/ 16/18 14:03 II1/ 1/yzod PC 16/18 12:38 II1/ 16/18 12:38 II1/ 16/18 12:45 11/	180731-2 180731-2 M200.7 IC CNISCN 180727-1 180731-2	250.28335 250.28335 29 00 2 2 .5005	488	743.5 751.5 Found 1.9982	mgit. Units mgit.	102 105 Rec%	85 Lower	115 115 Upper			Qual
06/18 14:03 11 Nyzed PC 06/18 12:38 11 06/18 12:45 06/18 12:58 11	180731-2 M200.7 IC GNISCN 180727-1 180731-2	2 2 .5005		751.5 Found 1.9982	Units mgt.	105 Rec%	Lower	Upper			Qual
06/18 12:38 II 1 06/18 12:45 06/18 12:58 II 1	CN/SCN 180727-1 180731-2	QC 2 .5005	Sample	1.9982	mgL				RPD	Limit	Qual
06/18 12:38 II 1 06/18 12:45 06/18 12:58 II 1	180727-1 180731-2	2 .5005	Sample	1.9982	mgL				RPD	Limit	Qual
06/18 12:45 06/18 12:58 II1	180731-2	.5005				100	95	105			
06/18 12:45 06/18 12:58 II1	180731-2	.5005				100	95	105			
06/18 12:45 06/18 12:58 II1	180731-2	.5005		U	mal						
06/18 12:58 11				-	mgit		-0.015	0.015			
				.5046	mgt.	101	85	115			
		2.5025	.04	2.556	mgit	101	85	115			
06/18 14:03 II1	180731-2	2.5025	.04	2.559	mg.t.	101	85	115	0	20	
	M200.7 IC	P									
ilyzed PC	CN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
3/18 22:12	180626-2	2.004		1.9538	mg#L	97	95	105			
3/18 22:18				U	mgit		-0.024	0.024			
3/18 22:31				Ŭ	mg/L		-0.0176	0.0176			
	180731-2	.5015		.5073	mg.t.	101	85	115			
			31								
		2.5	.31	2.673	mg.t.	95	70	130	1	20	
	M200.7 IC	P									
lyzed PC		QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
STATE OF THE OWNER OF THE OWNER	CONTRACTOR OF THE OWNER.		And a local division of				and the second data			No. of Lot of Lot	
W/18 12-28 III	180727-1	20		20.28	mañ.	101	05	105			
011012.00 111	100121-1	-									
		99 72924				104					
06/18 12:45	190731-2	49.12034				104	05	115			
06/18 12:45 06/18 12:58 II1		408 8487	67	4.042 K	ma.6	100	95	448			
	V18 23:36 II V18 23:40 II V286d P V18 12:38 II V18 12:45	V18 23:36 II5XWATER V18 23:40 II5XWATER M200.7 IC yzed PCN/SCN V18 12:38 II180727-1 V18 12:45	V18 23:36 II5XWATER 2.5 V18 23:40 II5XWATER 2.5 M200.7 ICP yzed PCN/SCN QC V18 12:38 II180727-1 20 V18 12:45	V18 23:36 II5XWATER 2.5 .31 V18 23:40 I5XWATER 2.5 .31 M200.7 ICP yzed PCN/SCN QC Sample V18 12:38 II180727-1 20 V18 12:58 II180731-2 99.72934	V18 23:36 II5XWATER 2.5 .31 2.69 V18 23:40 II5XWATER 2.5 .31 2.673 M200.7 ICP yzed PCN/SCN QC Sample Found V18 12:38 II180727-1 20 20.28 V18 12:45 U	V18 23:36 II5XWATER 2.5 .31 2.69 mg/L V18 23:40 II5XWATER 2.5 .31 2.673 mg/L M200.7 ICP yzed PCN/SCN QC Sample Found Units V18 12:38 II180727-1 20 20.28 mg/L V18 12:45 U mg/L	V18 23:36 II5XWATER 2.5 .31 2.69 mpl. 95 V18 23:40 II5XWATER 2.5 .31 2.673 mpl. 95 M200.7 ICP M200.7 ICP CC Sample Found Units Rec% V18 12:38 II180727-1 20 20.28 mpl. 101 V18 12:35 U mpl. U mpl. 101	V18 23:36 II5XWATER 2.5 .31 2.69 mg/L 95 70 V18 23:30 II5XWATER 2.5 .31 2.673 mg/L 95 70 M200.7 ICP M200.7 ICP	V18 23:36 IISXWATER 2.6 .31 2.69 mg/L 96 70 130 V18 23:40 IISXWATER 2.5 .31 2.673 mg/L 95 70 130 M200.7 ICP M200.7 ICP CC Sample Found Units Rec% Lower Upper V18 12:38 II180727-1 20 20.28 mg/L 101 95 105 V18 12:38 II180727-1 20 20.28 mg/L -0.6 0.6 V18 12:38 II180731-2 99.72934 104.1 mg/L 104 85 115	V18 23:36 IISXWATER 2.5 .31 2.69 mg/L 95 70 130 V18 23:40 IISXWATER 2.5 .31 2.673 mg/L 95 70 130 1 M200.7 ICP	V18 23:36 IISXWATER 2.5 .31 2.69 mplL 95 70 130 V18 23:40 IISXWATER 2.5 .31 2.673 mplL 95 70 130 1 20 M200.7 ICP

Kleinfelder, Inc.

ACZ Project ID: L45886

Selenium, total			M200.8 I	CP-MS									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453278													
WG453278ICV	ICV	08/05/18 13:19	MS180730-1	.05		.0481	mg/L	96	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mgit		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U	mgt.		-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.05005		.04799	mgit.	96	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS10XW	.5005	U	.5023	mg.t.	100	70	130			
L45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.5005	U	.5038	mg.t.	101	70	130	0	20	
Silver, total			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV.	08/03/18 22:12	11180626-2	1.001		1.001	mgt.	100	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mgt		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mg.t.		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	1180731-2	.5		.491	mgit	98	85	115			
L45886-03LFM	LFM	08/03/18 23:36	II5XWATER	2.5025	U	2.338	mgt	93	70	130			
L45885-03LFMD	LEND	08/03/18 23:40	II5XWATER	2.5025	U	2.362	mgit	94	70	130	1	20	
Sodium, dissolv	red		M200.7 K	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453268													
WG453268ICV	ICV	08/05/18 12:38	11180727-1	100		101.63	mgit	102	95	105			
WG453268ICB	ICB	08/06/18 12:45	1100/2/11	100		U	mgt,	102	-0.6	0.6			
WG453268LFB	LFB	08/06/18 12:58	1180731-2	100.6711		104.5	mgit	104	85	115			
L45886-04AS	AS	08/06/18 13:59	1180731-2	503.3555	4100	4616.5	mg.t.	103	85	115			
L45886-04ASD	ASD	08/06/18 14:03	1180731-2	503.3555	4100	4640.5	mail	107	85	115	1	20	
			M200.8 K										
Thallium, total	Tunn	Amahmad	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
ACZ ID	Туре	Analyzed	PUNISUN	uc	sample	Pound	Unites	Necre	Lower	opper	KPU	CITIK	GUAI
WG453278													
WG453278ICV	ICV	08/06/18 13:19	MS180730-1	.05		.0491	mg/L	98	90	110			
WG453278ICB	ICB	08/06/18 13:21				U	mg/L		-0.0003	0.0003			
WG453142LRB	LRB	08/06/18 13:23				U	mg/L		-0.00022	0.00022			
WG453142LFB	LFB	08/06/18 13:25	MS180621-2	.0501		.04821	mg/L	96	85	115			
L45881-01LFM	LFM	08/06/18 14:06	MS10XW	.501	.002	.4923	mg/L	98	70	130			
L45881-01LFMD	LFMD	08/06/18 14:08	MS10XW	.501	.002	.5003	mg/L	99	70	130	2	20	
Vanadium, total			M200.7 I	CP									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	II180626-2	2		2.0002	mg/L	100	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mg/L		-0.015	0.015			
WG453040LRB	LRB	08/03/18 22:31				υ	mg/L		-0.011	0.011			
WG453040LFB	LFB	08/03/18 22:35	∎180731-2	.501		.4981	mg/L	99	85	115			
L45886-03LFM	LFM	08/03/18 23:36	ISXWATER	2.5	.74	3.445	mg/L	108	70	130			
		070000000000000000000000000000000000000											

Kleinfelder, Inc.

ACZ Project ID: L45886

Zinc, total			M200.7 IC	P									
ACZ ID	Туре	Analyzed	PCN/SCN	QC	Sample	Found	Units	Rec%	Lower	Upper	RPD	Limit	Qual
WG453216													
WG453216ICV	ICV	08/03/18 22:12	1180626-2	2		2.011	mg/L	101	95	105			
WG453216ICB	ICB	08/03/18 22:18				U	mg/L		-0.03	0.03			
WG453040LRB	LRB	08/03/18 22:31				U	mg/L		-0.022	0.022			
WG453040LFB	LFB	08/03/18 22:35	II180731-2	.4942		.523	mg/L	106	85	115			
L45886-03LFM	LFM	08/03/18 23:36	ISXWATER	2.5025	1.44	3.998	mg/L	102	70	130			
L45886-03LFMD	LFMD	08/03/18 23:40	ISXWATER	2.5025	1.44	3.994	mg/L	102	70	130	0	20	

Inorganic Extended Qualifier Report

ACZ Project ID: L45886

ACZ ID	WORKNUM	PARAMETER	METHOD	QUAL	DESCRIPTION
L45886-01	WG453216	Iron, total	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453268	Manganese, dissolved	M200.7 ICP	DA	Sample required dilution due to reactivity.
			M200.7 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
L45886-02	WG453216	Iron, total	M200.7 ICP	М3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
L45886-03	WG453216	Iron, total	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
L45886-04	WG453216	Iron, total	M200.7 ICP	M3	The spike recovery value is unusable since the analyte concentration in the sample is disproportionate to the spike level. The recovery of the associated control sample (LCS or LFB) was acceptable.
	WG453268	Manganese, dissolved	M200.7 ICP	DA	Sample required dilution due to reactivity.
			M200.7 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453040	Total Hot Plate Digestion	M200.2 ICP	DA	Sample required dilution due to reactivity.
			M200.2 ICP	DD	Sample required dilution due to matrix color or odor.
	WG453142		M200.2 ICP-MS	DF	Sample required dilution due to high sediment.
	WG453040		M200.2 ICP	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.
	WG453142		M200.2 ICP-MS	Q5	Sample received with inadequate chemical preservation. Additional preservation performed by the laboratory.

REPAD.15.06.05.01

ACZ Project ID: L45886

No certification qualifiers associated with this analysis

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493	CONTRACTOR OF THE OWNER.	ample leceip	
	CZ Project ID: bate Received: Received By:	07/27/20	L45886 18 12:36
	Date Printed:	7/	30/2018
Receipt Verification	YES	NO	NA
1) Is a foreign soil permit included for applicable samples?	123		X
2) Is the Chain of Custody form or other directive shipping papers present?	X		No.
3) Does this project require special handling procedures such as CLP protocol?		X	1000
4) Are any samples NRC licensable material?			X
5) If samples are received past hold time, proceed with requested short hold time analy	ses? X		NOTES:
6) Is the Chain of Custody form complete and accurate?	x		
7) Were any changes made to the Chain of Custody form prior to ACZ receiving the sar	nples?	x	10.4
Samples/Containers			NEWS R
	YES	NO	NA
8) Are all containers intact and with no leaks?	X		
9) Are all labels on containers and are they intact and legible?	X		S.S. TAN
10) Do the sample labels and Chain of Custody form match for Sample ID, Date, and Ti	me? X		
11) For preserved bottle types, was the pH checked and within limits? 1		X	
L45886-01 Container B2015616 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang			
L45886-02 Container B2015618 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang			
L45886-03 Container B2015620 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang			
L45886-04 Container B2015622 (RED PC): Added 2 mls nitric to the sub-sample to adjust the pH to the appropriate rang			
12) Is there sufficient sample volume to perform all requested work?	X		The second
13) Is the custody seal intact on all containers?			X
14) Are samples that require zero headspace acceptable?			X
15) Are all sample containers appropriate for analytical requirements?	X		and the
16) Is there an Hg-1631 trip blank present?			X
17) Is there a VOA trip blank present?			X
18) Were all samples received within hold time?	X		
	NA indi	cates Not A	pplicable
		NAME OF TAXABLE PARTY.	Contraction Automation

Temp Criteria(°C) Rad(µR/Hr) Custody Seal Intact?

REPAD LPII 2012-03

Shipping Containers

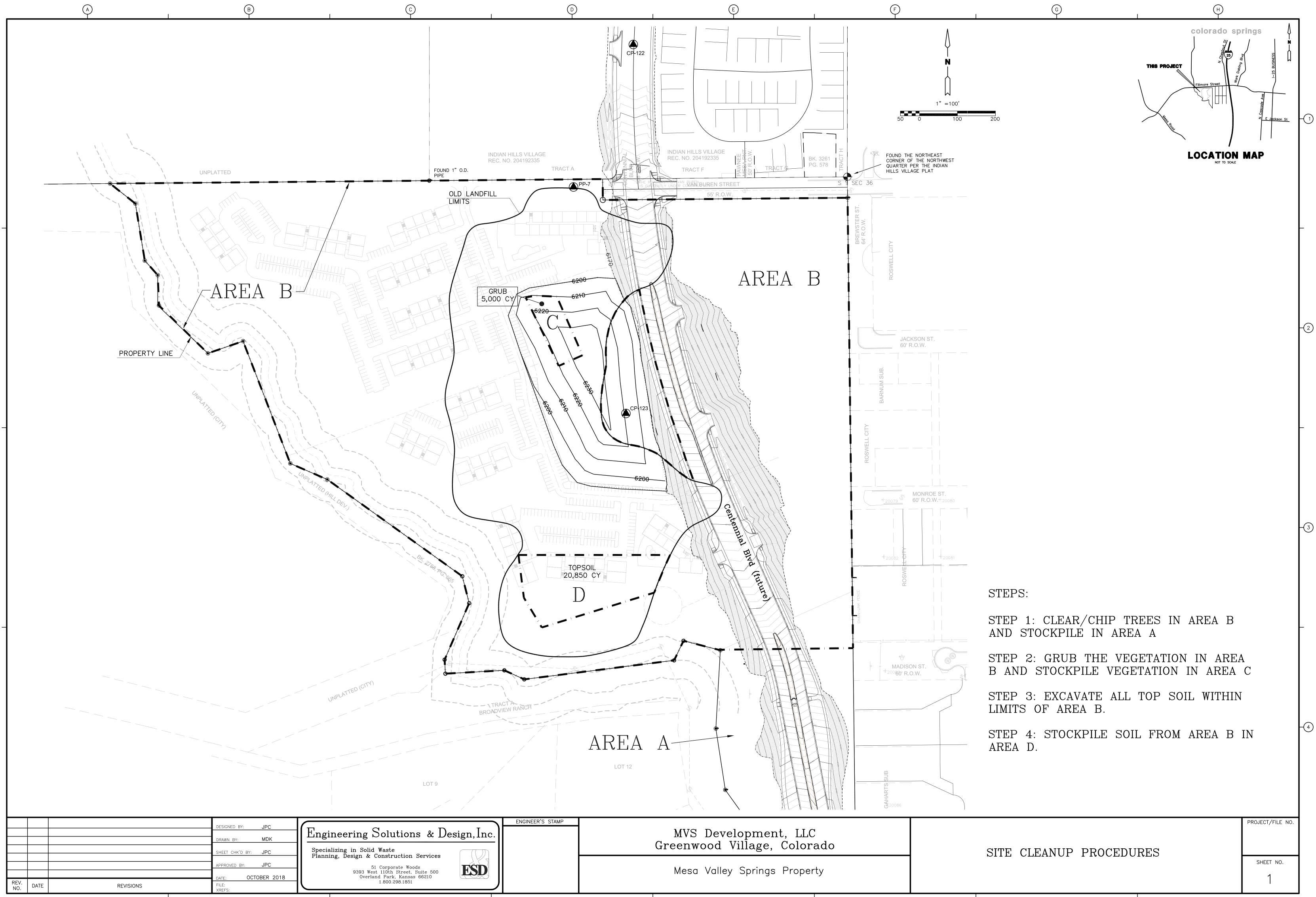
L45886-1808101400

Cooler Id Temp(°C)

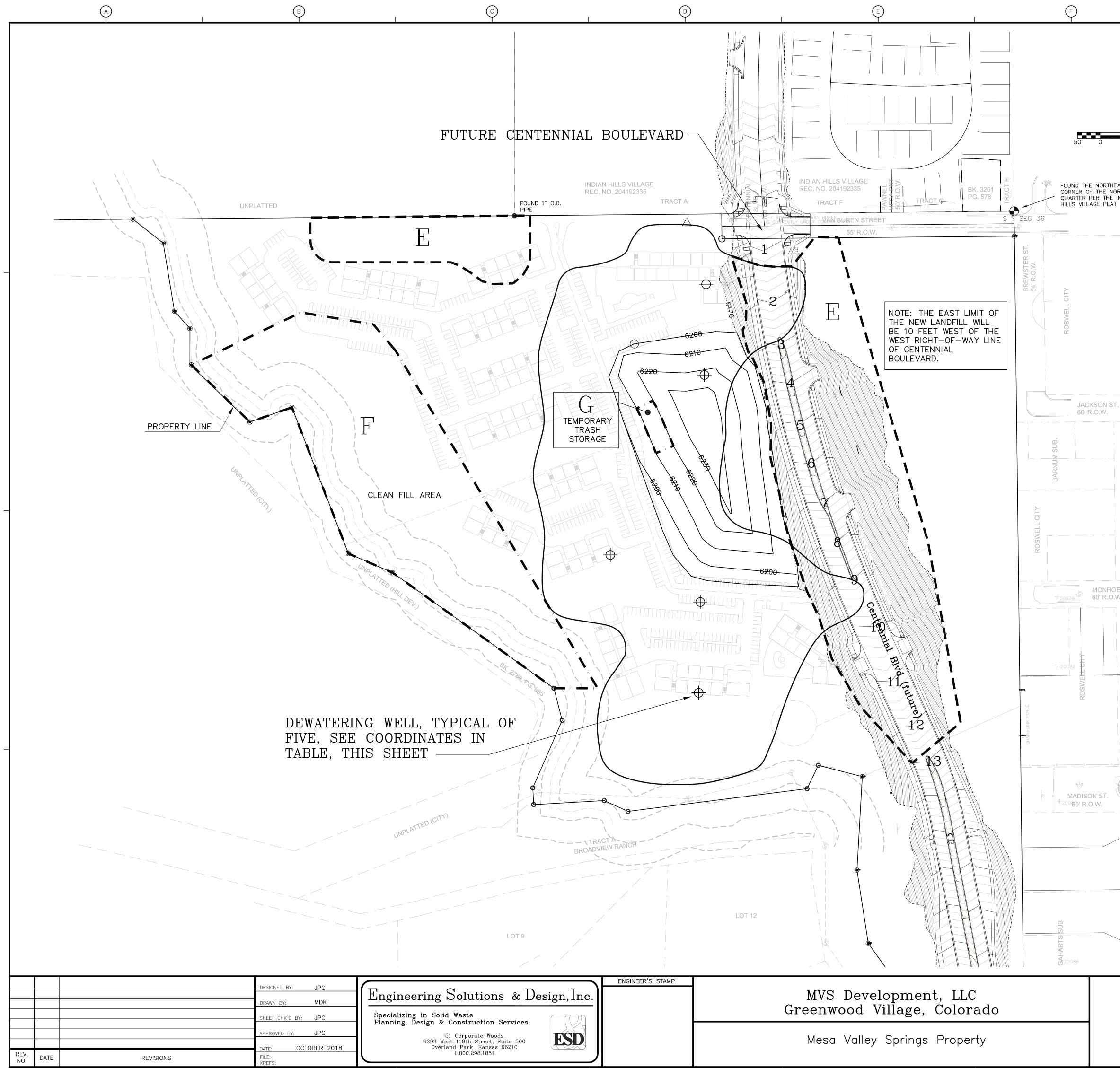
ACZ 2773 Downhill Dri			Inc. 487 (800) 334-5493		101003-000000	Sample Receipt
Kleinfelder, In 20191069	с.			-	ACZ Project ID: Date Received: Received By:	07/27/2018 12:36
					Date Printed:	7/30/2018
	NA28809	2.7	NA	20	Yes	
Was ice prese	nt in the shipm	ent container	(s)?			
Yes - Wet	t ice was p	resent in	the shipment c	ontainer(s).		

Client must contact an ACZ Project Manager if analysis should not proceed for samples received outside of their thermal preservation acceptance criteria.

¹ The preservation of the following bottle types is not checked at sample receipt: Orange (oil and grease), Purple (total cyanide), Pink (dissolved cyanide), Brown (arsenic speciation), Sterile (fecal coliform), EDTA (sulfite), HCI preserved vial (organics), Na2S2O3 preserved vial (organics), and HG-1631 (total/dissolved mercury by method 1631).


' 1 - 5 -	574									ill Drive Steamboat	
(f-9)	574										Report to:
.t-ek	574				ss:	Addre			eron	<u> Sill, 1396</u>	Name: 2
4.46	574					L		- t - k	der	Klende	Сотрапу:
4-44		<u>72.45</u>	57	781	hone: "	Telep		elder	5K1629	belyein	E-mail: bb
4-06				·						eport to:	Copy of Repo
	klen	rele) dar	Vod	t J	E-mai			ala	ind Wass	Name: Br
					hone:	Telep			125	Klenfe	Company: 4
											Invoice to:
					SS:	Addre			above	Sami as	Name: So
							1				Company:
					hone:	Telepi					E-mail:
	YES			plete	to com	mains t	nt HT re	if insufficier	ng time (HT), or	received past hold	lf eample(s) rec
	NO. t and data will be di	HT is exclued a	an aven il					••••••	•	ore expiration, sha M contact estent for further ine	
			No			Yes				s for SDWA Compli	
				` 	rado.	or Colo				e include state forr	
	Time 2		Zip coo		at at	State_			Sampler's	ieme: <u>2,2222-</u>	Sampler's Neme
ne waoraaten	onally mislabeling th ste Law.	ishable by State							6/		*Sampler's Sign
wmber)	st or lise quote ri	D (attacti tist i	QUESTED	YSES REC	ANA	1				INFORMATION	PROJECT INF
				a	~	ers -					Quote #:
				3×	TE	tain	<u></u>			019100	······································
				y 4	TX ~	of Containers	1		<u> </u>	ate for compliance te	• • • • • • • • • • • • •
				اعک	ſδΣ		Matrie				
		╆╍╍╌┣╌╸			X	L				i	
		╂───╂─		L)			[7/20/18	- 2	$C = V^{-1}$
				ert					+		C = 12 -
+		<u> </u>		\bigcirc	$\overline{\mathbf{F}}$	5				<u> </u>	Gru
			,								
			\mathbf{X}		1_					······································	
-		<u> </u>		at	12		P	M			
-					F	<u> </u>		V3			
									1		
		1							1		
											\sim
					E XXX IA				DATE:	samples include NR IDENTIFICATION -1 -2 -3 N - 4	

LE4906805808161400


Appendix G Groundwater Sampling Results 2011 and 2018

					D				
		Sampling	Sampling		Sampli	Sampling Event			
		Event	Event	GW-1	GW-2	GW-3	GW-4		
Parameter	Units	3/28/2006	4/11/2011	7/26/2018	7/26/2018	7/26/2018	7/26/2018	MCL	PQL
Arsenic	mail	0.0071	0.01	0.048	0.494	0.238	0.049	0.005	0.003
Bartum	may	0.056	0.095	0.6	9.2	2.43	0.41	2	0.01
Calcium	mar	338	360	39.5	304	239	38.6		10
Chromium	mar	0.01	BDL		1.16	0.36		0.01	0.05
Cobalt	mg/L	0.02	BDL		0.45	0.2			0.05
Magnesium	mg/L	593	190	485	258	547			10
Manganese	mg/L	1.45	BDL	0.05	1.05	0.32	0.04	0.05*	0.3
Nickel	mg/L	0.03	BDL	0.07	1.05	0.31		0.1	0.05
Potassium	mo/L	21	19	57	32	35	57		10
Sodium	mor	3380	5000	4090	2570	4490	4100		10
Thailium	mg/L	0.0003	BOL		0.01	0.004		0.0002	0.0005
Vanadium	mar	0.013	BDL	0.11	1.95	0.74	0.06		0.03
Zinc	mar	0.04	BDL	0.75	18.7	1.44	0.45		0.05
Iron	mar	BDL	7.7	5	1300	339	44.4	0.3*	0.5
Alkalinity Bicarbonate	mg/L	1310	940						20
Total Alkalinity	mg/L	1310	940						20
Total Organic Carbon	mg/L	47	14						8
Cation-Anion Balance	%	1.7	BOL						
Sum of Anions	meq/L	208	BOL						0.5
Sum of Cations	meq/L	215	BOL						0.5
Chloride	mg/L	480	200					250*	20
Conductivity	umhos/cm	15700	19000						9
Hardness	Ngm	3280	1900	2100	1820				2
Nitrate	mg/L	0.1	BOL					10	0.1
PH	units	7.8	7.5					6.5-8.5	0.1
Filterable Residue	mg/L	15400	BOL						20
Sodium Absorption		26	BOL						0.15
Sulfate	J/Bm	8030	12000					250*	300
rds	Ngm	13600	18000					500*	8
TDS (ratio)		1.13							
cis-1,2-Dichloroethene	ng/L	29.8	BDL					2	-
Trichloroethene	ng/L	12	BDL					2000	-
*Secondary (Non-Enforceable) Regulations	ceable) Reg	utations							
PQL - Practical Quantification Limit	cation Limit		mg/L - Milligrams per Liter	s per Liter		ug/L - Micrograms per Liter	ns per Liter		
MCL - Maximum Contaminant Level	minant Leve		meq/L - Milliequi	meq/L - Milliequivalents per Liter					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				the other others					

Appendix H Drawings

LTSCALE = PRINT SPACE 0.3LTSCALE = MODEL SPACE 20.

FOUND THE NORTHEAST CORNER OF THE NORTHWEST QUARTER PER THE INDIAN HILLS VILLAGE PLAT

> MONROE ST. 60' R.O.W.+2008

> > +2008

 $1^{"} = 100$

STEP 5: EXCAVATE AREA E AND PLACE AND COMPACT CLEAN SOIL IN AREA F. PLACE ANY SOLID WASTE THAT IS EXCAVATED IN TEMPORARY STORAGE AREA G. SOLID WASTE PLACED IN STORAGE AREA G TO HAVE DAILY COVER PLACED EACH DAY NEW SOLID WASTE IS ADDED.

(G)

(H)

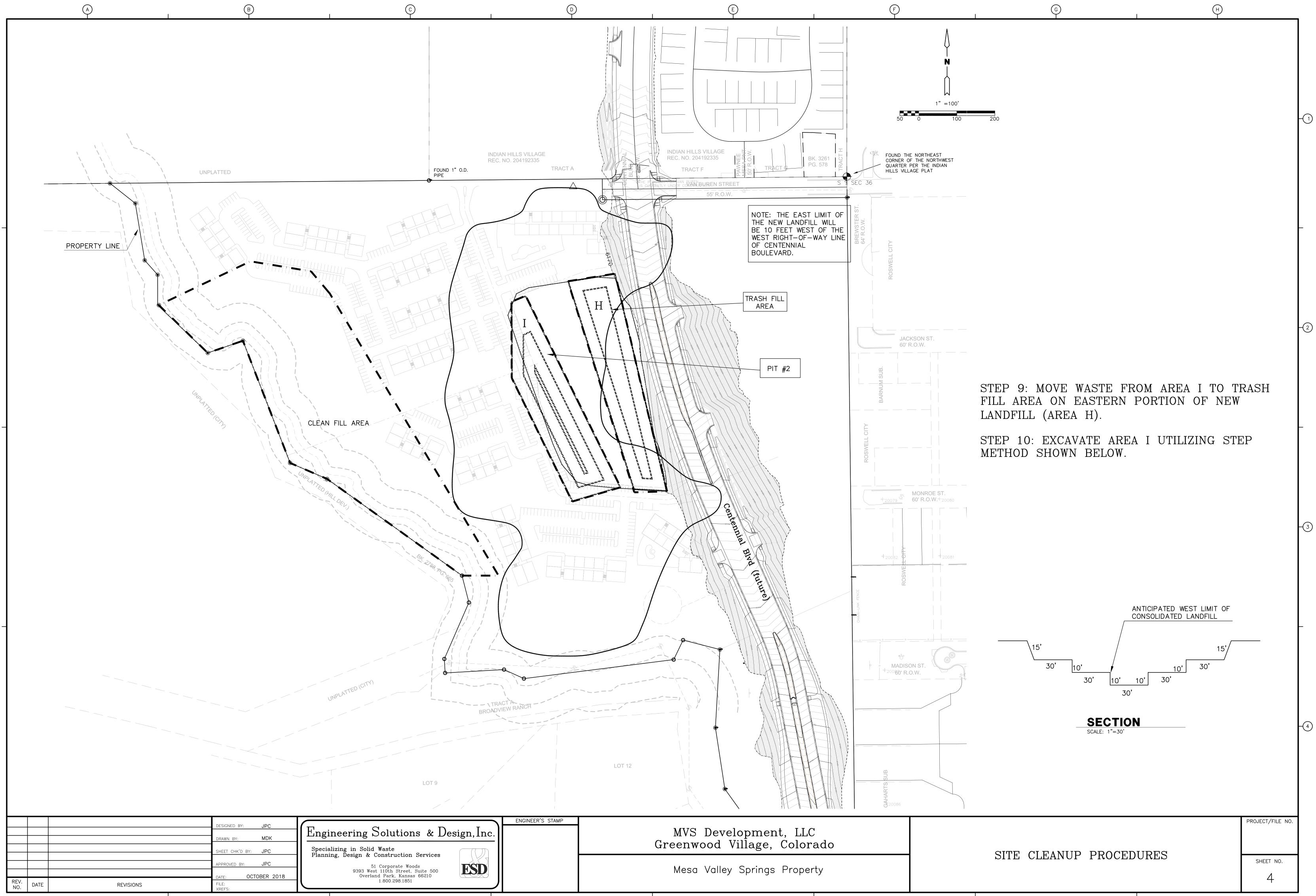
STEP 6: INSTALL 5 DEWATERING WELLS IN EXISTING WASTE AREA. WELL COORDINATES ARE:

WELL	NORTHING	EASTING
113	377723.5150	188195.0932
121	377523.5480	188191.4608
134	377127.2464	187984.2290
141	377023.6305	188182.3798
151	376823.6635	188178.7475

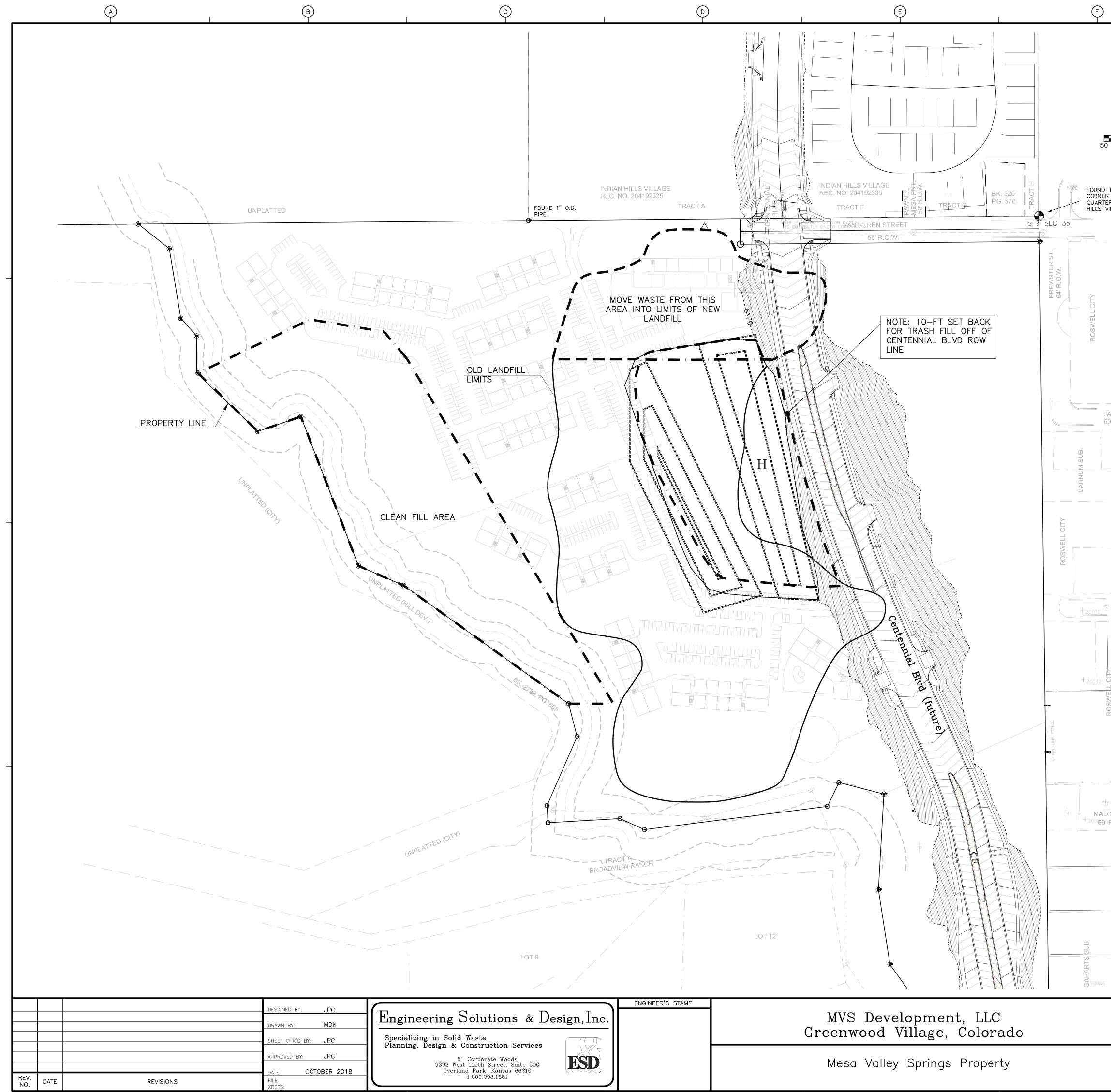
STEP 7: AREA E SHALL BE EXCAVATED TO MATCH SUBGRADE OF FUTURE CENTENNIAL BOULEVARD. THE PROPOSED ELEVATIONS (24 INCHES OVER-EXCAVATION OF THE SUBGRADE CENTERLINE ARE PROVIDED IN THE FOLLOWING TABLE:

SITE CLEANUP PROCEDURES

2

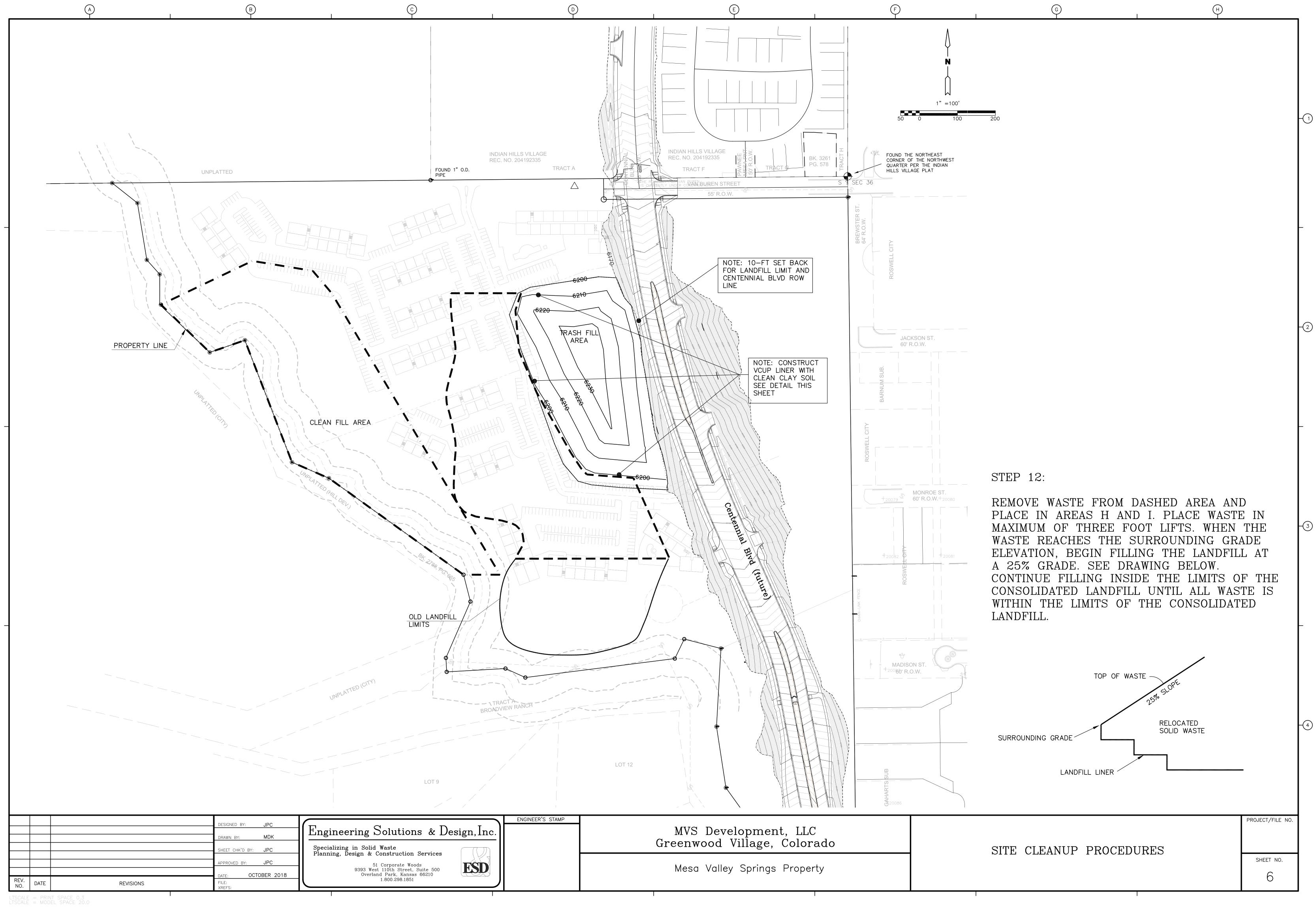

SHEET NO.

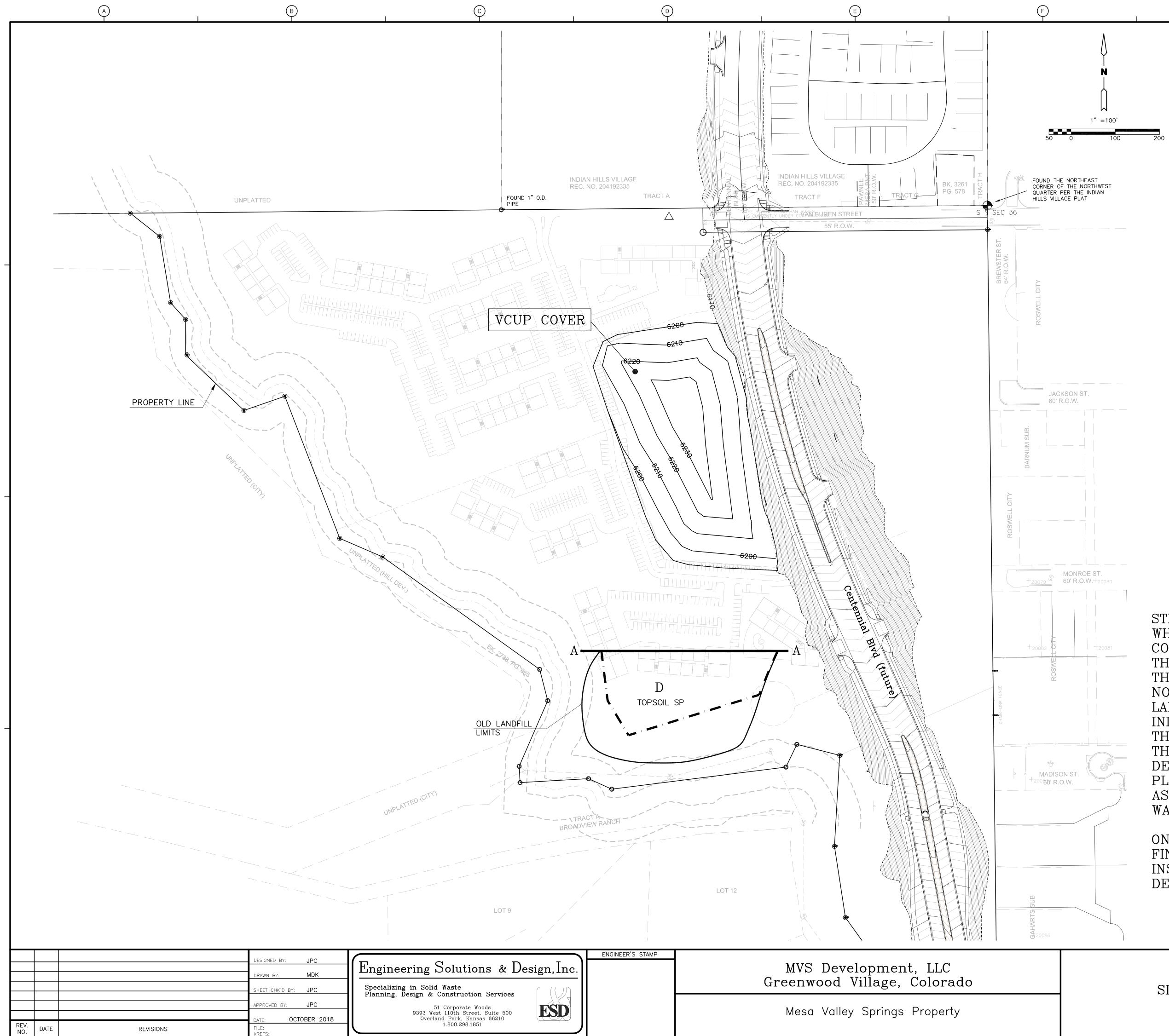
PROJECT/FILE NO.


-4

LTSCALE = PRINT SPACE 0.3LTSCALE = MODEL SPACE 20.

LTSCALE = PRINT SPACE 0.3 LTSCALE = MODEL SPACE 20

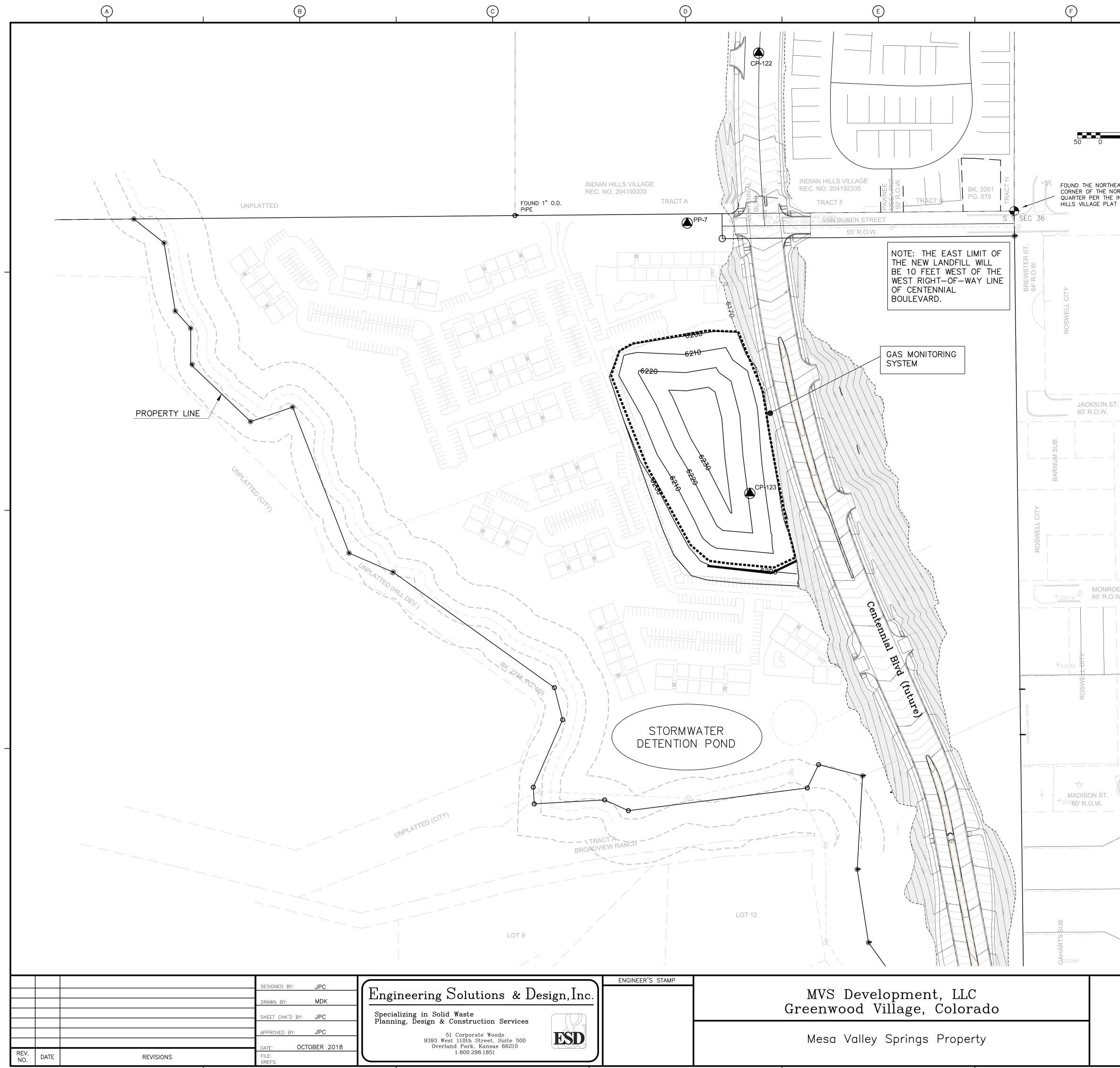



LTSCALE = PRINT SPACE 0.3

N ↓ 1" =100'		
0 0 100	200	-(1)
THE NORTHEAST R OF THE NORTHWEST ER PER THE INDIAN VILLAGE PLAT		
JACKSON ST. 60' R.O.W.		-2
		_
MONROE ST. 60' R.O.W.+20080		-3
	STEP 11: MOVE WASTE FROM AREA NORTH CONSOLIDATED LANDFILL AND PLACE IN A H. WHEN PLACING WASTE IN NEW LANDFILL PLACE IN MAXIMUM OF THREE FOOT LIFT COMPACT EACH LIFT WITH A MINIMUM OF PASSES, THREE EAST-WEST AND THREE NORTH-SOUTH.	AREA - AREA S.
	AT THE END OF EACH DAY'S WORK, PLAC 6—INCHES OF SOIL OVER ALL EXPOSED W WITHIN THE LIMITS OF THE CONSOLIDATE LANDFILL.	ASTE
	SITE CLEANUP PROCEDURES	PROJECT/FILE NO. SHEET NO. 5

G

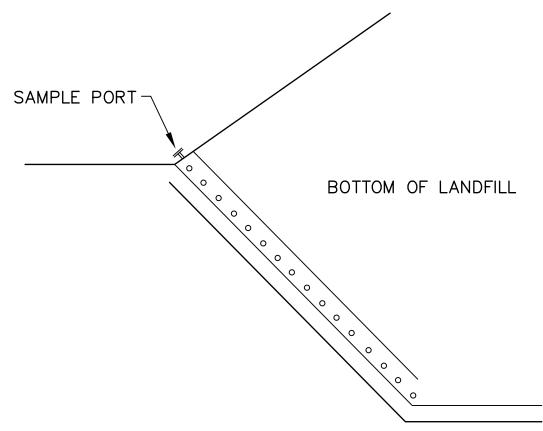
H



ONROE ST. ''R.O.W.+20080			
ST.	STEP 13: WHEN ALL WASTE IS WITHIN LIMITS OF T CONSOLIDATED LANDFILL, CONTOUR THE THAT IS ABOVE GRADE AT A SLOPE OF THE SLOPING SHOULD BEGIN AT THE SC NORTH, EAST, AND WEST EDGES OF THE LANDFILL AND SLOPE UPWARD. BASED OF INITIAL CALCULATION OF WASTE AT THE THE FINAL ELEVATION SHOULD BE 6230 THIS ELEVATION MAY BE LESS OR MORE DEPENDING UPON THE EFFICIENCY OF PLACEMENT AND COMPACTION OF THE W AS WELL AS THE ACTUAL QUANTITY OF WASTE.	AREA 25%. OUTH, N THE SITE, BUT ASTE	
	ONCE THE LANDFILL IS SHAPED INSTALL FINAL COVER. THE FINAL COVER WILL BE INSTALLED AS PROVIDED IN THE FINAL DESIGN FOR THE LANDFILL.		-4
	SITE CLEANUP PROCEDURES	PROJECT/FILE NO. SHEET NO. 7	
I	Ι		

G

H


-(2)

SITE CLEANUP	CIFANIID DROCEDIIRES	PROCEDURES	PROJECT/FILE NO.
	INOCEDUILES	SHEET NO.	
		[U

STEP 15: IN THE SOUTHEAST CORNER OF THE PROPERTY A STORMWATER DETENTION POND WILL BE CONSTRUCTED. THIS POND WILL OVERLAY SOLID WASTE THAT IS PRESENTLY BURIED UNDER 25 FEET OF SOIL. THE CONTRACTOR WILL REMOVE THE OVERBURDEN AND WHATEVER WASTE MAY BE IN THE SOIL TO EXPOSE THE SOLID WASTE AT DEPTH. THE SOLID WASTE WILL BE COMPACTED AND THEN COVERED WITH SOIL. A LINER SYSTEM WILL BE INSTALLED TO PROTECT THE SOLID WASTE FROM MOISTURE AS WELL AS RETAIN THE STORMWATER WITHIN THE POND. APPENDIX O PROVIDES FURTHER DETAILS REGARDING THE STORMWATER DETENTION POND.

STEP 14: A LANDFILL GAS MONITORING SYSTEM WILL BE INSTALLED AT THE LANDFILL. THIS SYSTEM WILL UTILIZE 3-INCH PVC SCHEDULE 40 PERFORATED PIPE THAT WILL BE INSTALLED AT EACH CORNER OF THE LANDFILL AS WELL AS AT POINTS ALONG THE EDGE OF THE LANDFILL. THE PIPE WILL BE INSTALLED ALONG THE SIDES OF THE LANDFILL AND WILL BE PLACED AS SHOWN IN THE DRAWING BELOW. THE TOP OF THE PIPE WILL HAVE A SECURED CAP WHERE A SAMPLE PORT WILL BE INSTALLED.

(G)

FOUND THE NORTHEAST CORNER OF THE NORTHWEST QUARTER PER THE INDIAN

> MONROE ST. 60' R.O.W.+2008

> > $+_{200}$

1" =100'

(H)

Appendix I Final Cover Analysis

FINAL COVER ANALYSIS

INTRODUCTION

After the solid waste is properly consolidated, the landfill will receive a final cover designed to protect the landfill and allow for the area to be used as open space. This document addresses options and analysis of final covers for the proposed consolidated landfill.

FINAL COVER OPTIONS

For this site, the final cover must be capable of supporting native vegetation and, possibly foot traffic. Because of this anticipated use, it will be important to select a final cover that provides protection as well as flexibility to accommodate future uses of the site.

There are a number of final covers that could be utilized for this site: (1) prescribed cover; (2) composite cover; (3) monolithic cover; (4) evapotranspiration cover; and (5) capillary barrier cover. A description of each cover is provided in the following paragraphs.

The prescribed cover is comprised of two layers: (a) an infiltration layer typically at least 18 inches thick and (b) a vegetative layer that is a minimum of 6 inches thick. The first layer, which must be a minimum of 18-inches thick, is an infiltration layer that is comprised of material that has a permeability of no greater than 1×10^{-5} cm/sec. This first layer is covered by a 6-inch vegetative layer. Based on the geotechnical testing conducted at this site (see Appendix B, C, D, E, and F) the on-site soils have the potential to meet the permeability requirements for this type of final cover.

The composite cover consists of a 6-inch soil base (on-site soils can be utilized) overlain by a geomembrane with a minimum thickness of 30 mil. A minimum 12-inch soil layer is placed over the geomembrane to protect it and allow for vegetative growth. This protective layer would be a minimum of eighteen inches thick. Based on geotechnical analyses of the on-site soils, these soils would be acceptable for use in this cover.

ALTERNATIVE FINAL COVERS

The monolithic, evapotranspiration, and capillary barrier covers are all considered alternative final covers. Each of these covers must be capable of providing equivalent protection as the prescribed or composite cover. The monolithic cover consists of one layer of soil and is typically utilized in low precipitation areas or where there is a significant amount of soil available. The soil layer has a thickness of at least 30 to 48 inches. The actual thickness is based on the results of computer modeling that identifies the thickness of the soil needed to be equivalent to the prescribed cover. Based on the laboratory testing conducted on the on-site soils, the soils have a hydraulic conductivity of 1.18×10^{-6} cm/sec or greater. This result indicates that the on-site soils, when properly compacted, can provide sufficient protection for final cover.

The evapotranspiration cover is comprised of one layer that is capable of supporting significant vegetative growth which is placed over a compacted subgrade. The utilization of vegetation is critical to the function of the cover as the vegetation is utilized to absorb precipitation that infiltrates the cover. A silty or loam type of soil is best for this type of cover, although sandy or clayey soils can be utilized if they are mixed with compost or other materials that will allow for vegetative growth. The type of vegetation used for this cover should be carefully considered because roots that have been left by vegetation that has died off due frost can become conduits for precipitation.

The capillary barrier cover is a variation on the evapotranspiration cover. This cover utilizes vegetation to absorb precipitation that infiltrates the cover and also includes a coarse and sand layer that creates a barrier to the migration of precipitation from the vegetative soil to the sand. A disadvantage to this cover is availability of sands or similar materials.

DETERMINATION OF FINAL COVER

It is important to identify the optimal cover for this consolidated landfill site. As noted previously, the landfill will be utilized as open space. Walking trails and certain native vegetation may be established on portions of the consolidated landfill. Because of these uses, it is necessary that the final cover can support vegetation, allow for foot traffic, be flexible in its ability to respond to these uses, and be easily repaired. In addition to identifying the proper cover, it is important to establish a maximum slope for the landfill area to better control the impact of erosion on the final cover. To accomplish this, the maximum slope should be 25% or 4:1.

Given the proposed use of the site and the slope criteria, the recommended optimal final cover should be either the evapotranspiration or capillary barrier final cover. These two covers offer the best potential for vegetative growth, can respond to foot traffic, and will be the most flexible given the soil circumstances at the site. More importantly, given the low permeability of the on-site soils, any precipitation that reaches the bottom of the final cover will be retained on the surface of the subsoil. The cost of installing the final cover and the estimated level of effort to maintain it should determine which final cover is selected for use on the consolidated landfill area. Considering the cost to import the fine and coarse sand, the capillary barrier cover would be more expensive to install due to material, hauling, and placement costs.

As noted earlier the evapotranspiration final cover may have maintenance issues due to potential impacts from certain vegetation. By choosing the proper vegetation and conducting regularly scheduled inspections of the cover, the impact of unacceptable vegetation can be controlled. It is anticipated that the cost for these maintenance efforts would be less than the costs for installing the capillary barrier final cover.

2090/Waterman Folder/VCUP Application 2018/Final VCUP Document Folder/Appendix I-Final Cover Analysis V01 10-22-2018 RSC

Appendix J Soil Sampling Program

SOIL SAMPLING PROGRAM

INTRODUCTION

Once properly consolidated, the landfill will receive a final cover designed to protect the landfill and allow for the area to be utilized as open space. To ensure the soils that are directly adjacent to and below the existing landfill are clean and free of any contaminants, these soils will be sampled as outlined in the following program.

SOIL SAMPLING PROGRAM

To confirm that all solid waste and contaminants associated with the solid waste have been removed during the excavation of the existing landfill, the soils directly adjacent to and below the existing landfill will be sampled. Samples will be taken at the side walls and bottom of the excavation once all of the solid waste is removed.

The sampling procedure involves two steps. The first step is to insert a 1-inch probe into the side wall and bottom of each excavation, which will penetrate the side wall and bottom at least 2 feet. The probe will be removed and the resulting hole will be checked for landfill gas and other volatile organics utilizing a gas/vapor meter. If the test is positive, the excavation will be allowed to ventilate to remove the vapors including VOCs.

Once the vapors have diminished or if the test results indicate the vapors/gases are below minimum concentration levels, then a sample of the soil will be taken. This sample will be placed in a container of adequate size to allow for testing the soils for all metals listed on the following page.

Once the results of the soil samples are obtained and the samples are found to contain no contaminants, the area sampled will be backfilled. If any contaminants are found, the excavation will be further expanded until clean soil is found. Once clean soil is encountered, the sampling process is ended and the next area of concern will be tested.

It is anticipated that there will be a minimum of four excavations – one on each side of the landfill. A minimum of four different locations within each excavation will be randomly selected for sampling. If there are significant contamination issues within an excavation, more samples will be taken.

As a part of the final design for the consolidated landfill, a detailed specification will be prepared for this sampling procedures. The specification will be submitted to CDPHE and results of all sampling tests will be provided in the Engineer's Report which will be submitted to CDPHE when the landfill consolidation is completed.

Metals to be Tested for From Soil Samples Gathered from the Bottom and Side Walls of the Excavations

Magnesium	Cobalt
Sodium	Lead
Potassium	Nickel
Calcium	Selenium
Antimony	Silver
Arsenic	Thallium
Barium	Zinc
Beryllium	Sulfate
Cadmium	Nitrite
Chromium	Nitrate
Copper	Vanadium

2090/Waterman Folder/VCUP Application 2018/Final VCUP Document/Appendix J-Soil Sampling Program V01 10-24-2018 RSC

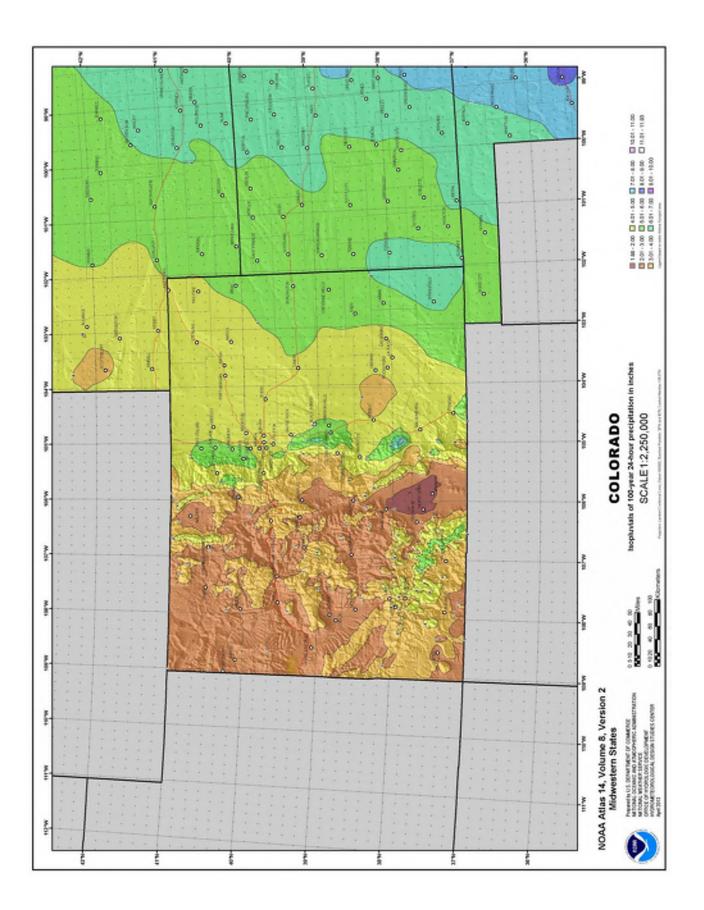
Appendix K Erosion Protection Program

EROSION PROTECTION PROGRAM

INTRODUCTION

A continual issue with any landfill site is the control of erosion. This document addresses the issue of erosion on the consolidated landfill.

STORMWATER POTENTIAL


The Colorado Department of Public Health and Environment requested that the landfill site be capable of controlling the impact of a 100-year, 24-hour storm event. The greatest impact to the site from a 100-year, 24-hour storm event would be erosion. Data from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 8 indicates the anticipated precipitation of a 100-year, 24-hour storm event, at this location, is 5.25 inches (see NOAA map on following page). This type of rainfall event can create an overland flow event which has the potential to create small rivulets, which can create gully erosion depending upon the side slope of the site. The other impact that can occur from this rainfall intensity is the mass movement of the face of the side slope soil.

A 5.25-inch rainfall occurring over the 3.6-acre consolidated landfill site would generate a maximum of 69,000 cubic feet of water. If it is assumed that the rain falls uniformly over the site, then the maximum amount of stormwater that falls on any one acre is less than 19,200 cubic feet. Assuming an infiltration rate of 0.15, the maximum amount of stormwater discharging over the 25% slopes is less than 16,320 cubic feet over a period of 24 hours with an anticipated peak of 9 cubic feet per second for a duration of less than 0.5 hours. These rates of flow and duration would result in limited erosion depending upon the erosion control methods.

EROSION CONTROL METHODS

Many factors affect the rate of erosion. The most important of these are vegetative cover, artificial or temporary cover, soil type, and land slope. Because of the erosive impact of raindrops falling on soil, vegetation provides significant protection against erosion by absorbing the energy of the falling drops and generally reducing the drop size that reaches the ground. Vegetation may also provide mechanical protection to the soil against gully erosion.

Another advantage of vegetal cover is the improved infiltration capacity given the higher organic content of the soil. This infiltration is also complimented by the uptake capabilities of the vegetation.

Artificial or temporary covers include gravels, rip-rap, and straw. These covers create an armoring effect that resist splash erosion. By reducing splash erosion, the impact of major storm events is minimized.

Soil types affect the potential for erosion. Sandy soils have a larger granular structure and take more energy to be moved. Clayey soil binds together better than sandy soil but the clay particles are much smaller and lighter and thus can be dislodged easier.

The most significant impact on soil type is the slope of the surface. Typically, overlandflow velocities are greater on steeper side slopes and the potential for mass movement increases significantly as the slope increases.

METHODS TO ADDRESS EROSION AT THIS SITE

Two erosion control methods will be implemented at this site. The first is to utilize a soil mixed with a good organic component. This soil mix will be utilized on all bare areas of the site. The mix will be comprised of on-site soils mixed with a minimum of 20% compost or similar material to ensure the soil can support and maintain vegetation.

The second will address the protection of the final cover on the consolidated landfill. Once the final cover is installed it will be seeded utilizing a spreader system that is also capable of spreading gravel. The gravel/seed mix (gravel size is 1/4 inch minus with no fines smaller than a #4 sieve) will be hydrated to allow for rapid germination. Native vegetation will be selected for seeding. The site will also be covered with blown-on straw.

The final cover will be sloped at 25% or 4:1 to minimize side slope erosion. The final lift of the vegetative layer or surface lift will be textured to reduce the potential for stormwater to accelerate on the side slopes. A shallow swale will be located at the toe of the final cover to capture stormwater and move it away from the landfill.

2090/Waterman Folder/VCUP Application 2018 Folder/Appendix K-Erosion Protection Program V01 10-22-2018 RSC

Appendix L Materials Management Plan

MATERIALS MANAGEMENT PLAN

INTRODUCTION

The process of consolidating the landfill will require relocating wastes at the site. To ensure the materials uncovered during the consolidation process are properly handled and any materials uncovered that are determined to be hazardous or suspected of being hazardous are properly segregated and removed from the site for proper disposal, the following materials management plan has been developed.

RELOCATION PROCESS

The relocation process will involve: (1) removing the cover materials presently in place over the existing landfill; (2) consolidating the landfill material, using a compactor, within the limits of the consolidated landfill footprint; (3) excavating solid waste outside the footprint of the consolidated landfill; (4) observing the excavated materials and checking for unacceptable materials; (5) placing and compacting the excavated solid waste; and (6) placing a final cover over the consolidated landfill. This process will be accomplished in distinct phases.

The excavated solid waste will be removed utilizing either backhoes, scrapers, or large loaders. The solid waste that is excavated will be processed to remove soil from the solid waste. The solid waste will then be moved to the consolidation area utilizing trucks or loaders, depending on the distance to the consolidation area. The solid waste will be placed in the consolidation area and compacted. All solid waste that is excavated and processed will be placed in the consolidation area and, all solid waste placed and compacted during the day will be covered at the end of the work day.

OBSERVATION PROCEDURES

The solid waste that is excavated and processed will be observed throughout the process. Observations will be made by the equipment operators and on-site construction quality assurance personnel. Materials will be monitored as they are excavated and any anomalies (such as 55-gallon metal drums, discolored waste, any noxious or inconsistent odors, or the presence of liquids) will be cause the excavation process to stop and the identified problem waste will be segregated.

Problem waste will be collected in a loader bucket and sent to a designated retention area, outside of the consolidation limits and the excavation limits. The retention area will be fenced and will have a minimum two-foot berm around it to control any liquids. Further, the area will be gated, and the gate will be locked at all times except when problem waste is brought to the retention area or when the problem waste is inspected and/or tested by trained personnel.

Once a problem waste is inspected and/or tested and its characteristics are determined, removal of the waste material will be coordinated with a company specializing in the handling of the specific waste. If it is determined the problem waste is not hazardous and it is acceptable, it will be removed from the retention area and placed in the reconsolidation area.

A record of observed materials will be made on a daily basis. The location of the excavation will be noted each day. In addition, an estimate of the quantity of material removed will be determined.

Observations will also be conducted at the processing area. Any material that is determined to be a problem waste will be removed from the area and sent to the retention area. If a problem waste is identified all processing activities will stop until the problem waste is removed.

PROBLEM SOLID WASTE PROCESSING

As noted in the previous sections, problem solid waste will be placed in a retention area for assessment and final disposition. Problem wastes will be tested for their characteristics and the materials that comprise the problem solid waste. If the material is determined to be hazardous, a company that specializes in disposing the specific material will be contacted. This company will come to the site, stabilize the material for transport, and remove it from the site. A list of companies that specialize in determining the type of waste and/or processing and disposing of the waste will be assembled for use during the consolidation process. Companies specializing in handling the following types of materials will be compiled.

- Asbestos
- Petroleum Contaminated Soils
- PCBs
- Acids and Alkaline
- Hazardous Chemicals
- Animal Waste
- Tires and Contaminated White Goods

If it is determined that the problem waste can be disposed within the consolidation area, it will be moved to the consolidated area for final disposal. No problem solid waste will remain on-site for more than 24 hours unless it is stabilized and controlled to eliminate its potential of becoming air borne or liquid is not being discharged from the problem waste.

SITE PROTECTION

To protect the site and surrounding properties from potential contamination, a number of steps will be taken including:

- The area around the landfill will be graded to keep all run-off within the landfill limits throughout the consolidation process.
- 2. The problem waste area soil will be compacted to minimize any absorption of liquids into the soil. When the consolidation project is complete, the retention area will be excavated to a depth of at least five feet or as deep as any liquids may have penetrated and this soil will be removed from the site and sent to a disposal facility that can process this material.
- 3. The retention area will be fenced and bermed. The fence will be utilized to segregate the site and also control blowing debris. The berming will be utilized to keep all liquids and stormwater within the retention area. The soil that comprises the berm will be removed from the site when the consolidation efforts are complete and taken to a facility that can treat contaminated soils.
- 4. The area around the consolidated landfill will be fenced to control access to the site by animals and non-authorized personnel. The fence will also be utilized to capture any blowing debris.
- 5. Daily cover, either temporary or permanent, will be placed over the exposed solid waste in the consolidated area as well as exposed solid waste in the excavation area.

Implementing these steps will address site controls as well as reduce the impact to surrounding properties. The measures taken will be checked on a daily basis to ensure each step is functioning properly. Corrections will be instituted as soon as corrective action is needed or if improvements are warranted. All of the site protection measures will remain in place until the final cover is installed, the cover is vegetated, and the long-term erosion controls are in place.

2090/Waterman Folder/VCUP Application 2018 Folder/Appendix L-Materials Management Plan V01 10-22-2018 RSC

Appendix M Response to Discovery of Asbestos Plan

RESPONSE TO DISCOVERY OF ASBESTOS

INTRODUCTION

This project involves excavating waste from an abandon landfill site that was utilized during the 1950's and 1960's. A list of materials that may contain asbestos that may have been disgarded at the landfill site follows.

- Cement Pipes
- Elevator Brake Shoes
- Cement Wallboard
- Cement Siding
- Boiler Insulation
- Asphalt Floor Tile
- Breaching Insulation
- Vinyl Floor Tile
- Vinyl Sheet Flooring
- Flooring Backing
- Acoustical Plaster
- Decorative Plaster
- Textured Paints/Coatings Ceiling
- Tiles and Lay-in Panels
- Spray-Applied Insulation
- Blown-in Insulation
- Fireproofing Materials
- Taping Compounds (thermal)
- Thermal Paper Products
- Fire Doors

- High Temperature Gaskets
- Caulking/Putties
- Table Tops
- Adhesives
- Laboratory Gloves
- Wallboard
- Fire Blankets
- Joint Compounds
- Fire Curtains
- Vinyl Wall Coverings
- Elevator Equipment Panels
- Spackling Compounds
- Electrical Panel
- Partitions
- Electrical Cloth
- Electric Wiring Insulation
- Chalkboards
- Roofing Shingles
- Roofing Felt
- Base Flashing

- Ductwork Flexible Fabric Connections
- Pipe Insulation (corrugated air-cell, block, etc.)
- Construction Mastics (floor tile, carpet, ceiling, heating and electrical ducts, tile)
- Packing Materials (for wall/floor penetrations)

This project involves excavating an exisitng landfill which includes the exposure and processing of solid waste. Although the various site investigaitons conducted during the past 32 years have not discovered any asbestos at the site (see Appendix A, B, C, D, E, and F), it is possible that asbestos may be discovered during the excavation project.

DISCOVERY OF SUSPECT MATERIAL

It is important to observe the current condition of any suspected asbestos materials encountered to determine whether they are friable or non-friable. Determinations regarding the type of asbestos material encountered and its friability must be made by a Certified Asbestos Building Inspector.

More specific efforts to be taken when sbestos is discovered during active construction activities is presented below. Further, the information presented below outlines procedures for minimizing the potential release of airborne asbestos when suspect asbestos material is discovered.

- 1. Stop work when discovering material that is suspected of containing asbestos.
- 2. Segregate the area suspected of containing asbestos with barrier tape, or other means, and provide site access control.
- 3. Disturb soil as little as possible to perform any initial characterization activities.
- 4. Water area immediately prior to performing any characterization activity that will disturb the material. Maintain wet conditions throughout site characterization activities.
- 5. Cover the disturbed soil with a layer of 6-mil polyethylene material, tarps, or spray with magnesium chloride solution in sufficient amounts to wet the soil to prevent drying and dust generation.

- 6. Utilize a layer of 6-mil polyethylene material to prevent contamination to clean soils during initial characterization activity. This can be accomplished by placing the 6-mil polyethylene material on the ground and then placing the contaminated soil on the material.
- 7. Maintain complete dust control to eliminate any emissions.
- 8. Have a list of asbestos Building Inspectors (with a minimum of six (6) months experience conducting asbestos-contaminated soil inspections and certified in accordance with Colorado Department of Public Health and Environment Air Regulation No. 8, Part B) on site in order to ensure prompt response to any asbestos issue. Allow Building Inspector to properly conduct on-site assessment as described in the "Asbestos-Contaminated Soil Guidance Document" prepared by the Colorado Department of Public Health and Environment, dated April 2007.
- 9. Decontaminate workers by removing any visible soil and dust with damp wipes or cloths, or by the use of a HEPA (high efficiency particulate air) filter equipped vacuum. Place wipes and cloths in a plastic bag and label as "Investigative waste" along with the date, company name, and your name. If additional clothing is available, clothes should be changed and potentially contaminated clothes should be bagged separately from wipes and cloths (it may be possible to clean these clothes if it is determined that asbestos is not present).
- 10. Decontaminate equipment by removal of gross soils and dust, then washing the equipment. Decontamination of equipment should be conducted by a certified asbestos worker wearing proper personal protective equipment (PPE). Materials used for decontamination should be bagged and labeled as above. Decontamination rinse water should be collected and filtered to 5 microns prior to disposal off site, or prior to use for wetting of asbestos contaminated areas that will be removed (this decontanination rinse water cannot be used for worker decontamination).

If areas where decontamination water has been applied are not going to be excavated prior to drying, the surface must be covered or stabilized until excavation occurs to prevent the emissions of any asbestos fibers that were not removed during filtration. If disposal of decontamination water to the sanitary sewer is anticipated, rinse water should be filtered to 5 microns, or in accordance with local requirements if such requirements are more stringent.

- 11. Based upon analytical results of suspect materials, if asbestos is present (or assumed to be present if sampling is not conducted), dispose of bags by double bagging and disposing of as asbestos waste in a properly permitted landfill. If analytical results indicate that no asbestos is present, bags can be disposed of as non-asbestos solid waste.
- 12. Notify the Colorado Department of Public Health and Enviornmentt, Hazardous Materials and Waste Management Division (Division) by calling (303) 692-3320 as soon as possible, but no later than 24 hours after discovery of visible material containing asbestos in the soils or asbestos-contaminated soil. In accordance with Colorado Department of Public Health and Environment Air Regulation No. 8, Part B the notification must, at a minimum, include:
 - Property location
 - General site description
 - Description of activities involved in discovering asbestos
 - Description of type and amount of material containing asbestos
 - Description of any access and emission controls implemented at the site
 - Property representative's name and phone numbe.
 - Contact name and phone number for the party performing soildisturbing activities

All verbal notifications must be followed up by a written notification. Written notification can be submitted via e-mail to <u>comments.hmwmd@state.co.us</u> or by any other means that will ensure that the notification is received by the Division within 24 hours.

 Submit a Soil Characterization and Management Plan, in accordance with Section 5.5.4(B) of the Colorado Department of Public Health and Environment Air Regulation No. 8, Part B, to the Division for review and approval.

INTERIM PROCEDURES

Depending on the goals of the project and the nature of the asbestos material encountered, site characterization may be as simple as determining the extent of visible material and its friability, or may involve a more thorough investigation of the nature and extent of material present. Prior to and during the site characterization, and until final actions are taken in accordance with an approved Soil Characterization and Management Plan or approved standard procedures, the following interim actions should be implemented, as necessary, based on the nature and friability of material and the size and location of the project, to prevent release of and/or exposure to asbestos fibers.

- 1. Maintain adequately wet conditions on the site until the material is stabilized.
- 2. Apply stabilizing agents to the material as needed.
- 3. Take measures, as necessary, to address asbestos-contaminated soil that may have been tracked to other areas by contaminated equipment. These measures include stabilizing or covering these areas until they can be addressed under an approved Soil Characterization and Management Plan, or by conducting immediate spill response activities.
- 4. Construct wind fences or other wind barriers as appropriate.
- 5. Construct barriers around activity areas.
- 6. Cover soil with polyethylene, or similar material, or spray the soil with a stabilizer.
- 7. Reduce traffic speeds for equipment, trucks and cars through adjacent exposed soil areas.

- 8. Clothing and equipment that have come into contact with the asbestoscontaminated soils should be considered contaminated. Workers and equipment should be decontaminated on site, and dirt and debris should not leave the immediate work area. Decontaminate workers as described in Section 6 of the "Asbestos-Conyaminated Soil Guideance Document", preapred by Colorado Department of Public Health and Environment, dated April 2007.
- 9. Place equipment on a plastic barrier to collect decontamination water for filtering prior to disposal. Decontaminate equipment by removal of gross soils and dust, then wet wash equipment. Materials used for wiping should be bagged and labeled (see labeling specification as previously delineated).
- 10. Dispose of bagged decontamination waste materials as asbestos waste in a properly permitted landfill.
- Decontamination water should be processed as described in Sections 5and 6 of the "Asbestos-Contaminated Soil Guidance Document" prepared by the Colorado Department of Public Health and Environment, dated April 2007.

2090/Waterman Folder/VCUP Application 2018/Final VCUP Document/Appendix M-Asbestos Plan V01 10-22-2018 RSC

Appendix N Landfill Gas Generation Analysis

LANDFILL GAS GENERATION ANALYSIS

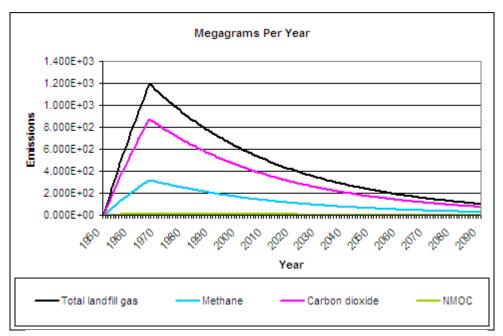
POTENTIAL FOR LANDFILL GAS GENERATION

The generation of gas by a landfill results from the decomposition of organic materials deposited in the landfill. Organics decomposition is most frequently through anaerobic digestion. The rate of gas generation as well as the period of the time gas will be generated is dependent upon a number of factors, including the:

- Amount of liquid entering the landfill;
- Quantity of organics;
- Daily cover characteristics; and
- Final cover characteristics.

For the abandoned landfill located on the MVS property, it is very likely landfill gas has been and may continue to be generated. The materials covering the waste are comprised of local soils that vary in depth from less than 1 foot to over 5 feet. There are numerous cracks and gouges in the cover materials that allow for liquids to enter the landfill. Because the landfill was not operated by anyone, but rather was a local dumping area, if any daily cover was placed at the landfill it was placed infrequently and haphazardly.

It is difficult to exactly determine the quantity of solid waste that was placed in the landfill; however, given the time period in which the site was utilized as a landfill (1950's to 1966), it is likely there are organic materials in the landfill. This assessment is based on the limited waste characterization studies conducted during this time period as well as the lack of a number of household appliances, garbage disposals, and large refrigerators available during this time period that would either capture organic wastes or reduce the number of organics that spoiled.

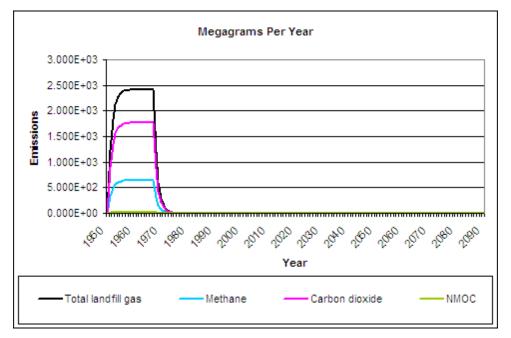

COMPUTER MODELING

The potential for landfill gas generation exists at this site. The LandGEM computer model was utilized to determine the amount of landfill gas that would possibly be generated as well as the time period over which the landfill would generate this gas. This computer model was selected for use because it allows for maximum flexibility when determining the characteristics of the landfill and its waste components. The LandGEM model is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate.

The model was run three times to identify various characteristics of the landfill. The first run was based on the climate that occurs at the landfill site. The Methane Generation Rate and the Potential Methane Generation Capacity were selected based on a dry climate. For the second run the Methane Generation Rate and the Potential Methane Generation Capacity were selected based on a wetter climate. This wetter climate was selected given the bottom of the landfill was a creek bed and that a significant portion of the waste was likely in contact with water during various times of the year. The final computer model run was a composite of the first two runs. This composite allowed for a slightly higher Methane Generation Rate and lower Potential Methane Generation Capacity. The results of all three runs are provided in Appendix 1, 2, and 3 respectively, at the end of this analysis report. Based on the computer model runs, it appears the landfill will be generating some landfill gas for at least the next 25 to 70 years.

First Computer Model Run

The following chart provides the results of the first computer model run. As can be seen, the landfill gas generation peaked in 1970 and has decreased significantly. Based on the model results the landfill is estimated to be generating 198,500 cubic meters of methane a year and 1,588 cubic meters of Non-Methane Organic Compounds (NMOC).

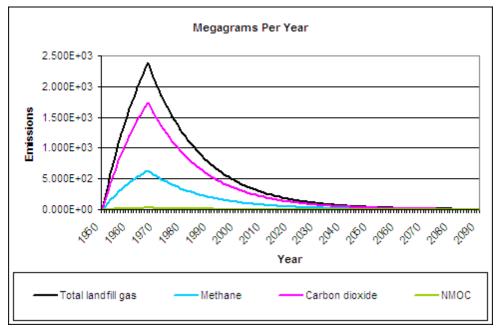


RESULTS OF FIRST COMPUTER MODEL RUN

Second Computer Run

This second computer model run reflects a much wetter environment which may have happened with this landfill given that the landfill bottom was an active creek bed. The following chart presents the results of this model run. In this run, the landfill gas generation peaked in the late 1950's and sustained that peak until the mid 1960's. This extended peak results in a larger amount of gas being generated over a short period of time. With the extended peak, the fall-off of the amount of landfill gas generated is abrupt and quite significant.

For methane, the peak period ended in 1967 with an annual estimated generation rate of 970,000 cubic meters of landfill gas. By 2011 it is estimated the landfill is generating 0.00000004079 cubic meters of gas annually. The amount of NMOC generated in 2011 is estimated to be 0.000000003263 cubic meters per year. This model run indicates that a minimal amount of gas is being generated and likely little gas is being discharged from the landfill.



RESULTS OF SECOND COMPUATER MODEL RUN

Third Computer Model Run

As indicated previously, it is unlikely that neither of the first two computer model runs accurately reflect the actual conditions within the landfill. That is why the third computer model run combines elements of the two previous runs. The chart below presents the results of the third computer model run. The peak of landfill gas generation occurs in or about 1970, similar to the first computer model run, and the amount of gas generated decreases more rapidly, similar to the second computer model run.

For methane, the peak period ended in 1968 with an annual generation of 952,300 cubic meters of landfill gas. By 2018 the landfill is estimated to be generating 75,500 cubic meters of gas annually.

RESULTS OF THIRD COMPUTER MODEL RUN

POTENTIAL LANDFILL GAS MIGRATION AND METHODS TO MITIGATE LANDFILL GAS

As indicated in the Final Cover Analysis, Appendix I of this application package, the final cover for the consolidated landfill will be designed to control the infiltration of liquids into the landfill and will act as a deterrent for landfill gas to migrate from the landfill area. In addition, the Remediation Plan Section of the Final Cover Analysis describes how the landfill will be consolidated, any water that is still following the old creek bed will be removed, and a soil barrier will be installed to deter water from continuing to flow along this creek bed. Thus, significantly reducing the amount of moisture in the solid waste. In addition, soils at the site are mostly lean, silty, slightly sandy clay. This soil type, when properly compacted, can become very dense and limit the migration of gases through the soil. Finally, the amount of methane estimated to be generated in 2018 is 198,500 cubic meters. This is a very small quantity of methane and would likely not be capable of migrating through compacted clayey soils.

Because a completely impervious liner or final cover is not practical for this situation, there is a limited potential for landfill gas to migrate from the landfill. Although, as described previously, the possibility of the landfill gas migrating through the on-site soils is relatively small and added measure of precaution will be utilized.

A passive landfill gas monitoring system will be installed to detect any landfill gases generated by the consolidated landfill. The system will incorporate a series of perforated PVC pipe laid along the side of the consolidated landfill at strategic locations. Each pipe will have a sampling port which will be utilized to test for landfill gas. These perforated PVC pipes can be fitted with wind turbines to vent the landfill gas is it is detected. If significant quantities of landfill gas are detected over a significant duration, the wind turbines can be removed and the perforated PVC can be connected to a blower system that will collect the gas and transport it to a flare system.

2090/Waterman Folder/VCUP Application 2018 Folder/Final document Folder/Appendix N-Landfill Gas Analysis V01 10-22-2018 RSC

Appendix 1 First Computer Model Run

Summary Report

Landfill Name or Identifier: MVS Landfill Colorado Springs, CO

Date: Monday, March 07, 2011

Description/Comments:

This computer run considers climate conditions at the site

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_i}$$

Where,

Q_{CH4} = annual methane generation in the year of the calculation (m³/year) i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year 'f)

Lo = potential methane generation capacity (m³/Mg)

M_i = mass of waste accepted in the ith year (Mg) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (decimal years, e.g., 3.2 years)

ź

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

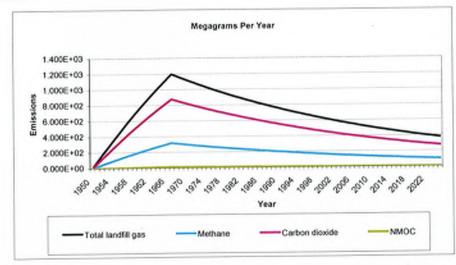
LANDFILL CHARACTERISTICS		
Landfill Open Year	1950	
Landfill Closure Year (with 80-year limit)	1966	
Actual Closure Year (without limit)	1966	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	182,500	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.020	year 1
Potential Methane Generation Capacity, Lo	170	m ³ /Mg
NMOC Concentration	4.000	ppmv as hexane
Methane Content	50	% by volume
CASES / DOLLITANTS SELECTED		

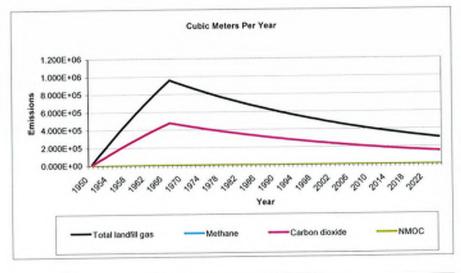
GASES / POLLUTANTS	SELECTED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

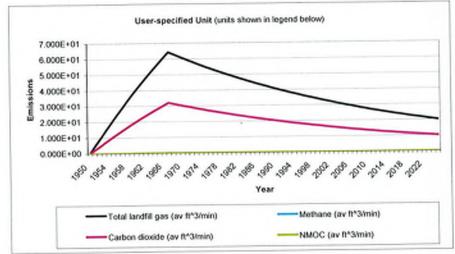
WASTE ACCEPTANCE RATES

	E ACCEPTANCE RATES Waste Acc	cepted	Waste-I	
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1950	9,759	10,735	0	0
1951	9,759	10,735	9,759	10,735
1952	9,759	10,735	19,518	21,470
1953	9,759	10,735	29,277	32,205
1954	9,759	10,735	39,036	42,940
1955	9,759	10,735	48,795	53,675
1956	9,759	10,735	58,555	64,410
1957	9,759	10,735	68,314	75,145
1958	9,759	10,735	78,073	85,680
1959	9,759	10,735	87,832	96,615
1960	9,759	10,735	97,591	107,350
1961	9,759	10,735	107,350	118,085
1962	9,759	10,735	117,109	128,820
1963	9,759	10,735		139,555
1964	9,759		136,627	150,290
1965	9,759	10,735	146,386	161,025
1966	9,759	10,735	156,145	171,760
1967	Ū.	0	165,905	182,495
1968	. 0	0	165,905	182,495
1969	0	0	165,905	182,495
1970	0	0		182,495
1971	0	0	165,905	182,495
1972		Ö		182,495
1973	0	0		182,495
1974	.0	0	165,905	182,495
1975	0	Ö		182,495
1976	0	0		182,495
1977	0 Ö	0 Ö	165,905	182,495
1978		0		
1979	0	0		•
1980	0	0	165,905	
1981	0	Ó		
1982				
1983				
1984				
1985				
1986				
1987				
1988	1 · · · · · · · · · · · · · · · · · · ·	0	165,905	
1989	0	0	165,905	182,495

WASTE ACCEPTANCE RATES (Continued)


	Waste Accepted		Waste-	n-Place
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1990	0	0	165,905	182,495
1991	0	0	165,905	182,495
1992	Ó	0	165,905	182,495
1993	0	0	165,905	182,495
1994	0	0	165,905	182,495
1995	0	0	165,905	182,495
1996	0	Ó	165,905	182,495
1997	0	0	165,905	182,495
1998	0	0	165,905	
1999	0	0	165,905	182,495
2000	0 Ö	0	165,905	182,495
2001	Ö	0	165,905	182,495
2002	0	0	165,905	
2003	0	0	165,905	
2004	0	0	165,905	182,495
2005	0	0	165,905	
2006	0	Ó	165,905	
2007	0	0	165,905	
2008	0	0	165,905	182,495
2009	0	0	165,905	
2010	Ö		165,905	
2011	0		165,905	
2012	0		165,905	
2013				
2014	0		165,905	
2015	0		165,905	
2016	0		165,905	
2017	0	Ó	165,905	* ···
2018	0		165,905	
2019	0		165,905	
2020		0		
2021	0		165,905	
2022	0			
2023	0		165,905	
2024	0	d d		
2025				
2026	0	0		
2027) C		
2028			165,90	
2029	0	00	165,905	5 182,495


	Gas / Pollu	tant Default Parame	(U) 3.	User specified Pol Concentration	usant rarameters
		Concentration	Molecular Weight	(ppmv)	Molecular Weigi
Total lan	ompound	(ppmv)	0.00	(ppmv)	moloodid: Troig
Methane Garbon d			16.04	۰. ۲۰	
Carbon (44.01		
NMOC		4,000	86.18		
	chloroethane	4,000	00.10		
	chloroform) -	0.48	133.41		
HAP		0.40	100.41		
1,1,2,2-					
HAP/VO	oroethane	1.1	167.85		
		2.1	107.00		
4 '	loroethane				
	ne dichloride) -	2.4	98.97		
		2.4	50.57		
	loroethene				
	ne chloride) -	0.20	96.94		
HAP/VO		0.20	30.34		
	loroethane				
(etnyleni	e dichloride)	0.41	98.96		
HAPNO		0.41	55.50		
	loropropane				
	ne dichloride)	0.18	112,99		
HAPNO		U. 10	112.99		
	nol (isopropyl	50	60.11		
alcohol)		50	58.08		
Acetone		7.0	30.00	ł	
Acryloni	trile - HAP/VOC	6.3	53.06		
		0.3	00.00	ł	
	Noor			ļ	
	n Co-disposal -	4.0	78.11		
HAP/VC		1.9	(0.11		
	e · Co·disposal -	44	78.11		
B HAPNO	(11	FQ.11		
	ichloromethane ·	2.4	163.83		
	1/00	3.1	58.12		
8 Butane		5.0	30.12		
- juarbon	disulfide -	0.69	76.13		
HAP/VC		0.58	28.01		
	monoxide	140	20.01		
	tetrachloride -	4.0E-03	153.84		
HAPING		4.00.00	100.04		
	/I sulfide -	0.40	60.07	1	
HAP/VC		0.49]	
	enzene -	0.25	112.56		u a constantino de la constantino de la constantino de la constantino de la constantino de la constantino de la
HAP/VC	ifluoromethane	1.3	86.47	1	E.
		1.0	1 00.71	1	
	thane (ethyl	1.3	64.52		
) - HAP/VOC	0.03	119.39		
	nethane - VOC	1.2	50.49	4	
Chloron	nemane - voo	1.5		1	1
Dichlore	benzene · (HAP			1	1
for para	isomer/VOC)	0.21	147	1	
		Q.2.1	1		
Dichlore	odifluoromethane	16	120.91		
Diebter	ofluoromethane -	10	120.01		
	Muoromenane -	2.6	102.92	1	
VOC	omethane	2.0	IVL.DL		
	ene chloride) -	14	84.94		
HAP	الارتاع - مدار حاداقان در ان	141	04.84		ł
	yl sulfide (methyl	79	62.13		
suifide)		7.8	30.07		
Ethane		890		1	1
Ethano	I-VOC [27	46.08	I	1


Pollutant Parameters (Continued)

Gas / Pol	User-specified Pollutant Parameters			
	Concentration		Concentration	Marta auton Malainht
Compound	(ppmv)	Molecular Weight	(ppmv)	Molecular Weight
Ethyl mercaptan		00.40		1
(ethanethiol) - VOC	2.3	62.13		
Ethylbenzene -				1
HAP/VOC	4.6	106.16		
Ethylene dibromide -	1			
HAP/VOC	1.0E-03	187.88		
Fluorotrichloromethane -				
VOC	0.76	137.38		
Hexane - HAP/VOC	6.6	86.18		
Hydrogen sulfide	36	34.08		
Mercury (total) - HAP	2.9E-04	200.61		1
Methyl ethyl ketone -				
HAP/VOC	7.1	72.11		
Methyl isobutyl ketone -				
HAPNOC	1.9	100.16		
HAPIVOL	1.9	100.10		
Methyl mercaptan - VOC		10.11		
	2.5	48.11		
Pentane - VOC	3.3	72.15		
Perchloroethylene				
(tetrachloroethylene) -				
HAP	3.7	165.83		
Propane - VOC	11	44.09		
t-1,2-Dichloroethene -				E
VOC	2.8	96.94		
	2.0	00.04		f
Toluene - No or				
Unknown Co-disposal -		00.40		
HAPIVOC	39	92.13		
Toluene - Co-disposal -				
HAP/VOC	170	92.13		
Trichloroethylene				
(Inightorgathana)				
HAP/VOC Vinyl chloride - HAP/VOC	2.8	131,40		
Vinyl chloride -				[
HAPNOC	7.3	62.50		
Xylenes - HAP/VOC	12	106.16		
Aylenes - Ingli 1000				
				1
	+		5	
			t i i i i i i i i i i i i i i i i i i i	
	¢ ?			1
l.				
	7			-
	1 1			
ł				
1				
}				
	1		1	1
	5			1
	5			-
			and and for the second second second second second second second second second second second second second seco	

Graphs

Results

Total landfill gas			Methane			
ear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
950	0	0	0	0	0	0
951	8.213E+01	6.577E+04	4.419E+00	2.194E+01	3.288E+04	2.209E+00
52	1.626E+02	1.302E+05	8.750E+00	4.344E+01	6.512E+04	4.375E+00
53	2.416E+02	1.934E+05	1.300E+01	6.452E+01	9.671E+04	6.498E+00
54	3.189E+02	2.554E+05	1.716E+01	8.518E+01	1,277E+05	8.579E+00
55	3.947E+02	3.161E+05	2.124E+01	1.054E+02	1.580E+05	1.062E+01
56	4.690E+02	3.756E+05	2.524E+01	1.253E+02	1.878E+05	1.262E+01
57	5,419E+02	4.339E+05	2.915E+01	1.447E+02	2.170E+05	1.458E+01
58	6.133E+02	4.911E+05	3.300E+01	1.638E+02	2.455E+05	1.650E+01
59	6.833E+02	5.471E+05	3.676E+01	1.825E+02	2.736E+05	1.838E+01
60	7.519E+02	6.021E+05	4.045E+01	2.008E+02	3.010E+05	2.023E+01
61	8.191E+02	6.559E+05	4.407E+01	2.188E+02	3.280E+05	2.204E+01
62	8.850E+02	7.087E+05	4.762E+01	2.364E+02	3.543E+05	2.381E+01
63	9.496E+02	7.604E+05	5.109E+01	2.537E+02	3.802E+05	2.555E+01
64	1.013E+03	8.111E+05	5.450E+01	2.706E+02	4.056E+05	2.725E+01
65	1.075E+03	8.608E+05	5.784E+01	2.872E+02	4.304E+05	2.892E+01
66	1.136E+03	9.096E+05	6.111E+01	3.034E+02	4.548E+05	3.056E+01
67	1,196E+03	9.573E+05	6.432E+01	3.193E+02	4.787E+05	3.216E+01
68	1.172E+03	9.384E+05	6.305E+01	3.130E+02	4.692E+05	3.152E+01
69	1.149E+03	9.198E+05	6.180E+01	3.068E+02	4.599E+05	3.090E+01
70	1.126E+03	9.016E+05	6.058E+01	3.007E+02	4.508E+05	3.029E+01
71	1.104E+03	8.837E+05	5,938E+01	2.948E+02	4.419E+05	2.969E+01
72	1.082E+03	8.662E+05	5.820E+01	2.890E+02	4.331E+05	2.910E+01
73	1.060E+03	8,491E+05	5.705E+01	2.832E+02	4.245E+05	2.852E+01
74	1.039E+03	8.323E+05	5.592E+01	2.776E+02	4.161E+05	2.796E+01
75	1.019E+03	8,158E+05	5.481E+01	2.721E+02	4.079E+05	2.741E+01
76	9.986E+02	7.996 E+ 05	5.373E+01	2.667E+02	3.998E+05	2.686E+01
77	9.788E+02	7.838E+05	5.266E+01	2.615E+02	3.919E+05	2.633E+01
78	9.594E+02	7.683E+05	5.162E+01	2.563E+02	3.841E+05	2.581E+01
79	9.404E+02	7.531E+05	5,060E+01	2.512E+02	3.765E+05	2.530E+01
80	9.218E+02	7.382E+05	4.960E+01	2.462E+02	3.691E+05	2.480E+01
81	9.036E+02	7.235E+05	4,861E+01	2,414E+02	3.618E+05	2.431E+01
82	8.857E+02	7.092E+05	4.765E+01	2.366E+02	3.546E+05	2 383E+01
83	8.681E+02	6.952E+05	4.671E+01	2.319E+02	3.476E+05	2.335E+01
84	8,509E+02	6.814E+05	4.578E+01	2.273E+02	3.407E+05	2.289E+01
85	8.341E+02	6,679E+05	4.488E+01	2.228E+02	3.340E+05	2.244E+01
86	8.176E+02	6.547E+05	4.399E+01	2.184E+02	3.273E+05	2.199E+01
87	8.014E+02	6.417E+05	4 312E+01	2.141E+02	3.209E+05	2.156E+01
88	7.855E+02	6.290E+05	4.226E+01	2.098E+02	3.145E+05	2.113E+01
89	7.700E+02	6.166E+05	4.143E+01	2.057E+02	3.083E+05	2.071E+01
90	7.547E+02	6.043E+05	4.061E+01	2.016E+02	3.022E+05	2.030E+01
91	7.398E+02	5.924E+05	3.980E+01	1.976E+02	2.962E+05	1.990E+01
92	7.251E+02	5.806E+05	3.901E+01	1.937E+02	2.903E+05	1.951E+01
93	7.108E+02	5.692E+05	3.824E+01	1.899E+02	2.846E+05	1.912E+01
94	6.967E+02	5.579E+05	3,748E+01	1.861E+02	2.789E+05	1.874E+01
94	6.829E+02	5.468E+05	3.674E+01	1.824E+02	2.734E+05	1.837E+01
96	6.694E+02	5.360E+05	3.601E+01	1.788E+02	2.680E+05	1.801E+01
397	6.561E+02	5.254E+05	3.530E+01	1.753E+02	2.627E+05	1.765E+01
398	6.431E+02	5.150E+05	3.460E+01	1,718E+02	2.575E+05	1.730E+01
999	6.304E+02	5.048E+05	3.392E+01	1.684E+02	2.524E+05	1.696E+01

×		Total landfill gas			Methane		
Year —	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2000	6.179E+02	4.948E+05	3.325E+01	1.651E+02	2.474E+05	1.662E+01	
001	6.057E+02	4.850E+05	3.259E+01	1.618E+02	2.425E+05	1.629E+01	
002	5.937E+02	4.754E+05	3.194E+01	1.586E+02	2.377E+05	1.697E+01	
003	5.819E+02	4.660E+05	3.131E+01	1.554E+02	2.330E+05	1.565E+01	
004	5.704E+02	4.568E+05	3.069E+01	1.524E+02	2.284E+05	1.534E+01	
005	5.591E+02	4.477E+05	3.008E+01	1.493E+02	2.239E+05	1.504E+01	
006	5.480E+02	4.388E+05	2.949E+01	1.464E+02	2.194E+05	1.474E+01	
007	5.372E+02	4.302E+05	2.890E+01	1.435E+02	2.151E+05	1.445E+01	
008	5.266E+02	4.216E+05	2.833E+01	1.406E+02	2.108E+05	1.416E+01	
009	5.161E+02	4.133E+05	2.777E+01	1.379E+02	2.066E+05	1.388E+01	
010	5.059E+02	4.051E+05	2.722E+01	1.351E+02	2.026E+05	1.361E+01	
011	4.959E+02	3.971E+05	2.668E+01	1.325E+02	1.985E+05	1.334E+01	
012	4.861E+02	3.892E+05	2.615E+01	1.298E+02	1.946E+05	1.308E+01	
013	4.764E+02	3.815E+05	2.563E+01	1.273E+02	1.908E+05	1.282E+01	
014	4.670E+02	3.740E+05	2.513E+01	1.247E+02	1.870E+05	1.256E+01	
015	4.578E+02	3.666E+05	2.463E+01	1.223E+02	1.833E+05	1.231E+01	
015	4.487E+02	3.593E+05	2.414E+01	1.199E+02	1,796E+05	1.207E+01	
017	4.398E+02	3.522E+05	2.366E+01	1.175E+02	1.761E+05	1.183E+01	
018	4.398E+02 4.311E+02	3.452E+05	2.319E+01	1.152E+02	1.726E+05	1.160E+01	
019	4.311E+02 4.226E+02	3.384E+05	2.274E+01	1.129E+02	1.692E+05	1.137E+01	
020	4.226E+02 4.142E+02	3.317E+05	2.229E+01	1.106E+02	1.658E+05	1.114E+01	
020	4.142E+02 4.060E+02	3.251E+05	2.184E+01	1.084E+02	1.626E+05	1.092E+01	
	3.980E+02	3.187E+05	2.141E+01	1.063E+02	1.593E+05	1.071E+01	
022 023		3.124E+05	2.099E+01	1.042E+02	1.562E+05	1.049E+01	
	3.901E+02	3.062E+05	2.057E+01	1.021E+02	1.531E+05	1.029E+01	
024	3.824E+02	3.002E+05	2.016E+01	1.001E+02	1.501E+05	1.008E+01	
025	3.748E+02	1 · · ·	1.977E+01	9.813E+01	1.471E+05	9.883E+00	
026	3.674E+02	2.942E+05	1.937E+01	9.618E+01	1.442E+05	9.687E+00	
027	3.601E+02	2.883E+05		9.428E+01	1.413E+05	9.495E+00	
028	3.530E+02	2.826E+05	1.899E+01	9.241E+01	1.385E+05	9.307E+00	
029	3.460E+02	2.770E+05	1.861E+01		1.358E+05	9.123E+00	
030	3.391E+02	2.716E+05	1.825E+01	9.058E+01	1.331E+05	8.942E+00	
031	3.324E+02	2.662E+05	1.788E+01	8.879E+01	1.305E+05	8.765E+00	
032	3.258E+02	2.609E+05	1.753E+01	8.703E+01	1.279E+05	8.591E+00	
033	3.194E+02	2.557E+05	1.718E+01	8.531E+01	1.253E+05	8.421E+00	
034	3.130E+02	2.507E+05	1.684E+01	8.362E+01	1.229E+05	8.255E+00	
035	3.068E+02	2.457E+05	1.651E+01	8.196E+01		8.091E+00	
036	3.008E+02	2.408E+05	1.618E+01	8.034E+01	1.204E+05 1.180E+05	7.931E+00	
037	2.948E+02	2.361E+05	1.586E+01	7.875E+01	I	7.774E+00	
038	2.890E+02	2.314E+05	1.555E+01	7.719E+01	1.157E+05	7.620E+00	
039	2.833E+02	2.268E+05	1.524E+01	7.566E+01	1.134E+05		
040	2.776E+02	2.223E+05	1.494E+01	7.416E+01	1.112E+05	7.469E+00	
041	2.721E+02	2.179E+05	1.464E+01	7.269E+01	1.090E+05	7.321E+00	
042	2.668E+02	2.136E+05	1.435E+01	7.125E+01	1.068E+05	7.176E+00	
043	2.615E+02	2.094E+05	1.407E+01	6.984E+01	1.047E+05	7.034E+00	
044	2.563E+02	2.052E+05	1.379E+01	6.846E+01	1.026E+05	6.895E+00	
045	2.512E+02	2.012E+05	1.352E+01	6.710E+01	1.006E+05	6.758E+00	
046	2.463E+02	1.972E+05	1.325E+01	6.578E+01	9.859E+04	6.624E+00	
047	2.414E+02	1.933E+05	1.299E+01	6.447E+01	9.664E+04	6.493E+00	
048	2.366E+02	1.895E+05	1.273E+01	6.320E+01	9.473E+04	6.365E+00	
049	2.319E+02	1.857E+05	1.248E+01	6.195E+01	9.285E+04	6.239E+00	
2050	2.273E+02	1.820E+05	1.223E+01	6.072E+01	9.101E+04	6.115E+00	

	Total landfill gas			Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2051	2.228E+02	1.784E+05	1.199E+01	5.952E+01	8.921E+04	5.994E+00	
2052	2,184E+02	1.749E+05	1,175E+01	5.834E+01	8.744E+04	5.875E+00	
2053	2.141E+02	1.714E+05	1.152E+01	5.718E+01	8.571E+04	5,759E+00	
2054	2.098E+02	1.680E+05	1.129E+01	5.605E+01	8.402E+04	5.645E+00	
2055	2.057E+02	1.647E+05	1,107E+01	5.494E+01	8.235E+04	5.533E+00	
2056	2.016E+02	1.614E+05	1.085E+01	5.385E+01	8.072E+04	5.424E+00	
2057	1.976E+02	1.582E+05	1.063E+01	5.279E+01	7.912E+04	5,316E+00	
2058	1.937E+02	1,551E+05	1.042E+01	5.174E+01	7.756E+04	5.211E+00	
2059	1.899E+02	1.520E+05	1.022E+01	5.072E+01	7.602E+04	5.108E+00	
2060	1.861E+02	1.490E+05	1.001E+01	4.971E+01	7.451E+04	5.007E+00	
2061	1.824E+02	1.461E+05	9.815E+00	4.873E+01	7.304E+04	4.908E+00	
2062	1,788E+02	1,432E+05	9.621E+00	4.776E+01	7.159E+04	4.810E+00	
2063	1.753E+02	1.404E+05	9.430E+00	4.682E+01	7.018E+04	4.715E+00	
2064	1,718E+02	1.376E+05	9.243E+00	4.589E+01	6.879E+04	4.622E+00	
2065	1.684E+02	1.348E+05	9.060E+00	4.498E+01	6.742E+04	4.530E+00	
2066	1.651E+02	1.322E+05	8.881E+00	4.409E+01	6.609E+04	4.441E+00	
2067	1.618E+02	1.296E+05	8,705E+00	4.322E+01	6.478E+04	4.353E+00	
2068	1.586E+02	1.270E+05	8,533E+00	4.236E+01	6.350E+04	4.266E+00	
2069	1.555E+02	1.245E+05	8.364E+00	4.152E+01	6.224E+04	4.182E+00	
2070	1.524E+02	1.220E+05	8.198E+00	4.070E+01	6.101E+04	4.099E+00	
2071	1.494E+02	1.196E+05	8.036E+00	3.990E+01	5.980E+04	4.018E+00	
2072	1.464E+02	1.172E+05	7.877E+00	3.911E+01	5.862E+04	3.938E+00	
2073	1.435E+02	1.149E+05	7.721E+00	3.833E+01	5.745E+04	3.860E+00	
2074	1.407E+02	1.126E+05	7.568E+00	3.757E+01	5.632E+04	3,784E+00	
2075	1.379E+02	1,104E+05	7.418E+00	3.683E+01	5.520E+04	3.709E+00	
2076	1.351E+02	1.082E+05	7.271E+00	3.610E+01	5.411E+04	3.636E+00	
2077	1.325E+02	1.061E+05	7.127E+00	3.538E+01	5.304E+04	3.564E+00	
2078	1.298E+02	1,040E+05	6.986E+00	3.468E+01	5.199E+04	3.493E+00	
2079	1.273E+02	1.019E+05	6,848E+00	3.400E+01	5.096E+04	3.424E+00	
2080	1.248E+02	9.990E+04	6.712E+00	3.332E+01	4.995E+04	3.356E+00	
2080	1.223E+02	9.792E+04	6.579E+00	3.266E+01	4,896E+04	3.290E+00	
2082	1.199E+02	9.598E+04	6.449E+00	3.202E+01	4.799E+04	3.224E+00	
2082	1.175E+02	9,408E+04	6.321E+00	3.138E+01	4.704E+04	3.161E+00	
2083	1.152E+02	9.222E+04	6.196E+00	3.076E+01	4.611E+04	3.098E+00	
2084	1.129E+02	9.039E+04	6.073E+00	3.015E+01	4.520E+04	3.037E+00	
2085	1.106E+02	8.860E+04	5,953E+00	2,956E+01	4.430E+04	2.977E+00	
2085	1.085E+02	8.685E+04	5.835E+00	2.897E+01	4.342E+04	2.918E+00	
2087	1.063E+02	8,513E+04	5.720E+00	2.840E+01	4.256E+04	2.860E+00	
	1.042E+02	8.344E+04	5.606E+00	2.783E+01	4,172E+04	2.803E+00	
2089 2090	1.042E+02 1.021E+02	8.179E+04	5,495E+00	2.728E+01	4,089E+04	2.748E+00	

Year	Carbon dioxide			NMOC			
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
950	0	0	0	0	0	0	
951	6.019E+01	3.288E+04	2.209E+00	9.430E-01	2.631E+02	1.768E-02	
952	1.192E+02	6.512E+04	4.375E+00	1.867E+00	5.209E+02	3.500E-02	
953	1.770E+02	9.671E+04	6.498E+00	2.773E+00	7.737E+02	5.198E-02	
954	2.337E+02	1.277E+05	8.579E+00	3.661E+00	1.021E+03	6.863E-02	
955	2.893E+02	1.580E+05	1.062E+01	4.532E+00	1.264E+03	8.495E-02	
956	3.438E+02	1.878E+05	1.262E+01	5.385E+00	1.502E+03	1.009E-01	
957	3.971E+02	2.170E+05	1.458E+01	6.221E+00	1.736E+03	1.166E-01	
958	4.495E+02	2.455E+05	1.650E+01	7.041E+00	1.964E+03	1.320E-01	
959	5.008E+02	2.736E+05	1.838E+01	7.845E+00	2.189E+03	1.470E-01	
	5.510E+02	3.010E+05	2.023E+01	8.632E+00	2.408E+03	1.618E-01	
960		3,280E+05	2.204E+01	9.404E+00	2.624E+03	1.763E-01	
961	6.003E+02			1.016E+01	2.835E+03	1.905E-01	
962	6.486E+02	3.543E+05	2.381E+01	1.090E+01	3.042E+03	2.044E-01	
963	6.960E+02	3.802E+05	2.555E+01		3.245E+03	2.180E-01	
964	7.424E+02	4.056E+05	2.725E+01	1.163E+01	3.443E+03	2.314E-01	
365	7.879E+02	4.304E+05	2.892E+01	1.234E+01	3.638E+03	2.314E-01	
966	8.325E+02	4.548E+05	3.056E+01	1.304E+01		1	
967	8.762E+02	4.787E+05	3.216E+01	1.373E+01	3.829E+03	2.573E-01	
968	8.588E+02	4.692E+05	3.152E+01	1.345E+01	3.753E+03	2.522E-01	
969	8.418E+02	4.599E+05	3.090E+01	1.319E+01	3.679E+03	2.472E-01	
970	8.252E+02	4.508E+05	3.029E+01	1.293E+01	3.606E+03	2.423E-01	
971	8.088E+02	4.419E+05	2.969E+01	1.267E+01	3.535E+03	2.375E-01	
972	7.928E+02	4.331E+05	2.910E+01	1.242E+01	3.465E+03	2.328E-01	
973	7.771E+02	4.245E+05	2.852E+01	1.217E+01	3.396E+03	2.282E-01	
974	7.617E+02	4.161E+05	2.796E+01	1.193E+01	3.329E+03	2.237E-01	
975	7.466E+02	4.079E+05	2.741E+01	1.170E+01	3.263€+03	2.192E-01	
976	7.319E+02	3.998E+05	2.686E+01	1.146E+01	3.199E+03	2.149E-01	
977	7.174E+02	3.919E+05	2.633E+01	1.124E+01	3.135E+03	2.107E-01	
978	7.032E+02	3.841E+05	2.581E+01	1.102E+01	3.073E+03	2.065E-01	
979	6.892E+02	3.765E+05	2.530E+01	1.080E+01	3.012E+03	2.024E-01	
980	6,756E+02	3.691E+05	2.480E+01	1.058E+01	2.953E+03	1.984E-01	
981	6.622E+02	3.618E+05	2.431E+01	1.037E+01	2.894E+03	1.945E-01	
982	6.491E+02	3.546E+05	2.383E+01	1.017E+01	2.837E+03	1.906E-01	
983	6.362E+02	3.476E+05	2.335E+01	9.967E+00	2.781E+03	1.868E-01	
	6.236E+02	3.407E+05	2.289E+01	9,770E+00	2.726E+03	1.831E-01	
984	6.113E+02	3.340 E+05	2.244E+01	9.576E+00	2.672E+03	1.795E-01	
985	5.992E+02	3.273E+05	2.199E+01	9.387E+00	2.619E+03	1.760E-01	
986		3.209E+05	2.156E+01	9.201E+00	2.567E+03	1.725E-01	
987	5.873E+02		2.113E+01	9.019E+00	2.516E+03	1.691E-01	
988	5.757E+02	3.145E+05		8.840E+00	2.466E+03	1.657E-01	
989	5.643E+02	3.083E+05	2.071E+01	8.665E+00	2.400E+03	1.624E-01	
990	5.531E+02	3.022E+05	2.030E+01	8.493E+00	2.370E+03	1.592E-01	
991	5.422E+02	2.962E+05	1.990E+01	1	2.370E+03	1.561E-01	
992	5.314E+02	2.903E+05	1.951E+01	8.325E+00		1.530E-01	
993	5.209E+02	2.846E+05	1.912E+01	8.160E+00	2.277E+03	2	
994	5.106E+02	2.789E+05	1.874E+01	7.999E+00	2.232E+03	1.499E-01	
995	5.005E+02	2.734E+05	1.837E+01	7.840E+00	2.187E+03	1.470E-01	
996	4.906E+02	2.680E+05	1.801E+01	7.685E+00	2.144E+03	1.441E-01	
997	4.809E+02	2.627E+05	1.765E+01	7.533E+00	2.102E+03	1.412E-01	
998	4.713E+02	2.575E+05	1.730E+01	7.384E+00	2.060E+03	1.384E-01	
999	4.620E+02	2.524E+05	1.696E+01	7.238E+00	2.019E+03	1.357E-01	

		Carbon dioxide			NMOC	
∕ear ⊨—	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
000	4.529E+02	2.474E+05	1.662E+01	7.094E+00	1.979E+03	1.330E-01
001	4.439E+02	2,425E+05	1.629E+01	6.954E+00	1.940E+03	1.303E-01
002	4.351E+02	2.377E+05	1.597E+01	6.816E+00	1.902E+03	1.278E-01
003	4.265E+02	2.330E+05	1.565E+01	6.681Ë+00	1.864E+03	1.252E-01
003	4.180E+02	2.284E+05	1.534E+01	6.549E+00	1.827E+03	1.228E-01
005	4.098E+02	2.239E+05	1,504E+01	6.419E+00	1.791E+03	1.203E-01
		2.194E+05	1.474E+01	6.292E+00	1.755E+03	1.179Ë-01
006	4.017E+02	2.151E+05	1.445E+01	6.168E+00	1.721E+03	1.156E-01
007	3.937E+02	2.108E+05	1.416E+01	6.045E+00	1.687E+03	1.133E-01
008	3.859E+02	2.066E+05	1.388E+01	5.926E+00	1.653E+03	1.111E-01
009	3.783E+02		1.361E+01	5.808E+00	1.620E+03	1.089E-01
010	3.708E+02	2.026E+05	1.334E+01	5.693E+00	1.588E+03	1.087E-01
011	3.634E+02	1.985E+05		5.581E+00	1.557E+03	1.046E-01
Ō12	3.562E+02	1.946E+05	1.308E+01	5.470E+00	1.526E+03	1.025E-01
013	3.492E+02	1.908E+05	1.282E+01	5.362E+00	1.496E+03	1.005E-01
014	3.423E+02	1.870E+05	1.256E+01		1.466E+03	9.851E-02
015	3.355E+02	1.833E+05	1.231E+01	5.256E+00	1.437E+03	9.656E-02
016	3.288E+02	1.796E+05	1.207E+01	5.152E+00		9.465E-02
017	3.223E+02	1.761E+05	1.183E+01	5.050E+00	1.409E+03 1.381E+03	9.278E-02
018	3.160E+02	1.726E+05	1.160E+01	4.950E+00		9.094E-02
019	3.097E+02	1.692E+05	1.137E+01	4.852E+00	1.353E+03	8.914E-02
020	3.036E+02	1.658E+05	1.114E+01	4.755E+00	1.327E+03	
021	2.976E+02	1.626E+05	1.092E+01	4.661E+00	1.300E+03	8.737E-02
022	2.917E+02	1.593E+05	1.071E+01	4.569E+00	1.275E+03	8.564E-02
023	2.859E+02	1.562E+05	1.049E+01	4.479E+00	1.249E+03	8.395E-02
2024	2.802E+02	1.531E+05	1.029E+01	4.390E+00	1.225E+03	8.229E-02
025	2.747E+02	1.501E+05	1.008E+01	4.303E+00	1.200E+03	8.066E-02
2026	2.692E+02	1.471E+05	9.883E+00	4.218E+00	1.177E+03	7.906E-02
2027	2.639E+02	1.442E+05	9.687E+00	4.134E+00	1.153E+03	7.749E-02
028	2.587E+02	1.413E+05	9.495E+00	4.052E+00	1.131E+03	7.596E-02
020	2.536E+02	1.385E+05	9.307E+00	3.972E+00	1.108E+03	7.446E-02
02.9	2.485E+02	1.358E+05	9.123E+00	3.893E+00	1.086E+03	7.298E-02
	2,436E+02	1.331E+05	8,942E+00	3.816E+00	1.065E+03	7.154E-02
2031	2.388E+02	1.305E+05	8.765E+00	3.741E+00	1.044E+03	7.012E-02
032		1.279E+05	8.591E+00	3.667E+00	1.023E+03	6.873E-02
2033	2.341E+02	1.253E+05	8.421E+00	3.594E+00	1.003E+03	6.737E-02
2034	2.294E+02		8.255E+00	3.523E+00	9.828E+02	6.604E-02
035	2.249E+02	1.229E+05	8.091E+00	3.453E+00	9.634E+02	6.473E-02
2036	2.204E+02	1.204E+05	7.931E+00	3.385E+00	9.443E+02	6.345E-02
2037	2.161E+02	1.180E+05	7.774E+00	3.318E+00	9.256E+02	6.219E-02
2038	2.118E+02	1.157E+05	7.620E+00	3.252E+00	9.073E+02	6.096E-02
2039	2.076E+02	1.134E+05		3.188E+00	8.893E+02	5.975E-02
2040	2.035E+02	1.112E+05	7,469E+00	3.125E+00	8,717E+02	5.857E-02
2041	1.995E+02	1.090E+05	7.321E+00	3.125E+00 3.063E+00	8.544E+02	5.741E-02
2042	1.955E+02	1.068E+05	7,176E+00		8.375E+02	5.627E-02
2043	1.916E+02	1.047E+05	7.034E+00	3.002E+00	8.209E+02	5.516E-02
2044	1.878E+02	1.026E+05	6.895E+00	2.943E+00	3 2 4 7 1	5.407E-02
2045	1.841E+02	1.006E+05	6.758E+00	2.884E+00	8.047E+02	5.300E-02
2046	1.805E+02	9.859E+04	6.624E+00	2.827E+00	7.887E+02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2047	1.769E+02	9.664E+04	6.493E+00	2.771E+00	7.731E+02	5.195E-02
2048	1.734E+02	9.473E+04	6.365E+00	2.716E+00	7.578E+02	5.092E-02
2049	1.700E+02	9.285E+04	6.239E+00	2.663E+00	7.428E+02	4.991E-02
2050	1.666E+02	9.101E+04	6.115E+00	2.610E+00	7.281E+02	4.892E-02

		Carbon dioxide		NMOC			
Year	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)_	
2051	1.633E+02	8.921E+04	5.994E+00	2.558E+00	7.137E+02	4.795E-02	
2052	1.601E+02	8.744E+04	5.875E+00	2.508E+00	6 996E+02	4.700E-02	
2053	1,569E+02	8.571E+04	5.759E+00	2.458E+00	6.857E+02	4.607E-02	
2054	1.538E+02	8.402E+04	5.645E+00	2.409E+00	6.721E+02	4.516E-02	
2055	1.507E+02	8.235E+04	5.533E+00	2.361E+00	6.588E+02	4.427E-02	
2056	1.478E+02	8.072E+04	5.424E+00	2.315E+00	6.458E+02	4.339E-02	
2057	1.448E+02	7.912E+04	5.316E+00	2.269E+00	6.330E+02	4.253E-02	
2058	1.420E+02	7.756E+04	5,211E+00	2.224E+00	6.204E+02	4.169E-02	
2059	1.392E+02	7.602E+04	5,108E+00	2.180E+00	6.082E+02	4.086E-02	
2060	1.364E+02	7.451E+04	5.007E+00	2.137E+00	5.961E+02	4.005E-02	
2061	1.337E+02	7.304E+04	4.908E+00	2.094E+00	5.843E+02	3.926E-02	
2062	1.311E+02	7.159E+04	4.810E+00	2.053E+00	5.727E+02	3.848E-02	
2063	1.285E+02	7.018E+04	4.715E+00	2.012E+00	5.614E+02	3.772E-02	
2064	1.259E+02	6.879E+04	4.622E+00	1.972E+00	5.503E+02	3.697E-02	
2065	1.234E+02	6.742E+04	4.530E+00	1.933E+00	5.394E+02	3.624E-02	
2066	1.210E+02	6.609E+04	4.441E+00	1.895E+00	5.287E+02	3.552E-02	
2067	1.186E+02	6.478E+04	4.353E+00	1.858E+00	5.182E+02	3.482E-02	
2068	1 162E+02	6.350E+04	4.266E+00	1.821E+00	5.080E+02	3.413E-02	
2069	1.139E+02	6.224E+04	4.182E+00	1.785E+00	4.979E+02	3.346E-02	
2070	1,117E+02	6.101E+04	4.099E+00	1.749E+00	4.881E+02	3.279E-02	
2071	1.095E+02	5.980E+04	4.018E+00	1.715E+00	4.784E+02	3.214E-02	
2072	1.073E+02	5.862E+04	3.938E+00	1.681E+00	4.689E+02	3.151E-02	
2073	1.052E+02	5.745E+04	3,860E+00	1.648E+00	4.596E+02	3.088E-02	
2074	1.031E+02	5.632E+04	3.784E+00	1.615E+00	4.505E+02	3.027E-02	
2075	1.010E+02	5.520E+04	3.709E+00	1.583E+00	4.416E+02	2.967E-02	
2076	9.905E+01	5.411E+04	3.636E+00	1.552E+00	4.329E+02	2.908E-02	
2077	9.709E+01	5.304E+04	3.564E+00	1.521E+00	4.243E+02	2.851E-02	
2078	9.516E+01	5.199E+04	3.493E+00	1.491E+00	4.159E+02	2.794E-02	
2079	9.328E+01	5.096E+04	3.424E+00	1.461E+00	4.077E+02	2.739E-02	
2080	9.143E+01	4.995E+04	3.356E+00	1.432E+00	3.996E+02	2.685E-02	
2081	8.962E+01	4.896E+04	3.290E+00	1.404E+00	3.917E+02	2.632E-02	
2082	8.785E+01	4.799E+04	3.224E+00	1.376E+00	3.839E+02	2.580E-02	
2083	8.611E+01	4,704E+04	3.161E+00	1.349E+00	3.763E+02	2.528E-02	
2084	8.440E+01	4.611E+04	3.098E+00	1.322E+00	3.689E+02	2.478E-02	
2085	8.273E+01	4.520E+04	3.037E+00	1.296E+00	3.616E+02	2.429E-02	
2086	8.109E+01	4.430E+04	2.977E+00	1.270E+00	3.544E+02	2.381E-02	
2087	7.949E+01	4.342E+04	2.918E+00	1.245E+00	3.474E+02	2.334E-02	
2088	7.791E+01	4.256E+04	2.860E+00	1.221E+00	3.405E+02	2.288E-02	
2089	7.637E+01	4.172E+04	2.803E+00	1.196E+00	3.338E+02	2.243E-02	
2090	7.486E+01	4.089E+04	2.748E+00	1.173E+00	3.272E+02	2.198E-02	

Appendix 2 Second Computer Model Run

Summary Report

Landfill Name or Identifier: MVS Landfill Colorado Springs, CO

Date: Monday, March 07, 2011

Description/Comments:

This computer run considers wet conditions based on creek as bottom of landfill

Ç

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0,1}^{1} k L_o \left(\frac{M_i}{10}\right) e^{-kt_{ij}}$$

Where,

Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year 1)

L_o = potential methane generation capacity (m³/Mg)

M_i = mass of waste accepted in the ith year (Mg) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (decimal years, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

Input Review

LANDFILL CHARACTERISTICS Landfill Open Year Landfill Closure Year (with 80-year limit)	1950 1966 <i>1</i> 966	
Actual Closure Year (without limit) Have Model Calculate Closure Year?	No	
Waste Design Capacity	182,500	short tons
MODEL PARAMETERS		
Methane Generation Rate, k	0.700	year '
Potential Methane Generation Capacity, Lo	96	m³/Mg
NMOC Concentration	4,000	ppmv as hexane
Methane Content	50	% by volume
CASES / DOLLUTANTS SELECTED		

GASES / POLLUTANTS SELECTED					
Gas / Pollutant #1:	Total landfill gas				
Gas / Pollutant #2:	Methane				
Gas / Pollutant #3:	Carbon dioxide				
Gas / Pollutant #4:	NMOC				

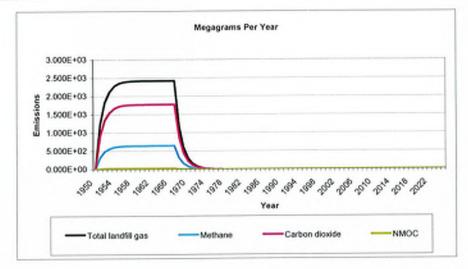
WASTE ACCEPTANCE RATES

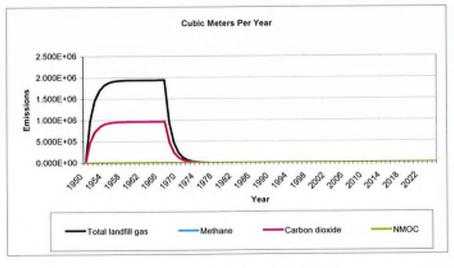
¥	Waste Acc	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1950	9,759	10,735	0	0	
1951	9,759	10,735	9,759	10,735	
1952	9,759	10,735	19,518	21,470	
1953	9,759	10,735	29,277	32,205	
1954	9,759	10,735	39,036	42,940	
1955	9,759	10,735	48,795	53,675	
1956	9,759	10,735	58,555	64,410	
1957	9,759	10,735	68,314	75,145	
1958	9,759	10,735	78,073	85,880	
1959	9,759	10,735	87,832	96,615	
1960	9,759	10,735	97,591	107,350	
1961	9,759	10,735	107,350	118,085	
1962	9,759	10,735	117,109	128,820	
1963	9,759	10,735	126,868	139,555	
1964	9,759	10,735	136,627	150,290	
1965	9,759	10,735	146,386	161,025	
1966	9,759	10,735	156,145	171,760	
1967		0	165,905	182,495	
1968		0	165,905	182,495	
1969		0 Ö	165,905	182,495	
1970		0	165,905	182,495	
1971	0	0	165,905	182,495	
1972		0	165,905	182,495	
1973	0	0	165,905	182,495	
1974	0 Ö	Ó	165,905	182,495	
1975		· 0	165,905	182,495	
1976	0	0	165,905	182,495	
1977	Ó	0 Ó	165,905	182,495	
1978	Ó	0	165,905	182,495	
1979		0 Ō	165,905	182,495	
1980		Ō	165,905	182,495	
1981	0	0	165,905	182,495	
1982			165,905	182,495	
1983			165,905	182,495	
1984			165,905	182,495	
1985	1	0	165,905	182,495	
1986			165,905	182,495	
1987	•	0	165,905	182,495	
1988		Ó		182,495	
1989			165,905	182,495	

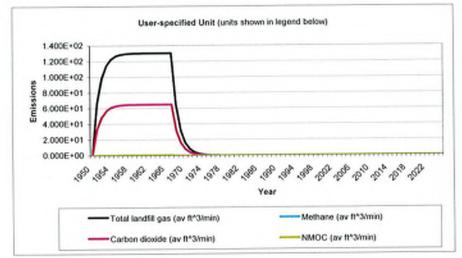
.

WASTE ACCEPTANCE RATES (Continued)

v	Waste Acc	cepted	Waste-In-Place		
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)	
1990	0	0	165,905	182,495	
1991	0	0	165,905	182,495	
1992	0	0	165,905	182,495	
1993	ó	0	165,905	182,495	
1994	0	0	165,905	182,495	
1995	0	0	165,905	182,495	
1996	0	0	165,905	182,495	
1997	. 0	0	165,905	182,495	
1998	0	0	165,905	182,495	
1999	Ó	0	165,905	182,495	
2000	ó	0	165,905	182,495	
2001	0	0		182,495	
2002	0	0	165,905	182,495	
2003	o	Ó	165,905	182,495	
2004	0	0	165,905	182,495	
2005	0	0	165,905	182,495	
2006	Ó	0	165,905	182,495	
2007	0	0	165,905	182,495	
2008	0	0	165,905	182,495	
2009	0	0	165,905	182,495	
2010	0	0	165,905	182,495	
2011	0	0	165,905	182,495	
2012	0	Ó	165,905	182,495	
2013	0	0	165,905	182,495	
2014	0	0	165,905	182,495	
2015	0	0	165,905	182,495	
2016	0	0 Ó	165,905	182,495	
2017	0		165,905	182,495	
2018	0	, o	165,905	182,495	
2019	0	Ó	165,905		
2020	0	0	165,905		
2021	0	0			
2022	0	0	165,905		
2023	0	0 Ó	165,905		
2024	0	Ó	165,905		
2025	0	0		1	
2026	0	0			
2027	0	0			
2028	0	0	165,905		
2029	0	Ó	165,905	182,495	


Pollutant Parameters


	Gas / Poll	User-specified Pollutant Parameters:			
	Compound	Concentration (ppmv)	Molecular Weight	Concentration (ppmv)	Molecular Weight
s	Total landfill gas		0.00		
in e	Methane		16.04		
õ	Carbon dioxide	4,000	44.01 86.18		
	NMOC	4,000	80,10		
	1,1,1-Trichloroelhane (methyl chloroform) -				
	HAP	0.48	133.41		
	1,1,2,2-	0.40			
	Tetrachloroethane -				
	HAP/VOC	1.1	167.85		
	1,1-Dichloroethane				
	(elhylidene dichloride) -				
	HAP/VOC	2.4	98.97		
	1,1-Dichloroethene				
	(vinylidene chloride) -				
	HAP/VOC	0.20	96.94		
	1,2-Dichloroethane				
	(ethylene dichloride) -				
	HAP/VOC	0.41	98.96		
	1,2-Dichloropropane				
	(propytene dichloride) -	0.18	112.99		
	HAP/VOC	U. 10	112.95	1	
	2-Propanol (isopropyl	50	60,11		
	alcohol) - VOC Acetone	7.0	58.08		
		7.0			
	Acrylonitrile - HAP/VOC	6.3	53.06		
	Benzene - No or	2.4			
	Unknown Co-disposal -			ł	
	HAP/VOC	1.9	78.11	ł	
	Benzene - Co-disposal -				
Ś	HAP/VOC	11	78.11		
Poliutants	Bromodichloromelhane -				
Ę	VOC	3.1	163.83		
5	Butane - VOC	5.0	58.12		
ш	Carbon disulfide -		70.42		
	HAP/VOC	0.58	76.13 28.01		
	Carbon monoxide	140	20.01		
	Carbon tetrachloride - HAP/VOC	4.0E-03	153.84		
	Carbonyl sulfide -	4.0 <u>2</u> -00	100.04		
	HAP/VOC	0.49	60.07		
	Chlorobenzene -	Q			1
	HAPNOC	0.25	112.56		
	Chlorodifluoromethane	1.3	86.47		
	Chloroethane (elhy)				
	chloride) - HAP/VOC	1.3	64.52		
	Chloroform - HAP/VOC	0.03	119.39		
	Chloromethane - VOC	1.2	50.49		
	Dichlorobenzene - (HAP				
	for para isomer/VOC)				
I U		0.21	147		
	Dichlorodifluoromethane		100.01		ļ
		16	120.91		
	Dichlorofluoromelhane -	2.6	102.92		
	VOC	2.0	104.94	1	
	Dichloromelhane (methylene chloride)			1	
	(methylene chloride) -	14	84.94		
	Dimethyl sulfide (methyl	14		1	
	sulfide) - VOC	7.8	62.13		
	Ethane	890	30.07		
	Elhanol - VOC	27	46.08		


Pollutant Parameters (Continued)

Gas / Poll	User-specified Pollutant Parameter Concentration				
	Concentration	Moleculer Minisht			
Compound	(<i>ppmv</i>)	Molecular Weight	(ppmv)	Molecular Weight	
Ethyl mercaptan (ethanethiol) - VOC	2.3	62.13			
	2.5	02.15			
Ethylbenzene -	4 6	106.16			
HAP/VOC	4.6	100.10			
Ethylene dibromide -		407.00			
HAP/VOC	1.0E-03	187.88			
Fluorotrichloromethane -					
voc	0.76	137.38			
Hexane - HAP/VOC	6.6	86.18			
Hydrogen sulfide	36	34,08			
Mercury (total) - HAP	2.9E-04	200.61			
Methyl ethyl ketone -					
HAP/VOC	7.1	72.11			
Methyl isobutyl ketone -					
HAP/VOC	1.9	100.16			
Methyl mercaptan - VOC	2.5	48.11			
Pentane - VOC	3.3	72.15			
	Q.Q	1.1.1			
Perchloroethylene					
(tetrachloroethylene) -	0 7	165.83			
HAP	3.7				
Propane - VOC	11	44.09			
t-1,2-Dichloroethene -					
voc	2.8	96.94			
Toluene - No or					
Unknown Co-disposal -					
HAP/VOC	39	92,13			
Toluene - Co-disposal -		1			
HAP/VOC	170	92.13		}	
Trichloroethylene					
(triablaranthann)					
HAP/VOC Vinyl chloride - HAP/VOC	2.8	131.40			
Vinyl chloride -					
HAP/VOC	7.3	62.50			
Xylenes - HAP/VOC	12	106.16			
Allones - HAI / Coo					
		· · · · · · · · · · · · · · · · · · ·			
		3			
l I				l L	
				}	
				ł	
]	
		ę		1	
1				ŧ	
	· · · · · · · · · · · · · · · · · · ·				

Graphs

Results

T	Total landfill gas			Methane			
ear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
950	0	0	0	0	0	Q	
951	1.220E+03	9.767E+05	6.562E+01	3.258E+02	4.883E+05	3.281E+01	
352	1.825E+03	1.462E+06	9.821E+01	4.876E+02	7.308E+05	4.910E+01	
353	2.126E+03	1.703E+06	1.144E+02	5.679E+02	8.513E+05	5.720E+01	
54	2.275E+03	1.822E+06	1.224E+02	6.078E+02	9.111E+05	6.121E+01	
55	2.350E+03	1.882E+06	1.264E+02	6.276E+02	9.408E+05	6.321E+01	
56	2.387E+03	1.911E+06	1.284E+02	6.375E+02	9.555E+05	6.420E+01	
57	2,405E+03	1.926E+06	1.294E+02	6.423E+02	9.628E+05	6.469E+01	
58	2.414E+03	1.933E+06	1.299E+02	6.448E+02	9.665E+05	6.494E+01	
59	2.418E+03	1.937E+06	1.301E+02	6.460E+02	9.683E+05	6.506E+01	
60	2,421E+03	1.938E+06	1.302E+02	6.466E+02	9.692E+05	6.512E+01	
61	2.422E+03	1.939E+06	1.303E+02	6.469E+02	9.696E+05	6.515E+01	
62	2.422E+03	1.940E+06	1.303E+02	6.470E+02	9.698E+05	6.516E+01	
63	2,423E+03	1.940E+06	1.303E+02	6.471E+02	9.699E+05	6.517E+01	
64	2.423E+03	1.940E+06	1.303E+02	6.471E+02	9.700E+05	6.517E+01	
65	2.423E+03	1.940E+06	1.304E+02	6.471E+02	9.700E+05	6.518E+01	
66	2.423E+03	1,940E+06	1.304E+02	6.472E+02	9.700E+05	6.518E+D1	
67	2.423E+03	1.940E+06	1.304E+02	6.472E+02	9.700E+05	6.518E+01	
68	1,203E+03	9.634E+05	6.473E+01	3.214E+02	4.817E+05	3.237E+01	
69	5.975E+02	4.784E+05	3.214E+01	1.596E+02	2.392E+05	1.607E+01	
70	2.967E+02	2.376E+05	1.596E+01	7.925E+01	1.188E+05	7.981E+00	
71	1.473E+02	1,180E+05	7.927E+00	3.935E+01	5.899E+04	3.963E+00	
72	7.316E+01	5,859E+04	3.936E+00	1.954E+01	2.929E+04	1.968E+00	
73	3.633E+01	2.909E+04	1.955E+00	9.705E+00	1.455E+04	9.774E-01	
74	1,804E+01	1.445E+04	9.707E-01	4.819E+00	7.223E+03	4.853E-01	
75	8.959E+00	7.174E+03	4.820E-01	2.393E+00	3.587E+03	2.410E-01	
76	4.449E+00	3.563E+03	2.394E-01	1.188E+00	1.781E+03	1.197E-01	
77	2.209E+00	1,769E+03	1.189E-01	5.901E-01	8.846E+02	5.943E-02	
78	1.097E+00	8.785E+02	5.903E-02	2.931E-01	4.393E+02	2.951E-02	
79	5.448E-01	4.363E+02	2.931E-02	1.455E-01	2.181E+02	1.466E-02	
80	2.705E-01	2.166E+02	1.456E-02	7.227E-02	1.083E+02	7.278E-03	
81	1.343E-01	1.076E+02	7.228E-03	3.589E-02	5.379E+01	3.614E-03	
82	6.672E-02	5.342E+01	3.589E-03	1.782E-02	2.671E+01	1.795E-03	
83	3.313E-02	2.653E+01	1.782E-03	8.849E-03	1.326E+01	8.912E-04	
84	1.645E-02	1.317E+01	8.852E-04	4.394E-03	6.587E+00	4.426E-04	
85	8.170E-03	6.542E+00	4.396E-04	2.182E-03	3.271E+00	2.198E-04	
86	4.057E-03	3.249E+00	2.183E-04	1.084E-03	1.624E+00	1.091E-04	
87	2.015E-03	1.613E+00	1.084E-04	5.381E-04	8.066E-01	5.420E-05	
88	1.000E-03	8.011E-01	5.383E-05	2.672E-04	4.006E-01	2.691E-05	
89	4.968E-04	3.978E-01	2.673E-05	1.327E-04	1.989E-01	1.336E-05	
990	2.467E-04	1.976E-01	1.327E-05	6.590E-05	9.878E-02	6.637E-06	
91	1.225E-04	9.810E-02	6.591E-06	3.272E-05	4.905E-02	3.296E-06	
92	6.084E-05	4.872E-02	3.273E-06	1.625E-05	2.436E-02	1.637E-06	
993	3.021E-05	2.419E-02	1.625E-06	8.070E-06	1.210E-02	8.127E-07	
994	1.500E-05	1.201E-02	8.072E-07	4.007E-06	6.007E-03	4.036E-07	
995	7.4508-06	5.966E-03	4.008E-07	1.990E-06	2.983E-03	2.004E-07	
996	3.699E-06	2.962E-03	1.990E-07	9.882E-07	1.481E-03	9.952E-08	
997	1.837E-06	1.471E-03	9.884E-08	4.907E-07	7.355E-04	4.942E-08	
998	9.123E-07	7.305E-04	4.908E-08	2.437E-07	3.653E-04	2.454E-08	
999	4.530E-07	3.628E-04	2.437E-08	1.210E-07	1.814E-04	1.219E-08	

v		Total landfill gas			Methane			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
000	2.250E-07	1_801E-04	1_210E-08	6.009E-08	9.007E-05	6.052E-09		
001	1.117E-07	8.946E-05	6.011E-09	2.984E-08	4_473E-05	3.005E-09		
002	5.548E-08	4.442E-05	2.985E-09	1.482E-08	2.221E-05	1.492E-09		
003	2.755E-08	2.206E-05	1.482E-09	7.359E-09	1.103E-05	7.411E-10		
004	1.368E-08	1.095E-05	7.360E-10	3.654E-09	5_477E-06	3.680E-10		
005	6.793E-09	5.440E-06	3.655E-10	1.815E-09	2.720E-06	1_828E-10		
006	3.374E-09	2.701E-06	1_815E-10	9.011E-10	1_351E-06	9.075E-11		
007	1.675E-09	1.341E-06	9.013E-11	4.475E-10	6.707E-07	4.507E-11		
008	8.319E-10	6.661E-07	4.476E-11	2.222E-10	3.331E-07	2.238E-11		
009	4.131E-10	3.308E-07	2.223E-11	1.103E-10	1.654E-07	1.111E-11		
010	2.051E-10	1.643E-07	1.104E-11	5.480E-11	8.213E-08	5.519E-12		
011	1.019E-10	8.157E-08	5.481E-12	2.721E-11	4.079E-08	2.740E-12		
012	5.059E-11	4.051E-08	2.722E-12	1.351E-11	2.025E-08	1.361E-12		
013	2.512E-11	2.012E-08	1_352E-12	6.710E-12	1.006E-08	6.758E-13		
014	1.247E-11	9.989E-09	6.712E-13	3.332E-12	4.995E-09	3.356E-13		
015	6_195E-12	4.960E-09	3.333E-13	1.655E-12	2.480E-09	1.666E-13		
016	3.076E-12	2.463E-09	1_655E-13	8.217E-13	1.232E-09	8.275E-14		
017	1.528E-12	1.223E-09	8.219E-14	4.080E-13	6.116E-10	4.109E-14		
018	7.586E-13	6.074E-10	4.081E-14	2.026E-13	3.037E-10	2.041E-14		
019	3.767E-13	3_016E-10	2.027E-14	1.006E-13	1.508E-10	1_013E-14		
020	1.871E-13	1.498E-10	1.006E-14	4.997E-14	7.490E-11	5.032E-15		
021	9.289E-14	7_439E-11	4.998E-15	2.481E-14	3.719E-11	2.499E-15		
022	4.613E-14	3.694E-11	2.482E-15	1.232E-14	1.847E-11	1.241E-15		
023	2.291E-14	1_834E-11	1.232E-15	6.119E-15	9.172E-12	6_162E-16		
024	1.138Ë-14	9_109E-12	6_120E-16	3_039E-15	4.554E-12	3.060E-16		
025	5.649E-15	4.523E-12	3.039E-16	1.509E-15	2.262E-12	1.520E-16		
026	2.805E-15	2_246E-12	1_509E-16	7.493E-16	1.123E-12	7.546E-17		
027	1.393E-15	1_115E-12	7_495E-17	3.721E-16	5.577E-13	3.747E-17		
028	6_917E-16	5.539E-13	3.722E-17	1.848E-16	2.770E-13	1.861E-17		
029	3_435E-16	2_751E-13	1_848E-17	9_176E-17	1.375E-13	9.241E-18		
030	1_706E-16	1.366E-13	9.178E-18	4.556E-17	6_830E-14	4.589E-18		
031	8.471E-17	6_783E-14	4.558E-18	2.263E-17	3.392E-14	2.279E-18		
032	4.207E-17	3.368E-14	2.263E-18	1_124E-17	1.684E-14	1_132E-18		
033	2.089E-17	1_673E-14	1_124E-18	5.580E-18	8.363E-15	5.619E-19		
034	1_037E-17	8.306E-15	5.581E-19	2.771E-18	4_153E-15	2.790E-19		
035	5,151E-18	4.125E-15	2.771E-19	1.376E-18	2_062E-15	1.386E-19		
036	2.558E-18	2.048E-15	1.376E-19	6.833E-19	1.024E-15	6.881E-20		
037	1.270E-18	1.017E-15	6.834E-20	3.393E-19	5.086E-16	3.417E-20		
038	6.308E-19	5.051E-16	3.394E-20	1_685E-19	2.526E-16	1.697E-20		
039	3.132E-19	2.508E-16	1.685E-20	8.367E-20	1.254E-16	8.427E-21		
039	1.556E-19	1_246E-16	8.369E-21	4.155E-20	6.228E-17	4.185E-21		
1	7.7248-20	6.185E-17	4.156E-21	2.063E-20	3.093E-17	2.078E-21		
041	3.836E-20	3_072E-17	2.064E-21	1.025E-20	1.536E-17	1.032E-21		
	3.836E-20 1.905E-20	1.525E-17	1.025E-21	5_088E-21	7_626E-18	5.124E-22		
043		7.574E-18	5.089E-22	2.527E-21	3,787E-18	2.545E-22		
044	9.459E-21	3.761E-18	2.527E-22	1.255E-21	1.881E-18	1.264E-22		
2045	4.697E-21	1	1.255E-22	6.231E-22	9.339E-19	6.275E-23		
046	2.333E-21	1_868E-18		3.094E-22	4.638E-19	3.116E-23		
047	1.158E-21	9_275E-19	6.232E-23	1.536E-22	2.303E-19	1,547E-23		
2048	5.752E-22	4.606E-19	3.095E-23	7.630E-22	1_144E-19	7.684E-24		
049	2.856E-22	2.287E-19	1.537E-23	3.789E-23	5.679E-20	3.816E-24		
050	1.418E-22	1_136E-19	7.632E-24	3.108E-23	0.0796-20	1 0.0102-24		

	Total landfill gas			Methane			
Year	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
2051	7.044E-23	5.640E-20	3.790E-24	1.881E-23	2.820E-20	1.895E-24	
2052	3.498E-23	2.801E-20	1.882E-24	9.343E-24	1.400E-20	9.410E-25	
2053	1.737E-23	1.391E-20	9.345E-25	4.640E-24	6.954E-21	4.673E-25	
2054	8.626E-24	6.907E-21	4.641E-25	2.304E-24	3.453E-21	2.320E-25	
2055	4.283E-24	3.430E-21	2.305E-25	1.144E-24	1.715E-21	1.152E-25	
2056	2.127E-24	1.703E-21	1.144E-25	5.682E-25	8.516E-22	5.722E-26	
2057	1.056E-24	8.458E-22	5.683E-26	2.821E-25	4.229E-22	2.841E-26	
2058	5,245E-25	4.200E-22	2.822E-26	1.401E-25	2.100E-22	1,411E-26	
2059	2,605E-25	2.086E-22	1.401E-26	6,957E-26	1.043E-22	7.007E-27	
2060	1.293E-25	1.036E-22	6.959E-27	3.455E-26	5.179E-23	3.480E-27	
2061	6.423E-26	5.143E-23	3.456E-27	1,716E-26	2.572E-23	1.728E-27	
2062	3.190E-26	2.554E-23	1.716E-27	8.520E-27	1.277E-23	8.580E-28	
2063	1.584E-26	1.268E-23	8.522E-28	4.231E-27	6.342E-24	4.261E-28	
2064	7.865E-27	6,298E-24	4.232E-28	2.101E-27	3.149E-24	2.116E-28	
2065	3.906E-27	3.128E-24	2.101E-28	1.043E-27	1.564E-24	1.051E-28	
2066	1.940E-27	1.553E-24	1.044E-28	5.181E-28	7.766E-25	5.218E-29	
2067	9.632E-28	7.713E-25	5.182E-29	2.573E-28	3.856E-25	2.591E-29	
068	4,783E-28	3.830E-25	2.573E-29	1.278E-28	1.915E-25	1.287E-29	
2069	2.375E-28	1.902E-25	1.278E-29	6.344E-29	9.510E-26	6.390E-30	
2070	1.179E-28	9.445E-26	6.346E-30	3.151E-29	4.722E-26	3,173E-30	
2071	5.857E-29	4.690E-26	3.151E-30	1.564E-29	2.345E-26	1.576E-30	
2072	2.909E-29	2.329E-26	1.565E-30	7.769E-30	1.165E-26	7.824E-31	
2073	1.444E-29	1.157E-26	7.771E-31	3.858E-30	5.783E-27	3.885E-31	
2074	7.172E-30	5.743E-27	3.859E-31	1.916E-30	2.872E-27	1.929E-31	
2075	3,562E-30	2.852E-27	1.916E-31	9.514E-31	1.426E-27	9.581E-32	
2076	1,769E-30	1.416E-27	9.516E-32	4.724E-31	7.081E-28	4.758E-32	
2077	8.783E-31	7.033E-28	4.726E-32	2.346E-31	3.517E-28	2.363E-32	
2078	4.362E-31	3.493E-28	2.347E-32	1.165E-31	1.746E-28	1.173E-32	
2079	2.166E-31	1,734E-28	1.165E-32	5.785E-32	8.672E-29	5.826E-33	
2080	1,076E-31	8.612E-29	5.787E-33	2.873E-32	4.306E-29	2.893E-33	
2081	5.341E-32	4.277E-29	2.874E-33	1.427E-32	2.138E-29	1.437E-33	
2082	2.652E-32	2.124E-29	1,427E-33	7.084E-33	1.062E-29	7.135E-34	
2083	1,317E-32	1.055E-29	7.086E-34	3.518E-33	5.273E-30	3.543E-34	
2084	6.540E-33	5.237E-30	3.519E-34	1.747E-33	2.619E-30	1.759E-34	
2085	3.248E-33	2,601E-30	1.747E-34	8.675E-34	1.300E-30	8.737E-35	
2085	3.248E-33 1.613E-33	1.291E-30	8.677E-35	4.308E-34	6.457E-31	4.339E-35	
	8.009E-34	6.413E-31	4.309E-35	2.139E-34	3,207E-31	2.155E-35	
2087		3.185E-31	2.140E-35	1.062E-34	1.592E-31	1.070E-35	
2088	3.977E-34	1.582E-31	1.063E-35	5.275E-35	7.908E-32	5.313E-36	
2089	1.975E-34 9.808E-35	7.854E-32	5.277E-36	2.620E-35	3.927E-32	2.638E-36	

.

Year [Carbon dioxide			NMOC		
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min
1950	0	0	0	0	. 0	0
1951	8.939E+02	4.883E+05	3.281E+01	1.400E+01	3_907E+03	2.625E-01
1952	1.338E+03	7.308E+05	4.910E+01	2.096E+01	5.847E+03	3.928E-01
1953	1.558E+03	8.513E+05	5.720E+01	2.441E+01	6_810E+03	4.576E-01
1954	1.668E+03	9_111E+05	6.121E+01	2.613E+01	7.288E+03	4.897E-01
1955	1.722E+03	9.408E+05	6.321E+01	2.698E+01	7.526E+03	5.057E-01
1956	1.749E+03	9_555E+05	6.420E+01	2.740E+01	7_644E+03	5.136E-01
1957	1.762E+03	9.628E+05	6_469E+01	2.761E+01	7.703E+03	5.175E-01
1958	1.769E+03	9.665E+05	6.494E+01	2.771E+01	7.732E+03	5_195E-01
1959	1.772E+03	9_683E+05	6_506E+01	2.777E+01	7.746E+03	5.205E-01
1960	1.774E+03	9.692E+05	6.512E+01	2.779E+01	7.753E+03	5.209E-01
1961	1.775E+03	9.696E+05	6.515E+01	2.780E+01	7_757E+03	5.212E-01
1962	1.775E+03	9.698E+05	6.516E+01	2.781E+01	7_759E+03	5.213E-01
1963	1.775E+03	9.699E+05	6_517E+01	2.781E+01	7_759E+03	5_214E-01
1964	1.776E+03	9.700E+05	6.517E+01	2.782E+01	7.760E+03	5.214E-01
1965	1.776E+03	9_700E+05	6_518E+01	2.782E+01	7.760E+03	5.214E-01
1966	1.776E+03	9.700E+05	6_518E+01	2.782E+01	7.760E+03	5.214E-01
1967	1_776E+03	9.700E+05	6.518E+01	2.782E+01	7.760E+03	5.214E-01
1968	8.818E+02	4_817E+05	3.237E+01	1.381E+01	3.854Ë+03	2.589E-01
1969	4.379E+02	2.392E+05	1_607E+01	6.859E+00	1.914E+03	1.286E-01
1970	2.174E+02	1_188E+05	7_981E+00	3.406E+00	9.503E+02	6.385E-02
1971	1.080E+02	5.899E+04	3.963E+00	1.692E+00	4.719E+02	3.171E-02
1972	5.362E+01	2.929E+04	1_968E+00	8.400E-01	2.343E+02	1.575E-02
1973	2.663E+01	1_455E+04	9.774E-01	4.171E-01	1.164E+02	7.819E-03
1974	1.322E+01	7.223E+03	4.853E-01	2.071E-01	5.779E+01	3.883E-03
1974	6.566E+00	3.587E+03	2.410E-01	1.029E-01	2.870E+01	1.928E-03
1976	3.261E+00	1.781E+03	1_197E-01	5.108E-02	1.425E+01	9.575E-04
	1_619E+00	8.846E+02	5.943E-02	2.537E-02	7_076E+00	4.755E-04
1977 1978	8.041E-01	4.393E+02	2.951E-02	1.260E-02	3.514E+00	2.361E-04
	3.993E-01	2.181E+02	1.466E-02	6.255E-03	1.745E+00	1_172E-04
1979		1.083E+02	7.278E-03	3.106E-03	8.666E-01	5.822E-05
1980	1_983E-01	5.379E+01	3_614E-03	1_542E-03	4.303E-01	2.891E-05
1981	9.846E-02	2.671E+01	1_795E-03	7.660E-04	2.137E-01	1.436E-05
1982	4.890E-02	E C C C C C C C C C C C C C C C C C C C	8.912E-04	3.804E-04	1_061E-01	7.130E-06
1983	2.428E-02	1.326E+01	4_426E-04	1.889E-04	5.270E-02	3.541E-06
1984	1.206E-02	6.587E+00 3.271E+00	2.198E-04	9.380E-05	2.617E-02	1.758E-06
1985	5-988E-03	· · ·	1.091E-04	4.658E-05	1.299E-02	8.731E-07
1986	2.973E-03	1.624E+00	5.420E-05	2.313E-05	6.453E-02	4_336E-07
1987	1_477E-03	8.066E-01	2.691E-05	1_149E-05	3.204E-03	2.153E-07
1988	7.332E-04	4.006E-01	1	5.704E-06	1.591E-03	1.069E-07
1989	3_641E-04	1.989E-01	1.336E-05	2.832E-06	7_902E-04	5.309E-08
1990	1.808E-04	9.878E-02	6.637E-06	1.407E-06	3.924E-04	2.637E-08
1991	8_979E-05	4.905E-02	3.296E-06		1.949E-04	1.309E-08
1992	4.459E-05	2.436E-02	1_637E-06	6.985E-07	9.677E-05	6.502E-00
1993	2.214E-05	1_210E-02	8.127E-07	3.469E-07	4.805E-05	3_229E-09
1994	1.099E-05	6.007E-03	4_036E-07	1_722E-07	4.805E-05 2.386E-05	1.603E-09
1995	5.460E-06	2.983E-03	2.004E-07	8.553E-08		7.962E-10
1996	2.711E-06	1.481E-03	9.952E-08	4.247E-08	1.185E-05	. ·
1997	1.346E-06	7.355E-04	4.942E-08	2.109E-08	5.884E-06	3.954E-10
1998	6.686E-07	3.653E-04	2.454E-08	1.047E-08	2.922E-06	1.963E-10
1999	3.320E-07	1_814E-04	1.219E-08	5_201E-09	1.451E-06	9.750E-11

		Carbon dioxide	NMOC			
ear	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
000	1.649E-07	9,007E-05	6.052E-09	2.583E+09	7.206E-07	4.842E-11
001	8.187E-08	4.473E-05	3.005E-09	1.283E-09	3_578E-07	2.404E-11
02	4.066E-08	2.221E-05	1_492E-09	6.369E-10	1.777E-07	1.194E-11
03	2.019E-08	1_103E-05	7.411E-10	3.163E-10	8.824Ë-08	5.929E-12
04	1.003E-08	5.477E-06	3.680E-10	1.571E-10	4.382E-08	2.944E-12
05	4_979E-09	2.720E-06	1.828E-10	7.800E-11	2_176E-08	1.462E-12
06	2.472E-09	1.351E-06	9.075E-11	3_873E-11	1.081E-08	7 260E-13
07	1.228E-09	6.707E-07	4.507E-11	1.923E-11	5.366E-09	3.605E-13
08	6.097E-10	3.331E-07	2.238E-11	9.551E-12	2.665E-09	1.790E-13
09	3_028E+10	1.654E-07	1,111E-11	4.743E-12	1.323E-09	8.890E-14
10	1_503E-10	8.213E-08	5.519E-12	2.355E-12	6_571E-10	4.415E-14
11	7.466E-11	4.079E-08	2.740E-12	1_170E-12	3.263E-10	2.192E-14
12	3_708E-11	2.025E-08	1.361E-12	5.808E-13	1.620E-10	1.089E-14
13	1.841E-11	1.006E-08	6.758E-13	2.884E-13	8.046E-11	5.406E-15
14	9.143E-12	4.995E-09	3.356E-13	1.432E-13	3.996E-11	2.685E-15
15	4.540E-12	2.480E-09	1.666E-13	7.112E-14	1_984E-11	1.333E-15
16	2.255E-12	1.232E-09	8.275E-14	3.532E-14	9.853E-12	6.620E-16
		6.116E-10	4_109E-14	1.754E-14	4.893E-12	3.288E-16
17	1_120E-12		2.041E-14	8.709E-15	2.430E-12	1.633E-16
18	5.560E-13	3.037E-10	1.013E-14	4_325E-15	1.207E-12	8_107E-17
19	2.761E-13	1_508E-10		2.148E-15	5.992E-13	4.026E-17
20	1.371E-13	7.490E-11	5.032E-15 2.499E-15	1_067E-15	2.975E-13	1.999E-17
21	6.808E-14	3.719E-11		5.296E-16	1.478E-13	9.928E-18
22	3.381E-14	1.847E-11	1.241E-15	2.630E-16	7_337E-14	4.930E-18
23	1.679E-14	9.172E-12	6.162E-16	1.306E-16	3.644E-14	2.448E-18
24	8.337E-15	4,554E-12	3.060E-16		1.809E-14	1.216E-18
25	4.140E-15	2.262E-12	1_520E-16	6_486E-17	8,985E-15	6.037E-19
26	2.056E-15	1.123E-12	7.546E-17	3.221E-17		2.998E+19
27	1.021E-15	5.577E-13	3.747E-17	1.599E-17	4.462E-15	1.489E-19
28	5.070E-16	2.770E-13	1.861E-17	7.942E-18	2.216E-15	
29	2.518E-16	1.375E-13	9.241E-18	3.944E-18	1_100E-15	7.393E-20
30	1.250E-16	6.830E-14	4_589E-18	1.958E-18	5.464E-16	3.671E-20
31	6.208E-17	3.392E-14	2.279E-18	9.725E-19	2.713E-16	1.823E-20
32	3.083E-17	1.684E-14	1.132E-18	4_830E-19	1.347E-16	9.053E-21
33	1.531E-17	8.363E-15	5_619E-19	2.398E-19	6.691E-17	4.496E-21
34	7.602E-18	4.153E-15	2.790E-19	1,191E-19	3_323E-17	2.232E-21
35	3.775E-18	2.062E-15	1.386E-19	5_914E-20	1.650E-17	1,109E-21
36	1.875E-18	1.024E-15	6.881E-20	2.937E-20	8-193E-18	5.505E-22
37	9.310E-19	5.086E-16	3.417E-20	1.458E-20	4_069E-18	2.734E-22
38	4.623E-19	2.526E-16	1.697E-20	7.242E-21	2.020E-18	1.358E-22
39	2.296E-19	1.254E-16	8.427E-21	3.596E-21	1_003E-18	6.741E-23
40	1_140E-19	6.228E-17	4.185E-21	1.786E-21	4.982E-19	3.348E-23
141	5.661E-20	3.093E-17	2.078E-21	8.868E-22	2.474E-19	1.662E-23
42	2.811E-20	1.536E-17	1.032E-21	4.404E-22	1.229E-19	8.255E-24
43	1_396E+20	7.626E-18	5.124E-22	2.187E-22	6.101E-20	4_099E-24
44	6-932E-21	3.787E-18	2.545E-22	1.086E-22	3.030E-20	2.036E-24
)45	3.443E-21	1.881E-18	1.264E-22	5.393E-23	1.505E-20	1_011E-24
046	1.710E-21	9.339E-19	6.275E-23	2.678E-23	7_471E-21	5.020E-25
)47	8.489E-22	4.638E-19	3.116E-23	1_330E-23	3.710E-21	2.493E-25
48	4.216E-22	2.303E-19	1.547E-23	6.604E-24	1.842E-21	1.238E-25
)49	2.093E-22	1.144E-19	7.684E-24	3.279E-24	9.149E-22	6.147E-26
050	1_040E-22	5.679E-20	3.816E-24	1.629E-24	4.543E-22	3.053E-26

		Carbon dloxide			NMOC			
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
2051	5.162E-23	2.820E-20	1.895E-24	8.087E-25	2.256E-22	1.516E-26		
2052	2.564E-23	1.400E-20	9.410E-25	4.016E-25	1.120E-22	7.528E-27		
2053	1.273E-23	6.954Ë-21	4.673E-25	1.994E-25	5.564E-23	3.738E-27		
2054	6.322E-24	3.453E-21	2.320E-25	9.903E-26	2.763E-23	1.856E-27		
2055	3.139E-24	1,715E-21	1,152E-25	4.918E-26	1.372E-23	9.218E-28		
2056	1.559E-24	8.516E-22	5.722E-26	2_442E-26	6.813E-24	4.578E-28		
2057	7.741E-25	4.229E-22	2.841E-26	1.213E-26	3.383E-24	2.273E-28		
2058	3.844E-25	2_100E-22	1.411E-26	6.022E-27	1.680E-24	1_129E-28		
2059	1_909E-25	1.043E-22	7.007E-27	2.990E-27	8.343E-25	5.606E-29		
2060	9.480E-26	5_179E-23	3.480E-27	1.485E-27	4.143E-25	2.784E-29		
2061	4.707E-26	2.572E-23	1.728E-27	7.374E-28	2.057E-25	1.382E-29		
2062	2.338E-26	1.277E-23	8.580E-28	3.662E-28	1_022E-25	6.864E-30		
2063	1.161E-26	6.342E-24	4.261E-28	1_819E-28	5_073E-26	3.409E-30		
2064	5.765E-27	3.149E-24	2.116E-28	9.030E-29	2.519E-26	1.693E-30		
2065	2.863E-27	1.564E-24	1.051E-28	4.484E-29	1.251Ë-26	8.406E-31		
2066	1_422E-27	7.766E-25	5.218E-29	2.227E-29	6_213E-27	4.174E-31		
2067	7.059E-28	3.856E-25	2.591E-29	1.106E-29	3.085E-27	2.073E-31		
2068	3.505E-28	1.915E-25	1.287E-29	5.491E-30	1.532E-27	1_029E-31		
2069	1.741E-28	9.510E-26	6.390E-30	2.727E-30	7_608E-28	5.112E-32		
2070	8.644E-29	4.722E-26	3.173E-30	1.354E-30	3.778E-28	2.538E-32		
2071	4.293E-29	2.345E-26	1.576E-30	6.725E-31	1_876E-28	1.261E-32		
2072	2.132E-29	1.165E-26	7.824E-31	3.339E-31	9.316E-29	6_259E-33		
2073	1_059E-29	5,783E-27	3_885E-31	1.658E-31	4.626E-29	3.108E-33		
2074	5.257E-30	2.872E-27	1.929E-31	8.235E-32	2 297E-29	1.544E-33		
2075	2.610E-30	1.426E-27	9.581E-32	4.089E-32	1.141E-29	7_665E-34		
2076	1.296E-30	7.081E-28	4.758E-32	2.031E-32	5.665E-30	3.806E-34		
2077	6.437E-31	3.517E-28	2.363E-32	1.008E-32	2.813E-30	1_890E-34		
2078	3.197E-31	1 746E-28	1.173E-32	5.008E-33	1_397E-30	9.386E-35		
2079	1_587E-31	8.672E-29	5.826E-33	2.487E-33	6.937E-31	4.661E-35		
2080	7.883E-32	4.306E-29	2.893E-33	1.235E-33	3.445E-31	2.315E-35		
2081	3.914E-32	2.138E-29	1.437E-33	6.132E-34	1.711E-31	1.149E-35		
2082	1_944E-32	1.062E-29	7.135E-34	3.045E-34	8.495E-32	5.708E-36		
2083	9.653E-33	5.273E-30	3.543E-34	1.512E-34	4.219E-32	2.834E-36		
2084	4.793E-33	2.619E-30	1.759E-34	7.509E-35	2.095E-32	1_408E-36		
2085	2.380E-33	1_300E-30	8.737E-35	3.729E-35	1.040E-32	6.990E-37		
2086	1_182E-33	6.457E-31	4.339E-35	1.852E-35	5.166E-33	3.471E-37		
2087	5.870E-34	3.207E-31	2.155E-35	9.195E-36	2.565E-33	1.724E-37		
2088	2.915E-34	1_592E-31	1.070E-35	4_566E-36	1.274E-33	8.559E-38		
2088	1_447E-34	7.908E-32	5.313E-36	2.268E-36	6.326E-34	4.250E-38		
2089	7.188E-35	3.927E-32	2.638E-36	1.126E-36	3.141E-34	2.111E-38		

Appendix 3 Third Computer Model Run

Summary Report

Landfill Name or Identifier: MVS Landfill Colorado Springs, CO

Date: Monday, March 07, 2011

Description/Comments:

This computer run is median between wet and arid conditions at the site

About LandGEM:

First-Order Decomposition Rate Equation:

$$Q_{CH_4} = \sum_{i=1}^{n} \sum_{j=0.1}^{1} k L_o \left(\frac{M_i}{10} \right) e^{-kt_{ij}}$$

Where,

Q_{CH4} = annual methane generation in the year of the calculation (m³/year)

i = 1-year time increment

n = (year of the calculation) - (initial year of waste acceptance)

j = 0.1-year time increment

k = methane generation rate (year')

L_o = potential methane generation capacity (m³/Mg)

 M_i = mass of waste accepted in the ith year (Mg) t_{ij} = age of the jth section of waste mass M_i accepted in the ith year (decimal years, e.g., 3.2 years)

LandGEM is based on a first-order decomposition rate equation for quantifying emissions from the decomposition of landfilled waste in municipal solid waste (MSW) landfills. The software provides a relatively simple approach to estimating landfill gas emissions. Model defaults are based on empirical data from U.S. landfills. Field test data can also be used in place of model defaults when available. Further guidance on EPA test methods, Clean Air Act (CAA) regulations, and other guidance regarding landfill gas emissions and control technology requirements can be found at http://www.epa.gov/ttnatw01/landfill/landfilpg.html.

LandGEM is considered a screening tool — the better the input data, the better the estimates. Often, there are limitations with the available data regarding waste quantity and composition, variation in design and operating practices over time, and changes occurring over time that impact the emissions potential. Changes to landfill operation, such as operating under wet conditions through leachate recirculation or other liquid additions, will result in generating more gas at a faster rate. Defaults for estimating emissions for this type of operation are being developed to include in LandGEM along with defaults for convential landfills (no leachate or liquid additions) for developing emission inventories and determining CAA applicability. Refer to the Web site identified above for future updates.

LANDFILL CHARACTERISTICS Landfill Open Year Landfill Closure Year (with 80-year limit) Actual Closure Year (without limit)	1950 1966 1966	
Have Model Calculate Closure Year?	No	
Waste Design Capacity	182,500	short lons
MODEL PARAMETERS		
Methane Generation Rate, k	0.050	year' ¹
Potential Methane Generation Capacity, Lo	170	m ³ /Mg
NMOC Concentration	4,000	ppmv as he
Methane Content	50	% by volum

year ^{.1}
m³/Mg
ppmv as hexane
% by volume

GASES / POLLUTANTS SE	LECTED
Gas / Pollutant #1:	Total landfill gas
Gas / Pollutant #2:	Methane
Gas / Pollutant #3:	Carbon dioxide
Gas / Pollutant #4:	NMOC

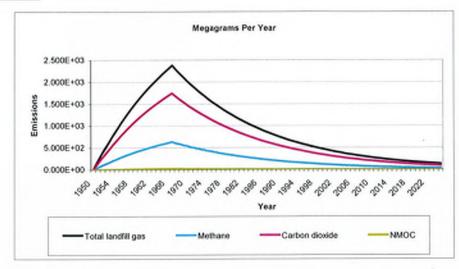
WASTE ACCEPTANCE RATES

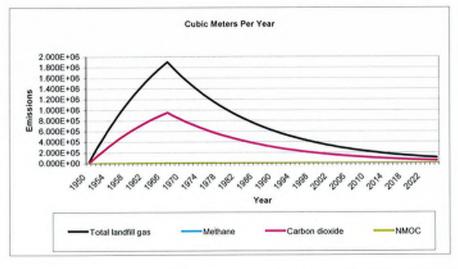
F	ACCEPTANCE RATES Waste Acc		Waste-In-Place			
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)		
1950	9,759	10,735	ò	0		
1951	9,759	10,735	9,759	10,735		
1952	9,759	10,735	19,518	21,470		
1953	9,759	10,735	29,277	32,205		
1954	9,759	10,735	39,036	42,940		
1955	9,759	10,735	48,795	53,675		
1956	9,759	10,735	58,555	64,410		
1957	9,759	10,735	68,314	75,145		
1958	9,759	10,735	78,073	85,880		
1959	9,759	10,735	87,832	96,615		
1960	9,759	10,735	97,591	107,350		
1961	9,759	10,735	107,350	118,085		
1962	9,759	10,735	117,109	128,820		
1963	9,759	10,735	126,868	139,555		
1964	9,759		136,627	150,290		
1965	9,759	10,735	146,386	161,025		
1966	9,759	10,735	156,145	171,760		
1967	0	Ö	165,905	182,495		
1968	0	0	165,905	182,495		
1969	0	0	165,905	182,495		
1970	Ō	Ó	165,905	182,495		
1971	Ō	0	165,905	182,495		
1972	Ō	0	165,905	182,495		
1973	0		165,905	182,495		
1974	Ō		165,905	182,495		
1975	0		165,905	182,495		
1976	0		165,905	182,495		
1977	0		165,905	182,495		
1978	0		165,905	182,495		
1979	0			182,495		
1980	0			182,495		
1981	0		165,905			
1982	0			182,495		
1983	0	3		\$.		
1984	õ					
1985	a					
1986	Ő					
1987	ŏ			5 C C C C C C C C C C C C C C C C C C C		
1988	ŏ			F		
1989	ŏ		165,905	E		
1909	0	3 0	1 100,000	1 100011		

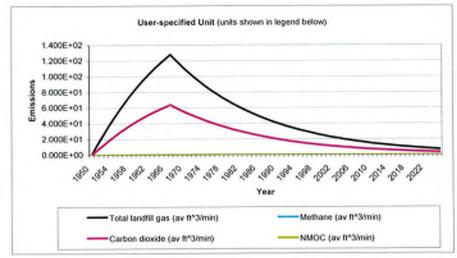
WASTE ACCEPTANCE RATES (Continued)

	Waste Ac	cepted	Waste-	
Year	(Mg/year)	(short tons/year)	(Mg)	(short tons)
1990	0	0	165,905	182,495
1991	0	0	165,905	182,495
1992	0	0	165,905	182,495
1993	0	0	165,905	182,495
1994	0	0	165,905	182,495
1995	0	0	165,905	182,495
1996	0	0	165,905	182,495
1997	0	0	165,905	182,495
1998	0	0	165,905	182,495
1999	0	0	165,905	182,495
2000	0	0	165,905	182,495
2001	0	0	165,905	182,495
2002	0	0	165,905	182,495
2003	0	0	165,905	182,495
2004	0	0	165,905	182,495
2005	0	0	165,905	182,495
2006	0	0	165,905	182,495
2007	0	0	165,905	182,495
2008	ö	0	165,905	182,495
2009	0	0	165,905	182,495
2010	0	0	165,905	182,495
2011	0	0	165,905	182,495
2012	0	0	165,905	182,495
2013	Ó	0	165,905	182,495
2014	0	0	165,905	182,495
2015	0	0	165,905	182,495
2016	0	0	165,905	182,495
2017	0	0	165,905	182,495
2018	0	0	165,905	182,495
2019	0	0	165,905	182,495
2020	0	0	165,905	182,495
2021	0	0	165,905	
2022	0	0		182,495
2023	0	0		182,495
2024	0	0		182,495
2025	0	0		182,495
2026	0	0	165,905	
2027	0	0		182,495
2028	0	0	165,905	182,495
2029	0		165,905	182,495

;


Pollutant Parameters


	Gas / Pol	lutant Default Parame	eters:	User-specified Po Concentration	llutant Parameters:
1	A	Concentration	Molecular Weight	(ppmv)	Molecular Weight
	Compound otal landfill gas	(ppmv)	0.00	(99,1117)	1 Molecular everynt
8 M	elhane		16.04		
	arbon dioxide		44.01		
U N	MOC	4,000	86,18		
	1,1-Trichloroethane	1,122			
	nethyl chloroform) -				
	AP	0.48	133.41		
	1,2,2-				
	etrachloroethane -				
H/	AP/VOC	1.1	167.85		
1,	1-Dichloroethane				
(e	thylidene dichloride) -				
H	AP/VOC	2.4	98.97		
	1-Dichloroethene				
	inylidene chloride) -				
	APNOC	0.20	96.94		
	2-Dichloroethane				
	thylene dichloride) -				
	AP/VOC	0.41	98.96		
	2-Dichloropropane				
	ropylene dichloride) -	0.40	112.99		
	AP/VOC	0.18	112.99		
	Propanol (isopropyl	50	60.11		
	cohol) - VOC	7.0	58.08		
A	cetone	1.0	00.00		
A	crylonitrile - HAP/VOC	6.3	53.06		
	enzene - No or	0.5	30.00		
	nknown Co-disposal -			1	
	APNOC	1.9	78.11		
	enzene - Co-disposal -				
1	AP/VOC	11	78.11		
	romodichloromethane -				
E V	OC	3.1	163.83		
₩ B	utane - VOC	5.0	58.12		
e ا c	arbon disulfide -				
H	IAP/VOC	0.58	76.13		
	arbon monoxide	140	28.01		
t 1	arbon tetrachloride -			1	
	IAPNOC	4.0E-03	153.84		
	arbonyl sulfide -		00.07		
	IAP/VOC	0.49	60.07		
1 -	chlorobenzene -	0.06	112.56		
		0.25	86.47		
	hlorodifluoromethane	1.3	00.47		
	Chloroethane (ethyl hloride) - HAP/VOC	1.3	64.52		
	chloroform - HAPNOC	0.03	119.39		
	chioromethane - VOC	1.2	50.49		
1				I	
	Dichlorobenzene - (HAP				
fc	or para isomer/VOC)	0.21	147		
	States Drift at	1			
	Dichlorodifluoromethane	16	120.91	1	
E	Dichlorofluoromethane -				
	/OC	2.6	102.92	1	
E	Dichloromethane				
	methylene chloride) -				
	HAP	14	84.94		
	Dimethyl sulfide (methyl				
	sulfide) - VOC	7.8	62.13		
E	Ethane	890	30.07	1	
i le	Ethanol - VOC	27	46.08	1	1


Pollutant Parameters (Continued)

Gas / Pol	Gas / Pollutant Default Parameters: Concentration			utant Parameters:	
Compound	Concentration (ppmv)	Molecular Weight	Concentration (ppmv)	Molecular Weight	
Ethyl mercaptan	(ppinv)	Molecalar Preight	(ppiny)	Molecular Preight	
(ethanethiol) - VOC	2.3	62.13			
Ethylbenzene -	2.5	02.10			
HAP/VOC	* ¢	106.16			
	4_6	100-10			
Ethylene dibromide -		107.00			
HAP/VOC	1_0E-03	187.88			
Fluorotrichloromethane -					
VOC	0,76	137.38			
Hexana - HAP/VOC	6.6	86.18		1	
Hydrogen sulfide	36	34.08			
Mercury (total) - HAP	2.9E-04	200.61			
Methyl ethyl ketone -					
HAPIVOC	7.1	72.11			
Methyl isobutyl ketone -					
HAP/VOC	1.9	100.16			
	1.9	100.10			
Methyl mercaptan - VOC	2.5	48_11			
		72.15			
Pentane - VOC	3.3	12.15			
Perchloroethylene					
(tetrachloroethylene) -				1	
HAP	3.7	165.83			
Propane - VOC	11	44_09			
t-1,2-Dichloroethene -					
VOC	2.8	96.94			
Toluene - No or					
Unknown Co-disposal -					
	39	92.13			
HAP/VOC	39	JZ.10			
Toluene - Co-disposal -	1 7 6	00.40			
HAP/VOC	170	92.13			
Trichloroethylene					
(trichloroethene) -					
HAP/VOC	2.8	131.40			
HAP/VOC Vinyl chloride - HAP/VOC					
HAP/VOC	7.3	62.50			
Xylenes HAP/VOC	12	106.16			
Kitenes In Trans					
		· · · ·			
	i				
	1				
				1	
			1		
	ζ				
				1	
				1	
****			v	1	
1				1	
I					
	СС				

Graphs

Results

.		Total landfili gas			Methane			
rear 🗕	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)		
950	0	0	0	0	0	0		
951	2.026E+02	1.622E+05	1.090E+01	5.412E+01	8.112E+04	5.450E+00		
952	3.953E+02	3.165E+05	2.127E+01	1.056E+02	1.583E+05	1.063E+01		
953	5.786E+02	4.633E+05	3.113E+01	1.546E+02	2.317E+05	1.557E+01		
954	7.530E+02	6.030E+05	4.051E+01	2.011E+02	3.015E+05	2.026E+01		
55	9.189E+02	7.358E+05	4.944E+01	2.454E+02	3.679E+05	2.472E+01		
956	1.077E+03	8.621E+05	5.793E+01	2.876E+02	4.311E+05	2.896E+01		
57	1.227E+03	9.823E+05	6.600E+01	3.277E+02	4.912E+05	3.300E+01		
58	1.370E+03	1.097E+06	7.368E+01	3.658E+02	5.483E+05	3.684E+01		
59	1.505E+03	1.205E+06	8.099E+01	4.021E+02	6.027E+05	4.050E+01		
60	1.635E+03	1.309E+06	8.794E+01	4.366E+02	6.544E+05	4.397E+01		
61	1.757E+03	1.407E+06	9.455E+01	4.694E+02	7.036E+05	4.728E+01		
62	1.874E+03	1,501E+06	1.008E+02	5.006E+02	7.504E+05	5.042E+01		
63	1.985E+03	1.590E+06	1.068E+02	5.303E+02	7.949E+05	5.341E+01		
64	2.091E+03	1.675E+06	1.125E+02	5.586E+02	8.373E+05	5.626E+01		
65	2.192E+03	1.755E+06	1.179E+02	5.855E+02	8.776E+05	5.896E+01		
66	2.288E+03	1.832E+06	1.231E+02	6.110E+02	9.159E+05	6.154E+01		
67	2 379E+03	1.905E+06	1.280E+02	6.353E+02	9.523E+05	6.399E+01		
68	2.263E+03	1.812E+06	1.217E+02	6.044E+02	9.059E+05	6.087E+01		
69	2.152E+03	1.723E+06	1.158E+02	5.749E+02	8.617E+05	5.790E+01		
70	2.047E+03	1.639E+06	1.101E+02	5.468E+02	8.197E+05	5.507E+01		
71	1.947E+03	1.559E+06	1.048E+02	5.202E+02	7.797E+05	5.239E+01		
72	1.852E+03	1.483E+06	9.967E+01	4.948E+02	7.417E+05	4.983E+01		
73	1.762E+03	1.411E+06	9.480E+01	4.707E+02	7.055E+05	4.740E+01		
74	1.676E+03	1.342E+06	9.018E+01	4.477E+02	6.711E+05	4.509E+01		
75	1.594E+03	1.277E+06	8.578E+01	4.259E+02	6.384E+05	4.289E+01		
76	1.517E+03	1.214E+06	8.160E+01	4.051E+02	6.072E+05	4.080E+01		
77	1.443E+03	1.155E+06	7.762E+01	3.854E+02	5.776E+05	3.881E+01		
78	1.372E+03	1.099E+06	7.383E+01	3.666E+02	5.494E+05	3.692E+01		
79	1.305E+03	1.045E+06	7.023E+01	3.487E+02	5.226E+05	3.512E+01		
80	1.242E+03	9.943E+05	6.681E+01	3.317E+02	4,972E+05	3.340E+01		
81	1.181E+03	9.458E+05	6.355E+01	3.155E+02	4.729E+05	3.177E+01		
82	1.124E+03	8.997E+05	6.045E+01	3.001E+02	4.498E+05	3.023E+01		
83	1.069E+03	8.558E+05	5.750E+01	2.855E+02	4.279E+05	2.875E+01		
84	1.017E+03	8.141E+05	5.470E+01	2.716E+02	4.070E+05	2.735E+01		
85	9.671E+02	7.744E+05	5.203E+01	2.583E+02	3.872E+05	2.601E+01		
86	9.199E+02	7.366E+05	4.949E+01	2.457E+02	3.683E+05	2.475E+01		
87	8.750E+02	7.007E+05	4.708E+01	2.337E+02	3.503E+05	2.354E+01		
88	8.323E+02	6.665E+05	4.478E+01	2.223E+02	3.333E+05	2.239E+01		
89	7.918E+02	6.340E+05	4.260E+01	2.115E+02	3.170E+05	2.130E+01		
90	7.531E+02	6.031E+05	4.052E+01	2.012E+02	3.015E+05	2.026E+01		
191	7.164E+02	5.737E+05	3.854E+01	1.914E+02	2.868E+05	1.927E+01		
92	6.815E+02	5.457E+05	3.666E+01	1.820E+02	2.728E+05	1.833E+01		
93	6.482E+02	5.191E+05	3.488E+01	1.732E+02	2.595E+05	1.744E+01		
994	6.166E+02	4.938E+05	3.318E+01	1.647 <u>E</u> +02	2.469E+05	1.659E+01		
995	5.865E+02	4.697E+05	3.156€+01	1.567E+02	2.348E+05	1.578E+01		
996	5.579E+02	4.468E+05	3.002E+01	1.490E+02	2.234E+05	1.501E+01		
97	5.307E+02	4.250E+05	2.855E+01	1.418E+02	2.125E+05	1.428E+01		
998	5.048E+02	4.043E+05	2.716E+01	1.348E+02	2.021E+05	1.358E+01		
999	4.802E+02	3.845E+05	2.584E+01	1.283E+02	1.923E+05	1.292E+01		

v		Total landfill gas			Methane		
Year	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
000	4.568E+02	3.658E+05	2.458E+01	1.220E+02	1.829E+05	1.229E+01	
001	4.345E+02	3.479E+05	2.338E+01	1.161E+02	1.740E+05	1.169E+01	
002	4.133E+02	3.310E+05	2.224E+01	1.104E+02	1.655E+05	1.112E+01	
003	3.932E+02	3.148E+05	2.115E+01	1.050E+02	1.574E+05	1.058E+01	
004	3.740E+02	2.995E+05	2.012E+01	9.990E+01	1.497E+05	1.006E+01	
005	3.558E+02	2.849E+05	1.914E+01	9.503E+01	1.424E+05	9.570E+00	
006	3.384E+02	2.710E+05	1.821E+01	9.039E+01	1.355E+05	9.104E+00	
007	3.219E+02	2.578E+05	1.732E+01	8.598E+01	1.289E+05	8.660E+00	
008	3.062E+02	2.452E+05	1.647E+01	8.179E+01	1.226E+05	8.237E+00	
009	2.913E+02	2 332E+05	1.567E+01	7.780E+01	1.166E+05	7.836E+00	
010	2.771E+02	2.219E+05	1.491E+01	7.401E+01	1.109E+05	7.453E+00	
011	2.636E+02	2.110E+05	1.418E+01	7.040E+01	1.055E+05	7.090E+00	
012	2.507E+02	2.007E+05	1.349E+01	6.696E+01	1.004E+05	6.744E+00	
013	2.385E+02	1.910E+05	1.283E+01	6.370E+01	9.548E+04	6.415E+00	
014	2.268E+02	1.816E+05	1.220E+01	6.059E+01	9.082E+04	6.102E+00	
015	2.158E+02	1.728E+05	1.161E+01	5.764E+01	8.639E+04	5.805E+00	
016	2.053E+02	1.644E+05	1.104E+01	5.483E+01	8.218E+04	5.522E+00	
017	1.952E+02	1.563E+05	1.050E+01	5.215E+01	7.817E+04	5.252E+00	
018	1.857E+02	1.487E+05	9.992E+00	4.961E+01	7.436E+04	4.996E+00	
019	1.767E+02	1.415E+05	9.505E+00	4.719E+01	7.073E+04	4.752E+00	
020	1.680E+02	1.346E+05	9.041E+00	4.489E+01	6.728E+04	4.521E+00	
021	1.599E+02	1.280E+05	8.600E+00	4.270E+01	6.400E+04	4.300E+00	
022	1.521E+02	1.218E+05	8.181E+00	4.062E+01	6.088E+04	4.091E+00	
023	1.446E+02	1.158E+05	7.782E+00	3.864E+01	5.791E+04	3.891E+00	
024	1.376E+02	1.102E+05	7.402E+00	3.675E+01	5.509E+04	3.701E+00	
025	1.309E+02	1.048E+05	7.041E+00	3.496E+01	5.240E+04	3.521E+00	
026	1.245E+02	9.969E+04	6.698E+00	3.325E+01	4.984E+04	3.349E+00	
027	1.184E+02	9.483E+04	6.371E+00	3.163E+01	4.741E+04	3.186E+00	
028	1.126E+02	9.020E+04	6.061E+00	3.009E+01	4.510E+04	3.030E+00	
029	1.072E+02	8.580E+04	5.765E+00	2.862E+01	4.290E+04	2.883E+00	
029	1.019E+02	8.162E+04	5.484E+00	2.723E+01	4.081E+04	2.742E+00	
031	9.696E+01	7.764E+04	5.216E+00	2.590E+01	3.882E+04	2.608E+00	
032	9.223E+01	7.385E+D4	4.962E+00	2.463E+01	3.693E+04	2.481E+00	
033	8.773E+01	7.025E+04	4.720E+00	2.343E+01	3.512E+04	2.360E+00	
034	8.345E+01	6.682E+04	4.490E+00	2.229E+01	3.341E+04	2.245E+00	
035	7.938E+01	6.356E+04	4,271E+00	2.120E+01	3.178E+04	2.135E+00	
036	7.551E+01	6.046E+04	4.063E+00	2.017E+01	3.023E+04	2.031E+00	
037	7.183E+01	5.752E+04	3.864E+00	1.919E+01	2.876E+04	1.932E+00	
2038	6.832E+01	5.471E+04	3.676£+00	1.825E+01	2.736E+04	1.838E+00	
	6.499E+01	5.204E+04	3.497E+00	1.736E+01	2.602E+04	1.748E+00	
2039		4.950E+04	3.326E+00	1.651E+01	2.475E+04	1.663E+00	
	6.182E+01 5.881E+01	4.950E+04 4.709E+04	3.164E+00	1.571E+01	2.354E+04	1.582E+00	
2041		4.479E+04	3.010E+00	1.494E+01	2.240€+04	1.505E+00	
042	5.594E+01	4.479E+04 4.261E+04	2.863E+00	1.421E+01	2.130E+04	1.431E+00	
2043	6.321E+01	4.053E+04	2.723E+00	1,352E+01	2.027E+04	1.362E+00	
2044	5.062E+01	3.855E+04	2.590E+00	1,352E+01	1.928E+04	1.295E+00	
2045	4.815E+01			1.223E+01	1.834E+04	1.232E+00	
2046	4.580E+01	3.667E+04	2.464E+00 2.344E+00	1.164E+01	1.744E+04	1.172E+00	
2047	4.356E+01	3.488E+04		1.107E+01	1.659E+04	1.115E+00	
2048	4.144E+01	3.318E+04	2.230E+00		1.578E+04	1.060E+00	
2049	3.942E+01	3.157E+04	2.121E+00	1.053E+01	1.501E+04	1.009E+00	
2050	3.750E+01	3.003E+04	2.017E+00	1.002E+01	1.0010704	1 1.0090-+00	

		Total landfill gas		Methane			
Year –	(Mq/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m ³ /year)	(av ft^3/min)	
2051	3.567E+01	2.856E+04	1.919E+00	9.527E+00	1.428E+04	9.595E-01	
052	3.393E+01	2.717E+04	1.825E+00	9.063E+00	1.358E+04	9.127E-01	
053	3.227E+01	2.584E+04	1.736E+00	8.621E+00	1.292E+04	8.682E-01	
054	3.070E+01	2.458E+04	1.652E+00	8.200E+00	1.229E+04	8.259E-01	
055	2.920E+01	2.338E+04	1.571E+00	7.800E+00	1.169E+04	7.856E-01	
056	2.778E+01	2.224E+04	1.495E+00	7.420E+00	1.112E+04	7.473E-01	
057	2.642E+01	2.116E+04	1.422E+00	7.058E+00	1.058E+04	7.108E-01	
2058	2.513E+01	2.013E+04	1.352E+00	6.714E+00	1.006E+04	6.762E-01	
059	2,391E+01	1.915E+04	1.286E+00	6.386E+00	9.573E+03	6.432E-01	
060	2.274E+01	1.821E+04	1.224E+00	6.075E+00	9.106E+03	6.118E-01	
061	2.163E+01	1.732E+04	1.164E+00	5.779E+00	8.662E+03	5.820E-01	
062	2.058E+01	1.648E+04	1.107E+00	5.497E+00	8.239E+03	5.536E-01	
2063	1.957E+01	1.567E+04	1.053E+00	5.229E+00	7.837E+03	5.266E-01	
064	1.862E+01	1.491E+04	1.002E+00	4.974E+00	7.455E+03	5.009E-01	
065	1,771E+01	1.418E+04	9.530E-01	4.731E+00	7.092E+03	4.765E-01	
2066	1.685E+01	1.349E+04	9.065E-01	4.500E+00	6.746E+03	4.532E-01	
067	1.603E+01	1.283E+04	8.623E-01	4.281E+00	6.417E+03	4.311E-01	
068	1.525E+01	1.221E+04	8.202E-01	4.072E+00	6.104E+03	4.101E-01	
069	1.450E+01	1.161E+04	7.802E-01	3.874E+00	5.806E+03	3.901E-01	
070	1.379E+01	1.105E+04	7.422E-01	3.685E+00	5.523E+03	3.711E-01	
071	1.312E+01	1.051E+04	7.060E-01	3.505E+00	5.254E+03	3.530E-01	
2072	1.248E+01	9.995E+03	6.715E-01	3.334E+00	4.997E+03	3.358E-01	
2073	1.187E+01	9.507E+03	6.388E-01	3.171E+00	4.754E+03	3.194E-01	
2074	1,129E+01	9.044E+03	6.076E-01	3.017E+00	4.522E+03	3.038E-01	
075	1.074E+01	8.602E+03	5.780E-01	2.870E+00	4.301E+03	2.890E-01	
076	1.022E+01	8.183E+03	5.498E-01	2.730E+00	4.091E+03	2.749E-01	
2077	9.721E+00	7.784E+03	5.230E-01	2.596E+00	3.892E+03	2.615E-01	
078	9.247E+00	7.404E+03	4.975E-01	2.470E+00	3.702E+03	2.487E-01	
079	8.796E+00	7.043E+03	4.732E-01	2.349E+00	3,522E+03	2.366E-01	
2080	8.367E+00	6.700E+03	4.501E-01	2.235E+00	3.350E+03	2.251E-01	
2081	7.959E+00	6.373E+03	4.282E-01	2.126E+00	3.186E+03	2.141E-01	
082	7.570E+00	6.062E+03	4.073E-01	2.022E+00	3.031E+03	2.037E-01	
083	7.201E+00	5.766E+03	3.874E-01	1.924E+00	2.883E+03	1.937E-01	
084	6.850E+00	5.485E+03	3.685E-01	1.830E+00	2.743E+03	1.843E-01	
085	6.516E+00	5.218E+03	3.506E-01	1.740E+00	2.609E+03	1.753E-01	
086	6.198E+00	4.963E+03	3.335E-01	1.656E+00	2.482E+03	1.667E-01	
087	5.896E+00	4.721E+03	3.172E-01	1.575E+00	2.361E+03	1.586E-01	
2088	5.608E+00	4.491E+03	3.017E-01	1,498E+00	2.245E+03	1.509E-01	
2089	5.335E+00	4.272E+03	2.870E-01	1.425E+00	2.136E+03	1.435E-01	
090	5.075E+00	4.064E+03	2.730E-01	1.355E+00	2.032E+03	1.365E-01	

Year		Carbon dioxide			NMOC		
	(Mg/year)	(m ³ /year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
950	0	0	0	0	0	0	
951	1.485E+02	8.112E+04	5.450E+00	2.326E+00	6.489E+02	4.360E-02	
52	2.897E+02	1.583E+05	1.063E+01	4.539E+00	1.266E+03	8.508E-02	
53	4.241E+02	2.317E+05	1.557E+01	6.643E+00	1.853E+03	1.245E-01	
54	5.519E+02	3.015E+05	2.026E+01	8.645E+00	2.412E+03	1.621E-01	
55	6.734E+02	3.679E+05	2.472E+01	1.055E+01	2.943E+03	1.978E-01	
56	7.891E+02	4.311E+05	2.896E+01	1.236E+01	3.449E+03	2.317E-01	
57	8.991E+02	4.912E+05	3.300E+01	1.408E+01	3.929E+03	2.640E-01	
58	1.004E+03	5.483E+05	3.684E+01	1.572E+01	4.387E+03	2.947E-01	
59	1,103E+03	6.027E+05	4.050E+01	1.728E+01	4.822E+03	3.240E-01	
60	1.198E+03	6.544E+05	4.397E+01	1.877E+01	5.235E+03	3.518E-01	
61	1.288E+03	7.036E+05	4.728E+01	2.018E+01	5.629E+03	3.782E-01	
	1.374E+03	7,504E+05	5.042E+01	2.152E+01	6.003E+03	4.034E-01	
62		7.949E+05	5.341E+01	2.280E+01	6.359E+03	4.273E-01	
63	1.455E+03		5.626E+01	2.401E+01	6.698E+03	4.501E-01	
64	1.533E+03	8.373E+05	5.896E+01	2.516E+01	7.020E+03	4.717E-01	
65	1.606E+03	8.776E+05	6.154E+01	2.626E+01	7.327E+03	4,923E-01	
56	1.677E+03	9.159E+05		2.731E+01	7.619E+03	5.119E-01	
67	1.743E+03	9.523E+05	6.399E+01	2.598E+01	7.247E+03	4.869E-01	
68	1.658E+03	9.059E+05	6.087E+01	2.471E+01	6.894E+03	4.632E-01	
69	1.577E+03	8.617E+05	5.790E+01		6.557E+03	4.406E-01	
70	1.500E+03	8.197E+05	5.507E+01	2.350E+01	6.238E+03	4.191E-01	
71	1.427E+03	7.797E+05	5.239E+01	2.236E+01	5.933E+03	3.987E-01	
72	1.358E+03	7.417E+05	4.983E+01	2.127E+01		3.792E-01	
73	1.291E+03	7.055E+05	4.740E+01	2.023E+01	5.644E+03		
74	1.228E+03	6.711E+05	4.509E+01	1.924E+01	5.369E+03	3.607E-01	
75	1.169E+03	6.384E+05	4.289E+01	1.831E+01	5.107E+03	3.431E-01	
76	1.112E+03	6.072E+05	4.080E+01	1.741E+01	4.858E+03	3.264E-01	
77	1.057E+03	5.776Ë+05	3.881E+01	1.656E+01	4.621E+03	3.105E-01	
78	1.006E+03	5.494E+05	3.692E+01	1.576E+01	4.396E+03	2.953E-01	
79	9.567E+02	5.226E+05	3.512E+01	1.499E+01	4.181E+03	2.809E-01	
80	9.100E+02	4.972E+05	3.340E+01	1.426E+01	3.977E+03	2.672E-01	
81	8.657E+02	4.729E+05	3.177E+01	1.356E+01	3.783E+03	2.542E-01	
82	8.234E+02	4.498E+05	3.023E+01	1.290E+01	3.599E+03	2.418E-01	
83	7.833E+02	4,279E+05	2.875E+01	1,227E+01	3.423E+03	2.300E-01	
84	7.451E+02	4.070E+05	2.735E+01	1.167E+01	3.256E+03	2.188E-01	
85	7.087E+02	3.872E+05	2.601E+01	1.110E+01	3.097E+03	2.081E-01	
86	6.742E+02	3.683E+05	2.475E+01	1,056E+01	2.946E+03	1.980E-01	
87	6.413E+02	3.503E+05	2.354E+01	1.005E+01	2.803E+03	1.883E-01	
88	6.100E+02	3.333E+05	2.239E+01	9.556E+00	2.666Ë+03	1.791E-01	
89	5.803E+02	3.170E+05	2.130E+01	9.090E+00	2.536E+03	1.704E-01	
90	5.520E+02	3.015E+05	2.026E+01	8.647E+00	2.412E+03	1.621E-01	
91	5.250E+02	2.868E+05	1.927E+01	8.225E+00	2.295E+03	1.542E-01	
	4.994E+02	2.728E+05	1.833E+01	7.824E+00	2.183E+03	1.467E-01	
92	4.994E+02 4.751E+02	2.595E+05	1.744E+01	7.442E+00	2.076E+03	1.395E-01	
93		2.469E+05	1.659E+01	7,079E+00	1.975E+03	1.327E-01	
994	4.519E+02	2.348E+05	1.578E+01	6.734E+00	1.879E+03	1.262E-01	
995	4.299E+02		1.501E+01	6.406E+00	1.787E+03	1.201E-01	
996	4.089E+02	2.234E+05		6.093E+00	1.700E+03	1.142E-01	
997	3.890E+02	2.125E+05	1.428E+01	5,796E+00	1.617E+03	1.086E-01	
998	3.700E+02	2.021E+05	1.358E+01	1	1.538E+03	1.033E-01	
999	3.520E+02	1.923E+05	1.292E+01	5.513E+00	1.0000-000	1 1.0001-01	

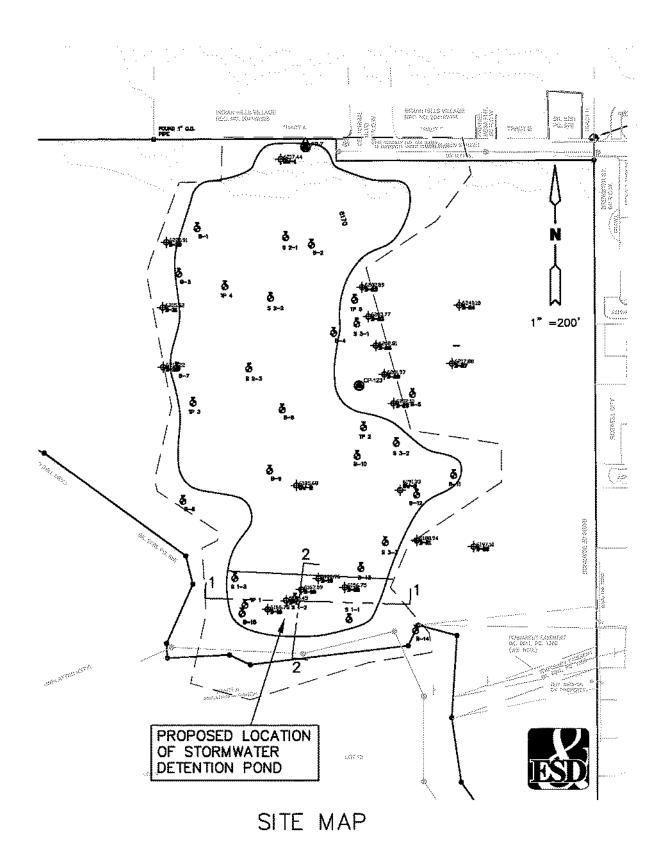
		Carbon dioxide			NMOC		
/ear —	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)	
000	3.348E+02	1.829E+05	1.229E+01	5.245E+00	1.463E+03	9.831E-02	
001	3,185E+02	1.740E+05	1.169E+01	4.989E+00	1.392E+03	9.351E-02	
002	3.029E+02	1.655E+05	1.112E+01	4.746E+00	1.324E+03	8.895E-02	
003	2.882E+02	1.574E+05	1.058E+01	4.514E+00	1.259E+03	8.462E-02	
004	2.741E+02	1.497E+05	1.006E+01	4.294E+00	1.198E+03	8.049E-02	
005	2.607€+02	1,424E+05	9.570E+00	4.084E+00	1.139E+03	7.656E-02	
006	2.480E+02	1.355E+05	9,104E+00	3.885Ë+00	1.084E+03	7.283E-02	
007	2.359E+02	1,289E+05	8.660E+00	3.696E+00	1.031€+03	6.928E-02	
008	2.244E+02	1.226E+05	8.237E+00	3.516E+00	9.808E+02	6.590E-02	
009	2.135E+02	1.166E+05	7.836E+00	3.344E+00	9.329E+02	6.268E-02	
010	2.031E+02	1.109E+05	7.453E+00	3.181E+00	8.874E+02	5.963E-02	
011	1.932E+02	1.055E+05	7.090E+00	3.026E+00	8.442E+02	5.672E-02	
012	1.837E+02	1.004E+05	6.744E+00	2.878E+00	8.030E+02	5.395E-02	
013	1.748E+02	9.548E+04	6.415E+00	2.738E+00	7.638E+02	5.132E-02	
014	1.662E+02	9.082E+04	6.102E+00	2,604E+00	7.266E+02	4.882E-02	
015	1.581E+02	8.639E+04	5.805E+00	2.477E+00	6.911E+02	4.644E-02	
016	1.504E+02	8.218E+04	5.522E+00	2.357E+00	6.574E+02	4.417E-02	
017	1.431E+02	7.817E+04	5.252E+00	2.242E+00	6.254E+02	4.202E-02	
018	1.361E+02	7.436E+04	4.996E+00	2.132E+00	5.949E+02	3.997E-02	
019	1.295E+02	7.073E+04	4.752E+00	2.028E+00	5.659E+02	3.802E-02	
020	1.232E+02	6.728E+04	4.521E+00	1.929E+00	5.383E+02	3.617E-02	
020	1.172E+02	6.400E+04	4.300E+00	1.835E+00	5.120E+02	3.440E-02	
022	1.114E+02	6.088E+04	4.091E+00	1.746E+00	4.870E+02	3.272E-02	
022	1.060E+02	5.791E+04	3.891E+00	1.661E+00	4.633E+02	3.113E-02	
	1.008E+02	5.509E+04	3.701E+00	1.580E+00	4.407E+02	2.961E-02	
024	9.592E+01	5.240E+04	3.521€+00	1.503E+00	4.192E+02	2.817E-02	
025		4.984E+04	3.349E+00	1.429E+00	3.988E+02	2.679E-02	
	9.124E+01 8.679E+01	4.741E+04	3.186E+00	1.360E+00	3.793E+02	2.549E-02	
027		4.510E+04	3.030E+00	1.293E+00	3.608E+02	2.424E-02	
028	8.256E+01	4.510E+04 4.290E+04	2.883E+00	1.230E+00	3.432E+02	2.306E-02	
029	7.853E+01		2.742E+00	1.170E+00	3.265E+02	2.194E-02	
030	7.470E+01	4.081E+04	2.608E+00	1.113E+00	3.105E+02	2.087E-02	
031	7.106E+01	3.882E+04	2.481E+00	1.059E+00	2.954E+02	1.985E-02	
032	6.759E+01	3.693E+04	2.461E+00 2.360E+00	1.007E+00	2.810E+02	1.888E-02	
033	6.430E+01	3.512E+04	2.300E+00 2.245E+00	9.581E-01	2.673E+02	1.796E-02	
034	6.116E+01	3.341E+04	1 · · ·	9.114E-01	2.543E+02	1.708E-02	
035	5.818E+01	3.178E+04	2.135E+00	8.669E-01	2.419E+02	1.625E-02	
036	5.534E+01	3.023E+04	2.031E+00	8.246E-01	2.301E+02	1.546E-02	
037	5.264E+01	2.876E+04	1.932E+00		2.188E+02	1.470E-02	
038	5.007E+01	2.736E+04	1.838E+00	7.844E-01	2.082E+02	1.399E-02	
2039	4.763E+01	2.602E+04	1.748E+00	7.462E-01	1.980E+02	1.330E-02	
040	4.531E+01	2.475E+04	1.663E+00	7.098E-01		1.266E-02	
041	4.310E+01	2.354E+04	1.582E+00	6,752E-01	1,884E+02	1.204E-02	
042	4.100E+01	2.240E+04	1.505E+00	6.422E-01	1.792E+02	1.145E-02	
043	3.900E+01	2.130E+04	1.431E+00	6.109E-01	1.704E+02		
044	3.710E+01	2.027E+04	1.362E+00	5.811E-01	1.621E+02	1.089E-02	
045	3.529E+01	1.928E+04	1.295E+00	5.528E-01	1.542E+02	1.036E-02	
2046	3.357E+01	1.834E+04	1.232E+00	5.258E-01	1.467E+02	9.856E-03	
2047	3.193E+01	1.744E+04	1.172E+00	5.002E-01	1.395E+02	9.376E-03	
2048	3.037E+01	1.659E+04	1.115E+00	4.758E-01	1.327E+02	8.918E-03	
2049	2.889E+01	1.578E+04	1.060E+00	4.526E-01	1.263E+02	8.483E-03	
2050	2.748E+01	1.501E+04	1.009E+00	4,305E-01	1.201E+02	8.070E-03	

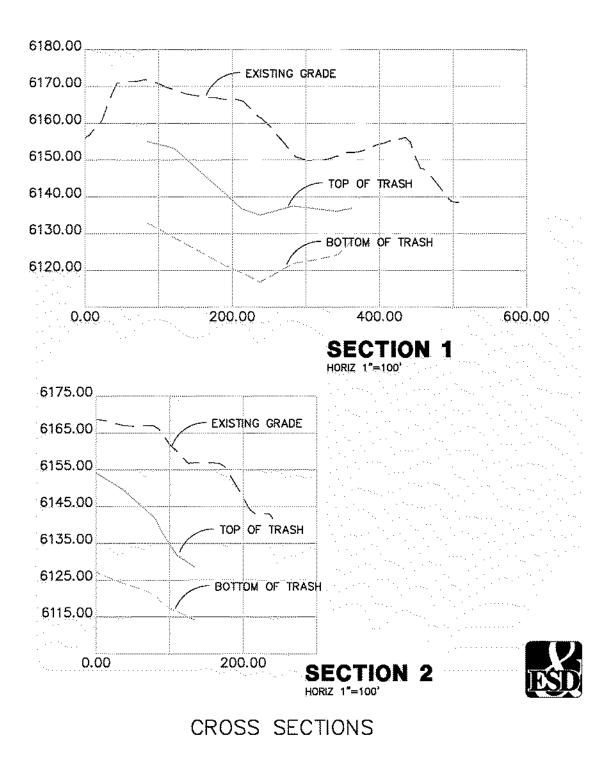
.

	Carbon dioxide			NMOC		
Year	(Mg/year)	(m³/year)	(av ft^3/min)	(Mg/year)	(m³/year)	(av ft^3/min)
2051	2.614E+01	1.428E+04	9.595E-01	4.095E-01	1.142E+02	7.676E-03
2052	2.487E+01	1.358E+04	9.127E-01	3.895E-01	1.087E+02	7.302E-03
2053	2.365E+01	1.292E+04	8.682E-01	3.705E-01	1.034E+02	6.946E-03
2054	2.250E+01	1.229E+04	8.259E-01	3.525E-01	9.833E+01	6.607E-03
2055	2.140E+01	1.169E+04	7.856E-01	3.353E 01	9.354E+01	6.285E-03
2056	2.036E+01	1.112E+04	7.473E-01	3.189E-01	8.897E+01	5.978E-03
2057	1.937E+01	1.058E+04	7.108E-01	3.034E-01	8.463E+01	5.687E-03
2058	1.842E+01	1.006E+04	6.762E-01	2.886E-01	8.051E+01	5.409E-03
2059	1,752E+01	9.573E+03	6.432E-01	2.745E-01	7.658E+01	5.145E-03
2060	1.667E+01	9.106E+03	6.118E-01	2.611E-01	7.285E+01	4.894E-03
2061	1.586E+01	8.662E+03	5.820E-01	2.484E-01	6.929E+01	4.656E-03
2062	1.508E+01	8.239E+03	5.536E-01	2.363E-01	6.591E+01	4.429E-03
2063	1.435E+01	7.837E+03	5.266E-01	2.247E-01	6.270E+01	4.213E-03
2064	1.365E+01	7.455E+03	5.009E-01	2.138E-01	5.964E+01	4.007E-03
2065	1.298E+01	7.092E+03	4.765E-01	2.034E-01	5.673E+01	3.812E-03
2066	1.235E+01	6.746E+03	4.532E-01	1.934E-01	5.397E+01	3.626E-03
2067	1.175E+01	6.417E+03	4.311E-01	1.840E-01	5.133E+01	3.449E-03
2068	1.117E+01	6.104E+03	4.101E-01	1.750E-01	4.883E+01	3.281E-03
2069	1.063E+01	5.806E+03	3.901E-01	1.665E-01	4.645E+01	3.121E-03
2070	1.011E+01	5.523E+03	3.711E-01	1.584E-01	4.418E+01	2.969E-03
2071	9.617E+00	5.254E+03	3.530E-01	1 506E-01	4.203E+01	2.824E-03
2072	9.148E+00	4.997E+03	3.358E-01	1.433E-01	3.998E+01	2.686E-03
2073	8.701E+00	4.754E+03	3.194E-01	1.363E-01	3.803E+01	2.555E-03
2074	8.277E+00	4.522E+03	3.038E-01	1.297E-01	3.617E+01	2.431E-03
2075	7.873E+00	4.301E+03	2.890E-01	1.233E-01	3.441E+01	2.312E-03
2076	7.489E+00	4.091E+03	2.749E-01	1.173E-01	3.273E+01	2.199E-03
2077	7.124E+00	3,892E+03	2.615E-01	1.116E-01	3.114E+01	2.092E-03
2078	6.777E+00	3.702E+03	2.487E-01	1.062E-01	2.962E+01	1.990E-03
2079	6.446E+00	3.522E+03	2.366E-01	1.010E-01	2.817E+01	1.893E-03
2080	6.132E+00	3.350E+03	2.251E-01	9.606E-02	2.680E+01	1.801E-03
2081	5.833E+00	3.186E+03	2.141E-01	9.137E-02	2.549E+01	1.713E-03
2082	5.548E+00	3.031E+03	2.037E-01	8.692E-02	2.425E+01	1.629E-03
2083	5.278E+00	2.883E+03	1.937E-01	8.268E-02	2.307E+01	1.550E-03
2084	5.020E+00	2.743E+03	1.843E-01	7.865E-02	2.194E+01	1.474E-03
2085	4.775E+00	2.609E+03	1.753E-01	7.481E-02	2.087E+01	1.402E-03
2086	4.543E+00	2.482E+03	1.667E-01	7.116E-02	1.985E+01	1.334E-03
2087	4.321E+00	2.361E+03	1.586E-01	6.769E-02	1.888E+01	1.269E-03
2088	4.110E+00	2.245E+03	1.509E-01	6.439E-02	1.796E+01	1.207E-03
2089	3.910E+00	2.136E+03	1.435E-01	6.125E-02	1.709E+01	1.148E-03
2090	3,719E+00	2.032E+03	1.365E-01	5.826E-02	1.625E+01	1.092E-03

Appendix O Stormwater Detention Pond

STORMWATER DETENTION POND


SITE CONDITIONS


The property that encompasses the abandoned landfill slopes from northwest to southeast. This natural slope has resulted in a series of channels that direct stormwater flow to the southwestern and southeastern portion of the site. Specifically, these channels direct stormwater to the streams that border the western and southern portions of the property. These streams have allowed soils as well as other materials to discharge randomly from the property.

As a part of the voluntary clean-up efforts, drainage on the site will be refined to allow for better control of stormwater. An integral part of this will be to establish a stormwater detention pond at the southeastern end of the property. As can be seen in the site plan on the following page, the area in the southeastern portion of the property is contoured to accommodate a possible detention pond. There is solid waste in this area that is buried at depths varying from 5 feet to more than 25 feet. Given this circumstance, it is proposed to accommodate both the stormwater detention pond and the solid waste that is at depth in this area.

PRESENT SOLID WASTE PLACEMENT

As can be seen on the drawing on page 3, solid waste in the southeastern portion of the site at two levels. As noted in cross-section 1 there is a layer of solid waste that is located at depths as shallow as a few feet and in cross-section 2 there is solid waste located at depths of 25 feet or more. These two conditions create difficulties in removing the waste. First, the shallow waste varies in location and thickness. This will likely result in an over-excavation of soil which will impact the capacity of the consolidated landfill and could require a higher or wider landfill footprint. Solid waste buried at depths of 25 feet or more will result in the extensive excavation of soil to reach the solid waste. Developing a stormwater detention pond in this area will address these issues.

STORMWATER DETENTION POND DEVELOPMENT

A stormwater detention pond, by description, is designed to receive and contain stormwater from a prescribed area. For this site, the stormwater detention pond will be sized to receive all the stormwater that falls on the site plus a portion of the stormwater that is generated by the future Centennial Boulevard. This stormwater detention pond will have a liner system designed to contain the stormwater until it evaporates, is discharged from the pond, or is pumped into a truck that takes the water for use in the construction of buildings, roadways, parking areas, or similar activities. The area around the pond will be vegetated to reduce erosion and any outlet from the pond will be armored with rocks and an impervious sublayer.

SOLID WASTE LOCATED AT THE PROPOSED DETENTION POND SITE

As noted previously, the location of the proposed stormwater detention pond is situated over solid waste. Those portions of solid waste that are relatively shallow will be excavated and placed in the consolidated landfill. The portion of the solid waste that is at depth will be left in place. The stormwater detention pond will be excavated to a depth that accommodates the stormwater flow from a predetermined stormwater frequency.

As the pond is excavated, it is anticipated that some solid waste may be encountered. If solid waste is encountered, it will be relocated to the consolidated landfill. When excavation reaches its prescribed depth, if any solid waste is exposed it will be covered with soil and compacted in acceptable lifts that result in a permeability of 1×10^{-7} cm/sec or greater. Once the soil is properly compacted, a synthetic liner will be placed over the compacted soil liner and a protective layer of soil will be placed over the synthetic liner. This liner system will contain the stormwater stored and protect the solid waste below the pond.

QUALITY CONTROL OF THE POND LINER

The compacted soil liner and the synthetic liner installation will be overseen by on-site quality assurance personnel who will monitor the operation and record all activities related to the liner system installation. This individual will report to the Site Engineer, who will have overall responsibility for the stormwater detention pond. In addition, the liner system will be inspected annually.

2090/Waterman Folder/VCUP Application Folder 2018/Final Document /Appendix O-Stormwater Detention Pond V01 10-23-2018 RSC